Properties

Label 1450.4.a.f.1.1
Level $1450$
Weight $4$
Character 1450.1
Self dual yes
Analytic conductor $85.553$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1450,4,Mod(1,1450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.5527695083\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -2.00000 q^{3} +4.00000 q^{4} -4.00000 q^{6} +32.0000 q^{7} +8.00000 q^{8} -23.0000 q^{9} +12.0000 q^{11} -8.00000 q^{12} -22.0000 q^{13} +64.0000 q^{14} +16.0000 q^{16} -104.000 q^{17} -46.0000 q^{18} +12.0000 q^{19} -64.0000 q^{21} +24.0000 q^{22} -212.000 q^{23} -16.0000 q^{24} -44.0000 q^{26} +100.000 q^{27} +128.000 q^{28} -29.0000 q^{29} +52.0000 q^{31} +32.0000 q^{32} -24.0000 q^{33} -208.000 q^{34} -92.0000 q^{36} +24.0000 q^{38} +44.0000 q^{39} -354.000 q^{41} -128.000 q^{42} -526.000 q^{43} +48.0000 q^{44} -424.000 q^{46} +58.0000 q^{47} -32.0000 q^{48} +681.000 q^{49} +208.000 q^{51} -88.0000 q^{52} -314.000 q^{53} +200.000 q^{54} +256.000 q^{56} -24.0000 q^{57} -58.0000 q^{58} -692.000 q^{59} +730.000 q^{61} +104.000 q^{62} -736.000 q^{63} +64.0000 q^{64} -48.0000 q^{66} +140.000 q^{67} -416.000 q^{68} +424.000 q^{69} +696.000 q^{71} -184.000 q^{72} +404.000 q^{73} +48.0000 q^{76} +384.000 q^{77} +88.0000 q^{78} +116.000 q^{79} +421.000 q^{81} -708.000 q^{82} +172.000 q^{83} -256.000 q^{84} -1052.00 q^{86} +58.0000 q^{87} +96.0000 q^{88} -42.0000 q^{89} -704.000 q^{91} -848.000 q^{92} -104.000 q^{93} +116.000 q^{94} -64.0000 q^{96} -176.000 q^{97} +1362.00 q^{98} -276.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −2.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −4.00000 −0.272166
\(7\) 32.0000 1.72784 0.863919 0.503631i \(-0.168003\pi\)
0.863919 + 0.503631i \(0.168003\pi\)
\(8\) 8.00000 0.353553
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) 12.0000 0.328921 0.164461 0.986384i \(-0.447412\pi\)
0.164461 + 0.986384i \(0.447412\pi\)
\(12\) −8.00000 −0.192450
\(13\) −22.0000 −0.469362 −0.234681 0.972072i \(-0.575405\pi\)
−0.234681 + 0.972072i \(0.575405\pi\)
\(14\) 64.0000 1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −104.000 −1.48375 −0.741874 0.670540i \(-0.766063\pi\)
−0.741874 + 0.670540i \(0.766063\pi\)
\(18\) −46.0000 −0.602350
\(19\) 12.0000 0.144894 0.0724471 0.997372i \(-0.476919\pi\)
0.0724471 + 0.997372i \(0.476919\pi\)
\(20\) 0 0
\(21\) −64.0000 −0.665045
\(22\) 24.0000 0.232583
\(23\) −212.000 −1.92196 −0.960979 0.276620i \(-0.910786\pi\)
−0.960979 + 0.276620i \(0.910786\pi\)
\(24\) −16.0000 −0.136083
\(25\) 0 0
\(26\) −44.0000 −0.331889
\(27\) 100.000 0.712778
\(28\) 128.000 0.863919
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 52.0000 0.301273 0.150637 0.988589i \(-0.451868\pi\)
0.150637 + 0.988589i \(0.451868\pi\)
\(32\) 32.0000 0.176777
\(33\) −24.0000 −0.126602
\(34\) −208.000 −1.04917
\(35\) 0 0
\(36\) −92.0000 −0.425926
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 24.0000 0.102456
\(39\) 44.0000 0.180657
\(40\) 0 0
\(41\) −354.000 −1.34843 −0.674214 0.738536i \(-0.735517\pi\)
−0.674214 + 0.738536i \(0.735517\pi\)
\(42\) −128.000 −0.470258
\(43\) −526.000 −1.86545 −0.932724 0.360592i \(-0.882575\pi\)
−0.932724 + 0.360592i \(0.882575\pi\)
\(44\) 48.0000 0.164461
\(45\) 0 0
\(46\) −424.000 −1.35903
\(47\) 58.0000 0.180004 0.0900018 0.995942i \(-0.471313\pi\)
0.0900018 + 0.995942i \(0.471313\pi\)
\(48\) −32.0000 −0.0962250
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) 208.000 0.571095
\(52\) −88.0000 −0.234681
\(53\) −314.000 −0.813797 −0.406898 0.913473i \(-0.633390\pi\)
−0.406898 + 0.913473i \(0.633390\pi\)
\(54\) 200.000 0.504010
\(55\) 0 0
\(56\) 256.000 0.610883
\(57\) −24.0000 −0.0557698
\(58\) −58.0000 −0.131306
\(59\) −692.000 −1.52696 −0.763481 0.645831i \(-0.776511\pi\)
−0.763481 + 0.645831i \(0.776511\pi\)
\(60\) 0 0
\(61\) 730.000 1.53224 0.766122 0.642695i \(-0.222184\pi\)
0.766122 + 0.642695i \(0.222184\pi\)
\(62\) 104.000 0.213032
\(63\) −736.000 −1.47186
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −48.0000 −0.0895211
\(67\) 140.000 0.255279 0.127640 0.991821i \(-0.459260\pi\)
0.127640 + 0.991821i \(0.459260\pi\)
\(68\) −416.000 −0.741874
\(69\) 424.000 0.739762
\(70\) 0 0
\(71\) 696.000 1.16338 0.581690 0.813410i \(-0.302392\pi\)
0.581690 + 0.813410i \(0.302392\pi\)
\(72\) −184.000 −0.301175
\(73\) 404.000 0.647735 0.323867 0.946103i \(-0.395017\pi\)
0.323867 + 0.946103i \(0.395017\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 48.0000 0.0724471
\(77\) 384.000 0.568323
\(78\) 88.0000 0.127744
\(79\) 116.000 0.165203 0.0826014 0.996583i \(-0.473677\pi\)
0.0826014 + 0.996583i \(0.473677\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) −708.000 −0.953482
\(83\) 172.000 0.227463 0.113732 0.993512i \(-0.463720\pi\)
0.113732 + 0.993512i \(0.463720\pi\)
\(84\) −256.000 −0.332522
\(85\) 0 0
\(86\) −1052.00 −1.31907
\(87\) 58.0000 0.0714742
\(88\) 96.0000 0.116291
\(89\) −42.0000 −0.0500224 −0.0250112 0.999687i \(-0.507962\pi\)
−0.0250112 + 0.999687i \(0.507962\pi\)
\(90\) 0 0
\(91\) −704.000 −0.810981
\(92\) −848.000 −0.960979
\(93\) −104.000 −0.115960
\(94\) 116.000 0.127282
\(95\) 0 0
\(96\) −64.0000 −0.0680414
\(97\) −176.000 −0.184228 −0.0921139 0.995748i \(-0.529362\pi\)
−0.0921139 + 0.995748i \(0.529362\pi\)
\(98\) 1362.00 1.40391
\(99\) −276.000 −0.280192
\(100\) 0 0
\(101\) −1330.00 −1.31030 −0.655148 0.755500i \(-0.727394\pi\)
−0.655148 + 0.755500i \(0.727394\pi\)
\(102\) 416.000 0.403825
\(103\) −1052.00 −1.00638 −0.503188 0.864177i \(-0.667840\pi\)
−0.503188 + 0.864177i \(0.667840\pi\)
\(104\) −176.000 −0.165944
\(105\) 0 0
\(106\) −628.000 −0.575441
\(107\) −1924.00 −1.73832 −0.869159 0.494532i \(-0.835339\pi\)
−0.869159 + 0.494532i \(0.835339\pi\)
\(108\) 400.000 0.356389
\(109\) 1254.00 1.10194 0.550970 0.834525i \(-0.314258\pi\)
0.550970 + 0.834525i \(0.314258\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 512.000 0.431959
\(113\) −148.000 −0.123209 −0.0616047 0.998101i \(-0.519622\pi\)
−0.0616047 + 0.998101i \(0.519622\pi\)
\(114\) −48.0000 −0.0394352
\(115\) 0 0
\(116\) −116.000 −0.0928477
\(117\) 506.000 0.399827
\(118\) −1384.00 −1.07972
\(119\) −3328.00 −2.56367
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 1460.00 1.08346
\(123\) 708.000 0.519010
\(124\) 208.000 0.150637
\(125\) 0 0
\(126\) −1472.00 −1.04076
\(127\) 650.000 0.454159 0.227079 0.973876i \(-0.427082\pi\)
0.227079 + 0.973876i \(0.427082\pi\)
\(128\) 128.000 0.0883883
\(129\) 1052.00 0.718011
\(130\) 0 0
\(131\) −1072.00 −0.714970 −0.357485 0.933919i \(-0.616366\pi\)
−0.357485 + 0.933919i \(0.616366\pi\)
\(132\) −96.0000 −0.0633010
\(133\) 384.000 0.250354
\(134\) 280.000 0.180510
\(135\) 0 0
\(136\) −832.000 −0.524584
\(137\) 2208.00 1.37695 0.688475 0.725260i \(-0.258280\pi\)
0.688475 + 0.725260i \(0.258280\pi\)
\(138\) 848.000 0.523091
\(139\) 2908.00 1.77448 0.887242 0.461304i \(-0.152618\pi\)
0.887242 + 0.461304i \(0.152618\pi\)
\(140\) 0 0
\(141\) −116.000 −0.0692834
\(142\) 1392.00 0.822634
\(143\) −264.000 −0.154383
\(144\) −368.000 −0.212963
\(145\) 0 0
\(146\) 808.000 0.458018
\(147\) −1362.00 −0.764190
\(148\) 0 0
\(149\) 1838.00 1.01057 0.505285 0.862953i \(-0.331387\pi\)
0.505285 + 0.862953i \(0.331387\pi\)
\(150\) 0 0
\(151\) −2544.00 −1.37104 −0.685522 0.728051i \(-0.740426\pi\)
−0.685522 + 0.728051i \(0.740426\pi\)
\(152\) 96.0000 0.0512278
\(153\) 2392.00 1.26393
\(154\) 768.000 0.401865
\(155\) 0 0
\(156\) 176.000 0.0903287
\(157\) −2956.00 −1.50264 −0.751320 0.659938i \(-0.770583\pi\)
−0.751320 + 0.659938i \(0.770583\pi\)
\(158\) 232.000 0.116816
\(159\) 628.000 0.313230
\(160\) 0 0
\(161\) −6784.00 −3.32083
\(162\) 842.000 0.408357
\(163\) −722.000 −0.346941 −0.173471 0.984839i \(-0.555498\pi\)
−0.173471 + 0.984839i \(0.555498\pi\)
\(164\) −1416.00 −0.674214
\(165\) 0 0
\(166\) 344.000 0.160841
\(167\) −2408.00 −1.11579 −0.557894 0.829912i \(-0.688390\pi\)
−0.557894 + 0.829912i \(0.688390\pi\)
\(168\) −512.000 −0.235129
\(169\) −1713.00 −0.779700
\(170\) 0 0
\(171\) −276.000 −0.123428
\(172\) −2104.00 −0.932724
\(173\) 362.000 0.159089 0.0795444 0.996831i \(-0.474653\pi\)
0.0795444 + 0.996831i \(0.474653\pi\)
\(174\) 116.000 0.0505399
\(175\) 0 0
\(176\) 192.000 0.0822304
\(177\) 1384.00 0.587728
\(178\) −84.0000 −0.0353712
\(179\) −2340.00 −0.977094 −0.488547 0.872538i \(-0.662473\pi\)
−0.488547 + 0.872538i \(0.662473\pi\)
\(180\) 0 0
\(181\) 650.000 0.266929 0.133464 0.991054i \(-0.457390\pi\)
0.133464 + 0.991054i \(0.457390\pi\)
\(182\) −1408.00 −0.573450
\(183\) −1460.00 −0.589761
\(184\) −1696.00 −0.679515
\(185\) 0 0
\(186\) −208.000 −0.0819962
\(187\) −1248.00 −0.488036
\(188\) 232.000 0.0900018
\(189\) 3200.00 1.23156
\(190\) 0 0
\(191\) −1176.00 −0.445510 −0.222755 0.974874i \(-0.571505\pi\)
−0.222755 + 0.974874i \(0.571505\pi\)
\(192\) −128.000 −0.0481125
\(193\) −4740.00 −1.76784 −0.883919 0.467640i \(-0.845104\pi\)
−0.883919 + 0.467640i \(0.845104\pi\)
\(194\) −352.000 −0.130269
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) −4286.00 −1.55008 −0.775038 0.631915i \(-0.782269\pi\)
−0.775038 + 0.631915i \(0.782269\pi\)
\(198\) −552.000 −0.198126
\(199\) 3736.00 1.33084 0.665422 0.746467i \(-0.268252\pi\)
0.665422 + 0.746467i \(0.268252\pi\)
\(200\) 0 0
\(201\) −280.000 −0.0982571
\(202\) −2660.00 −0.926520
\(203\) −928.000 −0.320851
\(204\) 832.000 0.285547
\(205\) 0 0
\(206\) −2104.00 −0.711615
\(207\) 4876.00 1.63722
\(208\) −352.000 −0.117340
\(209\) 144.000 0.0476588
\(210\) 0 0
\(211\) −1828.00 −0.596420 −0.298210 0.954500i \(-0.596390\pi\)
−0.298210 + 0.954500i \(0.596390\pi\)
\(212\) −1256.00 −0.406898
\(213\) −1392.00 −0.447785
\(214\) −3848.00 −1.22918
\(215\) 0 0
\(216\) 800.000 0.252005
\(217\) 1664.00 0.520552
\(218\) 2508.00 0.779189
\(219\) −808.000 −0.249313
\(220\) 0 0
\(221\) 2288.00 0.696414
\(222\) 0 0
\(223\) −3068.00 −0.921294 −0.460647 0.887584i \(-0.652383\pi\)
−0.460647 + 0.887584i \(0.652383\pi\)
\(224\) 1024.00 0.305441
\(225\) 0 0
\(226\) −296.000 −0.0871222
\(227\) −4584.00 −1.34031 −0.670156 0.742220i \(-0.733773\pi\)
−0.670156 + 0.742220i \(0.733773\pi\)
\(228\) −96.0000 −0.0278849
\(229\) −206.000 −0.0594448 −0.0297224 0.999558i \(-0.509462\pi\)
−0.0297224 + 0.999558i \(0.509462\pi\)
\(230\) 0 0
\(231\) −768.000 −0.218748
\(232\) −232.000 −0.0656532
\(233\) 5822.00 1.63696 0.818480 0.574534i \(-0.194817\pi\)
0.818480 + 0.574534i \(0.194817\pi\)
\(234\) 1012.00 0.282720
\(235\) 0 0
\(236\) −2768.00 −0.763481
\(237\) −232.000 −0.0635866
\(238\) −6656.00 −1.81279
\(239\) 216.000 0.0584597 0.0292299 0.999573i \(-0.490695\pi\)
0.0292299 + 0.999573i \(0.490695\pi\)
\(240\) 0 0
\(241\) −418.000 −0.111725 −0.0558625 0.998438i \(-0.517791\pi\)
−0.0558625 + 0.998438i \(0.517791\pi\)
\(242\) −2374.00 −0.630605
\(243\) −3542.00 −0.935059
\(244\) 2920.00 0.766122
\(245\) 0 0
\(246\) 1416.00 0.366995
\(247\) −264.000 −0.0680078
\(248\) 416.000 0.106516
\(249\) −344.000 −0.0875507
\(250\) 0 0
\(251\) 1716.00 0.431526 0.215763 0.976446i \(-0.430776\pi\)
0.215763 + 0.976446i \(0.430776\pi\)
\(252\) −2944.00 −0.735931
\(253\) −2544.00 −0.632174
\(254\) 1300.00 0.321139
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2882.00 0.699511 0.349755 0.936841i \(-0.386265\pi\)
0.349755 + 0.936841i \(0.386265\pi\)
\(258\) 2104.00 0.507711
\(259\) 0 0
\(260\) 0 0
\(261\) 667.000 0.158185
\(262\) −2144.00 −0.505560
\(263\) −1254.00 −0.294011 −0.147006 0.989136i \(-0.546964\pi\)
−0.147006 + 0.989136i \(0.546964\pi\)
\(264\) −192.000 −0.0447605
\(265\) 0 0
\(266\) 768.000 0.177027
\(267\) 84.0000 0.0192536
\(268\) 560.000 0.127640
\(269\) −4114.00 −0.932472 −0.466236 0.884660i \(-0.654390\pi\)
−0.466236 + 0.884660i \(0.654390\pi\)
\(270\) 0 0
\(271\) 3160.00 0.708326 0.354163 0.935184i \(-0.384766\pi\)
0.354163 + 0.935184i \(0.384766\pi\)
\(272\) −1664.00 −0.370937
\(273\) 1408.00 0.312147
\(274\) 4416.00 0.973651
\(275\) 0 0
\(276\) 1696.00 0.369881
\(277\) 5750.00 1.24723 0.623617 0.781730i \(-0.285662\pi\)
0.623617 + 0.781730i \(0.285662\pi\)
\(278\) 5816.00 1.25475
\(279\) −1196.00 −0.256640
\(280\) 0 0
\(281\) 170.000 0.0360902 0.0180451 0.999837i \(-0.494256\pi\)
0.0180451 + 0.999837i \(0.494256\pi\)
\(282\) −232.000 −0.0489908
\(283\) 1692.00 0.355403 0.177701 0.984084i \(-0.443134\pi\)
0.177701 + 0.984084i \(0.443134\pi\)
\(284\) 2784.00 0.581690
\(285\) 0 0
\(286\) −528.000 −0.109165
\(287\) −11328.0 −2.32986
\(288\) −736.000 −0.150588
\(289\) 5903.00 1.20151
\(290\) 0 0
\(291\) 352.000 0.0709093
\(292\) 1616.00 0.323867
\(293\) 5868.00 1.17001 0.585004 0.811031i \(-0.301093\pi\)
0.585004 + 0.811031i \(0.301093\pi\)
\(294\) −2724.00 −0.540364
\(295\) 0 0
\(296\) 0 0
\(297\) 1200.00 0.234448
\(298\) 3676.00 0.714580
\(299\) 4664.00 0.902094
\(300\) 0 0
\(301\) −16832.0 −3.22319
\(302\) −5088.00 −0.969475
\(303\) 2660.00 0.504333
\(304\) 192.000 0.0362235
\(305\) 0 0
\(306\) 4784.00 0.893736
\(307\) −5922.00 −1.10093 −0.550466 0.834857i \(-0.685550\pi\)
−0.550466 + 0.834857i \(0.685550\pi\)
\(308\) 1536.00 0.284161
\(309\) 2104.00 0.387354
\(310\) 0 0
\(311\) 9468.00 1.72631 0.863153 0.504943i \(-0.168486\pi\)
0.863153 + 0.504943i \(0.168486\pi\)
\(312\) 352.000 0.0638720
\(313\) 7290.00 1.31647 0.658235 0.752812i \(-0.271303\pi\)
0.658235 + 0.752812i \(0.271303\pi\)
\(314\) −5912.00 −1.06253
\(315\) 0 0
\(316\) 464.000 0.0826014
\(317\) 5048.00 0.894397 0.447199 0.894435i \(-0.352422\pi\)
0.447199 + 0.894435i \(0.352422\pi\)
\(318\) 1256.00 0.221487
\(319\) −348.000 −0.0610792
\(320\) 0 0
\(321\) 3848.00 0.669079
\(322\) −13568.0 −2.34818
\(323\) −1248.00 −0.214986
\(324\) 1684.00 0.288752
\(325\) 0 0
\(326\) −1444.00 −0.245324
\(327\) −2508.00 −0.424137
\(328\) −2832.00 −0.476741
\(329\) 1856.00 0.311017
\(330\) 0 0
\(331\) 4872.00 0.809031 0.404516 0.914531i \(-0.367440\pi\)
0.404516 + 0.914531i \(0.367440\pi\)
\(332\) 688.000 0.113732
\(333\) 0 0
\(334\) −4816.00 −0.788981
\(335\) 0 0
\(336\) −1024.00 −0.166261
\(337\) −3240.00 −0.523721 −0.261861 0.965106i \(-0.584336\pi\)
−0.261861 + 0.965106i \(0.584336\pi\)
\(338\) −3426.00 −0.551331
\(339\) 296.000 0.0474233
\(340\) 0 0
\(341\) 624.000 0.0990953
\(342\) −552.000 −0.0872770
\(343\) 10816.0 1.70265
\(344\) −4208.00 −0.659535
\(345\) 0 0
\(346\) 724.000 0.112493
\(347\) 6152.00 0.951748 0.475874 0.879513i \(-0.342132\pi\)
0.475874 + 0.879513i \(0.342132\pi\)
\(348\) 232.000 0.0357371
\(349\) −6662.00 −1.02180 −0.510901 0.859640i \(-0.670688\pi\)
−0.510901 + 0.859640i \(0.670688\pi\)
\(350\) 0 0
\(351\) −2200.00 −0.334551
\(352\) 384.000 0.0581456
\(353\) 6926.00 1.04429 0.522144 0.852857i \(-0.325132\pi\)
0.522144 + 0.852857i \(0.325132\pi\)
\(354\) 2768.00 0.415586
\(355\) 0 0
\(356\) −168.000 −0.0250112
\(357\) 6656.00 0.986759
\(358\) −4680.00 −0.690910
\(359\) 3704.00 0.544539 0.272270 0.962221i \(-0.412226\pi\)
0.272270 + 0.962221i \(0.412226\pi\)
\(360\) 0 0
\(361\) −6715.00 −0.979006
\(362\) 1300.00 0.188747
\(363\) 2374.00 0.343258
\(364\) −2816.00 −0.405490
\(365\) 0 0
\(366\) −2920.00 −0.417024
\(367\) 1430.00 0.203393 0.101697 0.994815i \(-0.467573\pi\)
0.101697 + 0.994815i \(0.467573\pi\)
\(368\) −3392.00 −0.480490
\(369\) 8142.00 1.14866
\(370\) 0 0
\(371\) −10048.0 −1.40611
\(372\) −416.000 −0.0579801
\(373\) −2718.00 −0.377299 −0.188650 0.982044i \(-0.560411\pi\)
−0.188650 + 0.982044i \(0.560411\pi\)
\(374\) −2496.00 −0.345094
\(375\) 0 0
\(376\) 464.000 0.0636409
\(377\) 638.000 0.0871583
\(378\) 6400.00 0.870848
\(379\) 8104.00 1.09835 0.549175 0.835707i \(-0.314942\pi\)
0.549175 + 0.835707i \(0.314942\pi\)
\(380\) 0 0
\(381\) −1300.00 −0.174806
\(382\) −2352.00 −0.315023
\(383\) −10884.0 −1.45208 −0.726040 0.687653i \(-0.758641\pi\)
−0.726040 + 0.687653i \(0.758641\pi\)
\(384\) −256.000 −0.0340207
\(385\) 0 0
\(386\) −9480.00 −1.25005
\(387\) 12098.0 1.58909
\(388\) −704.000 −0.0921139
\(389\) −5146.00 −0.670726 −0.335363 0.942089i \(-0.608859\pi\)
−0.335363 + 0.942089i \(0.608859\pi\)
\(390\) 0 0
\(391\) 22048.0 2.85170
\(392\) 5448.00 0.701953
\(393\) 2144.00 0.275192
\(394\) −8572.00 −1.09607
\(395\) 0 0
\(396\) −1104.00 −0.140096
\(397\) 2818.00 0.356250 0.178125 0.984008i \(-0.442997\pi\)
0.178125 + 0.984008i \(0.442997\pi\)
\(398\) 7472.00 0.941049
\(399\) −768.000 −0.0963611
\(400\) 0 0
\(401\) −3594.00 −0.447571 −0.223785 0.974638i \(-0.571841\pi\)
−0.223785 + 0.974638i \(0.571841\pi\)
\(402\) −560.000 −0.0694783
\(403\) −1144.00 −0.141406
\(404\) −5320.00 −0.655148
\(405\) 0 0
\(406\) −1856.00 −0.226876
\(407\) 0 0
\(408\) 1664.00 0.201912
\(409\) 7242.00 0.875535 0.437768 0.899088i \(-0.355769\pi\)
0.437768 + 0.899088i \(0.355769\pi\)
\(410\) 0 0
\(411\) −4416.00 −0.529988
\(412\) −4208.00 −0.503188
\(413\) −22144.0 −2.63834
\(414\) 9752.00 1.15769
\(415\) 0 0
\(416\) −704.000 −0.0829722
\(417\) −5816.00 −0.682999
\(418\) 288.000 0.0336999
\(419\) 156.000 0.0181888 0.00909439 0.999959i \(-0.497105\pi\)
0.00909439 + 0.999959i \(0.497105\pi\)
\(420\) 0 0
\(421\) 13250.0 1.53388 0.766942 0.641716i \(-0.221777\pi\)
0.766942 + 0.641716i \(0.221777\pi\)
\(422\) −3656.00 −0.421733
\(423\) −1334.00 −0.153336
\(424\) −2512.00 −0.287721
\(425\) 0 0
\(426\) −2784.00 −0.316632
\(427\) 23360.0 2.64747
\(428\) −7696.00 −0.869159
\(429\) 528.000 0.0594221
\(430\) 0 0
\(431\) 12880.0 1.43946 0.719731 0.694253i \(-0.244265\pi\)
0.719731 + 0.694253i \(0.244265\pi\)
\(432\) 1600.00 0.178195
\(433\) −2144.00 −0.237954 −0.118977 0.992897i \(-0.537961\pi\)
−0.118977 + 0.992897i \(0.537961\pi\)
\(434\) 3328.00 0.368086
\(435\) 0 0
\(436\) 5016.00 0.550970
\(437\) −2544.00 −0.278481
\(438\) −1616.00 −0.176291
\(439\) −4248.00 −0.461836 −0.230918 0.972973i \(-0.574173\pi\)
−0.230918 + 0.972973i \(0.574173\pi\)
\(440\) 0 0
\(441\) −15663.0 −1.69129
\(442\) 4576.00 0.492439
\(443\) −16310.0 −1.74924 −0.874618 0.484813i \(-0.838888\pi\)
−0.874618 + 0.484813i \(0.838888\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6136.00 −0.651453
\(447\) −3676.00 −0.388968
\(448\) 2048.00 0.215980
\(449\) −11262.0 −1.18371 −0.591856 0.806044i \(-0.701605\pi\)
−0.591856 + 0.806044i \(0.701605\pi\)
\(450\) 0 0
\(451\) −4248.00 −0.443527
\(452\) −592.000 −0.0616047
\(453\) 5088.00 0.527715
\(454\) −9168.00 −0.947744
\(455\) 0 0
\(456\) −192.000 −0.0197176
\(457\) −12018.0 −1.23015 −0.615075 0.788469i \(-0.710874\pi\)
−0.615075 + 0.788469i \(0.710874\pi\)
\(458\) −412.000 −0.0420338
\(459\) −10400.0 −1.05758
\(460\) 0 0
\(461\) −90.0000 −0.00909266 −0.00454633 0.999990i \(-0.501447\pi\)
−0.00454633 + 0.999990i \(0.501447\pi\)
\(462\) −1536.00 −0.154678
\(463\) 1600.00 0.160601 0.0803005 0.996771i \(-0.474412\pi\)
0.0803005 + 0.996771i \(0.474412\pi\)
\(464\) −464.000 −0.0464238
\(465\) 0 0
\(466\) 11644.0 1.15751
\(467\) −570.000 −0.0564806 −0.0282403 0.999601i \(-0.508990\pi\)
−0.0282403 + 0.999601i \(0.508990\pi\)
\(468\) 2024.00 0.199913
\(469\) 4480.00 0.441081
\(470\) 0 0
\(471\) 5912.00 0.578366
\(472\) −5536.00 −0.539862
\(473\) −6312.00 −0.613586
\(474\) −464.000 −0.0449625
\(475\) 0 0
\(476\) −13312.0 −1.28184
\(477\) 7222.00 0.693234
\(478\) 432.000 0.0413373
\(479\) −2652.00 −0.252971 −0.126485 0.991968i \(-0.540370\pi\)
−0.126485 + 0.991968i \(0.540370\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −836.000 −0.0790016
\(483\) 13568.0 1.27819
\(484\) −4748.00 −0.445905
\(485\) 0 0
\(486\) −7084.00 −0.661187
\(487\) 11328.0 1.05405 0.527023 0.849851i \(-0.323308\pi\)
0.527023 + 0.849851i \(0.323308\pi\)
\(488\) 5840.00 0.541730
\(489\) 1444.00 0.133538
\(490\) 0 0
\(491\) −4208.00 −0.386771 −0.193385 0.981123i \(-0.561947\pi\)
−0.193385 + 0.981123i \(0.561947\pi\)
\(492\) 2832.00 0.259505
\(493\) 3016.00 0.275525
\(494\) −528.000 −0.0480888
\(495\) 0 0
\(496\) 832.000 0.0753184
\(497\) 22272.0 2.01013
\(498\) −688.000 −0.0619077
\(499\) 14244.0 1.27785 0.638927 0.769267i \(-0.279379\pi\)
0.638927 + 0.769267i \(0.279379\pi\)
\(500\) 0 0
\(501\) 4816.00 0.429467
\(502\) 3432.00 0.305135
\(503\) 19318.0 1.71242 0.856210 0.516628i \(-0.172813\pi\)
0.856210 + 0.516628i \(0.172813\pi\)
\(504\) −5888.00 −0.520382
\(505\) 0 0
\(506\) −5088.00 −0.447014
\(507\) 3426.00 0.300107
\(508\) 2600.00 0.227079
\(509\) 4686.00 0.408061 0.204031 0.978964i \(-0.434596\pi\)
0.204031 + 0.978964i \(0.434596\pi\)
\(510\) 0 0
\(511\) 12928.0 1.11918
\(512\) 512.000 0.0441942
\(513\) 1200.00 0.103277
\(514\) 5764.00 0.494629
\(515\) 0 0
\(516\) 4208.00 0.359006
\(517\) 696.000 0.0592071
\(518\) 0 0
\(519\) −724.000 −0.0612333
\(520\) 0 0
\(521\) −16662.0 −1.40110 −0.700552 0.713601i \(-0.747063\pi\)
−0.700552 + 0.713601i \(0.747063\pi\)
\(522\) 1334.00 0.111854
\(523\) −2992.00 −0.250155 −0.125077 0.992147i \(-0.539918\pi\)
−0.125077 + 0.992147i \(0.539918\pi\)
\(524\) −4288.00 −0.357485
\(525\) 0 0
\(526\) −2508.00 −0.207897
\(527\) −5408.00 −0.447014
\(528\) −384.000 −0.0316505
\(529\) 32777.0 2.69393
\(530\) 0 0
\(531\) 15916.0 1.30074
\(532\) 1536.00 0.125177
\(533\) 7788.00 0.632900
\(534\) 168.000 0.0136144
\(535\) 0 0
\(536\) 1120.00 0.0902549
\(537\) 4680.00 0.376084
\(538\) −8228.00 −0.659357
\(539\) 8172.00 0.653048
\(540\) 0 0
\(541\) 15590.0 1.23894 0.619470 0.785020i \(-0.287348\pi\)
0.619470 + 0.785020i \(0.287348\pi\)
\(542\) 6320.00 0.500862
\(543\) −1300.00 −0.102741
\(544\) −3328.00 −0.262292
\(545\) 0 0
\(546\) 2816.00 0.220721
\(547\) −1964.00 −0.153518 −0.0767592 0.997050i \(-0.524457\pi\)
−0.0767592 + 0.997050i \(0.524457\pi\)
\(548\) 8832.00 0.688475
\(549\) −16790.0 −1.30525
\(550\) 0 0
\(551\) −348.000 −0.0269062
\(552\) 3392.00 0.261545
\(553\) 3712.00 0.285444
\(554\) 11500.0 0.881928
\(555\) 0 0
\(556\) 11632.0 0.887242
\(557\) 766.000 0.0582701 0.0291351 0.999575i \(-0.490725\pi\)
0.0291351 + 0.999575i \(0.490725\pi\)
\(558\) −2392.00 −0.181472
\(559\) 11572.0 0.875570
\(560\) 0 0
\(561\) 2496.00 0.187845
\(562\) 340.000 0.0255196
\(563\) −16794.0 −1.25716 −0.628581 0.777744i \(-0.716364\pi\)
−0.628581 + 0.777744i \(0.716364\pi\)
\(564\) −464.000 −0.0346417
\(565\) 0 0
\(566\) 3384.00 0.251308
\(567\) 13472.0 0.997832
\(568\) 5568.00 0.411317
\(569\) −12342.0 −0.909321 −0.454660 0.890665i \(-0.650239\pi\)
−0.454660 + 0.890665i \(0.650239\pi\)
\(570\) 0 0
\(571\) −13356.0 −0.978864 −0.489432 0.872042i \(-0.662796\pi\)
−0.489432 + 0.872042i \(0.662796\pi\)
\(572\) −1056.00 −0.0771916
\(573\) 2352.00 0.171477
\(574\) −22656.0 −1.64746
\(575\) 0 0
\(576\) −1472.00 −0.106481
\(577\) −14148.0 −1.02078 −0.510389 0.859944i \(-0.670499\pi\)
−0.510389 + 0.859944i \(0.670499\pi\)
\(578\) 11806.0 0.849593
\(579\) 9480.00 0.680441
\(580\) 0 0
\(581\) 5504.00 0.393020
\(582\) 704.000 0.0501404
\(583\) −3768.00 −0.267675
\(584\) 3232.00 0.229009
\(585\) 0 0
\(586\) 11736.0 0.827320
\(587\) 16736.0 1.17678 0.588389 0.808578i \(-0.299762\pi\)
0.588389 + 0.808578i \(0.299762\pi\)
\(588\) −5448.00 −0.382095
\(589\) 624.000 0.0436528
\(590\) 0 0
\(591\) 8572.00 0.596624
\(592\) 0 0
\(593\) −28666.0 −1.98511 −0.992556 0.121788i \(-0.961137\pi\)
−0.992556 + 0.121788i \(0.961137\pi\)
\(594\) 2400.00 0.165780
\(595\) 0 0
\(596\) 7352.00 0.505285
\(597\) −7472.00 −0.512242
\(598\) 9328.00 0.637877
\(599\) 20804.0 1.41908 0.709540 0.704666i \(-0.248903\pi\)
0.709540 + 0.704666i \(0.248903\pi\)
\(600\) 0 0
\(601\) 4134.00 0.280581 0.140291 0.990110i \(-0.455196\pi\)
0.140291 + 0.990110i \(0.455196\pi\)
\(602\) −33664.0 −2.27914
\(603\) −3220.00 −0.217460
\(604\) −10176.0 −0.685522
\(605\) 0 0
\(606\) 5320.00 0.356618
\(607\) −23606.0 −1.57848 −0.789241 0.614084i \(-0.789526\pi\)
−0.789241 + 0.614084i \(0.789526\pi\)
\(608\) 384.000 0.0256139
\(609\) 1856.00 0.123496
\(610\) 0 0
\(611\) −1276.00 −0.0844868
\(612\) 9568.00 0.631966
\(613\) 2630.00 0.173287 0.0866433 0.996239i \(-0.472386\pi\)
0.0866433 + 0.996239i \(0.472386\pi\)
\(614\) −11844.0 −0.778477
\(615\) 0 0
\(616\) 3072.00 0.200932
\(617\) −12288.0 −0.801777 −0.400888 0.916127i \(-0.631298\pi\)
−0.400888 + 0.916127i \(0.631298\pi\)
\(618\) 4208.00 0.273901
\(619\) −22896.0 −1.48670 −0.743351 0.668902i \(-0.766765\pi\)
−0.743351 + 0.668902i \(0.766765\pi\)
\(620\) 0 0
\(621\) −21200.0 −1.36993
\(622\) 18936.0 1.22068
\(623\) −1344.00 −0.0864305
\(624\) 704.000 0.0451644
\(625\) 0 0
\(626\) 14580.0 0.930885
\(627\) −288.000 −0.0183439
\(628\) −11824.0 −0.751320
\(629\) 0 0
\(630\) 0 0
\(631\) 14352.0 0.905458 0.452729 0.891648i \(-0.350450\pi\)
0.452729 + 0.891648i \(0.350450\pi\)
\(632\) 928.000 0.0584080
\(633\) 3656.00 0.229562
\(634\) 10096.0 0.632434
\(635\) 0 0
\(636\) 2512.00 0.156615
\(637\) −14982.0 −0.931881
\(638\) −696.000 −0.0431895
\(639\) −16008.0 −0.991028
\(640\) 0 0
\(641\) 17782.0 1.09570 0.547852 0.836575i \(-0.315446\pi\)
0.547852 + 0.836575i \(0.315446\pi\)
\(642\) 7696.00 0.473110
\(643\) 3460.00 0.212207 0.106103 0.994355i \(-0.466163\pi\)
0.106103 + 0.994355i \(0.466163\pi\)
\(644\) −27136.0 −1.66042
\(645\) 0 0
\(646\) −2496.00 −0.152018
\(647\) 25564.0 1.55336 0.776680 0.629895i \(-0.216902\pi\)
0.776680 + 0.629895i \(0.216902\pi\)
\(648\) 3368.00 0.204178
\(649\) −8304.00 −0.502250
\(650\) 0 0
\(651\) −3328.00 −0.200360
\(652\) −2888.00 −0.173471
\(653\) −4368.00 −0.261766 −0.130883 0.991398i \(-0.541781\pi\)
−0.130883 + 0.991398i \(0.541781\pi\)
\(654\) −5016.00 −0.299910
\(655\) 0 0
\(656\) −5664.00 −0.337107
\(657\) −9292.00 −0.551774
\(658\) 3712.00 0.219922
\(659\) 32108.0 1.89795 0.948976 0.315349i \(-0.102122\pi\)
0.948976 + 0.315349i \(0.102122\pi\)
\(660\) 0 0
\(661\) 882.000 0.0518999 0.0259499 0.999663i \(-0.491739\pi\)
0.0259499 + 0.999663i \(0.491739\pi\)
\(662\) 9744.00 0.572071
\(663\) −4576.00 −0.268050
\(664\) 1376.00 0.0804204
\(665\) 0 0
\(666\) 0 0
\(667\) 6148.00 0.356899
\(668\) −9632.00 −0.557894
\(669\) 6136.00 0.354606
\(670\) 0 0
\(671\) 8760.00 0.503988
\(672\) −2048.00 −0.117564
\(673\) −8414.00 −0.481926 −0.240963 0.970534i \(-0.577463\pi\)
−0.240963 + 0.970534i \(0.577463\pi\)
\(674\) −6480.00 −0.370327
\(675\) 0 0
\(676\) −6852.00 −0.389850
\(677\) 32732.0 1.85819 0.929094 0.369844i \(-0.120589\pi\)
0.929094 + 0.369844i \(0.120589\pi\)
\(678\) 592.000 0.0335334
\(679\) −5632.00 −0.318316
\(680\) 0 0
\(681\) 9168.00 0.515886
\(682\) 1248.00 0.0700710
\(683\) 28344.0 1.58793 0.793963 0.607967i \(-0.208015\pi\)
0.793963 + 0.607967i \(0.208015\pi\)
\(684\) −1104.00 −0.0617142
\(685\) 0 0
\(686\) 21632.0 1.20396
\(687\) 412.000 0.0228803
\(688\) −8416.00 −0.466362
\(689\) 6908.00 0.381965
\(690\) 0 0
\(691\) −26796.0 −1.47521 −0.737603 0.675234i \(-0.764043\pi\)
−0.737603 + 0.675234i \(0.764043\pi\)
\(692\) 1448.00 0.0795444
\(693\) −8832.00 −0.484127
\(694\) 12304.0 0.672988
\(695\) 0 0
\(696\) 464.000 0.0252699
\(697\) 36816.0 2.00073
\(698\) −13324.0 −0.722523
\(699\) −11644.0 −0.630067
\(700\) 0 0
\(701\) 12426.0 0.669506 0.334753 0.942306i \(-0.391347\pi\)
0.334753 + 0.942306i \(0.391347\pi\)
\(702\) −4400.00 −0.236563
\(703\) 0 0
\(704\) 768.000 0.0411152
\(705\) 0 0
\(706\) 13852.0 0.738423
\(707\) −42560.0 −2.26398
\(708\) 5536.00 0.293864
\(709\) −2994.00 −0.158592 −0.0792962 0.996851i \(-0.525267\pi\)
−0.0792962 + 0.996851i \(0.525267\pi\)
\(710\) 0 0
\(711\) −2668.00 −0.140728
\(712\) −336.000 −0.0176856
\(713\) −11024.0 −0.579035
\(714\) 13312.0 0.697744
\(715\) 0 0
\(716\) −9360.00 −0.488547
\(717\) −432.000 −0.0225012
\(718\) 7408.00 0.385047
\(719\) 17320.0 0.898369 0.449184 0.893439i \(-0.351715\pi\)
0.449184 + 0.893439i \(0.351715\pi\)
\(720\) 0 0
\(721\) −33664.0 −1.73885
\(722\) −13430.0 −0.692262
\(723\) 836.000 0.0430030
\(724\) 2600.00 0.133464
\(725\) 0 0
\(726\) 4748.00 0.242720
\(727\) −3562.00 −0.181716 −0.0908578 0.995864i \(-0.528961\pi\)
−0.0908578 + 0.995864i \(0.528961\pi\)
\(728\) −5632.00 −0.286725
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) 54704.0 2.76785
\(732\) −5840.00 −0.294881
\(733\) −19556.0 −0.985426 −0.492713 0.870192i \(-0.663995\pi\)
−0.492713 + 0.870192i \(0.663995\pi\)
\(734\) 2860.00 0.143821
\(735\) 0 0
\(736\) −6784.00 −0.339758
\(737\) 1680.00 0.0839669
\(738\) 16284.0 0.812225
\(739\) −5900.00 −0.293687 −0.146844 0.989160i \(-0.546911\pi\)
−0.146844 + 0.989160i \(0.546911\pi\)
\(740\) 0 0
\(741\) 528.000 0.0261762
\(742\) −20096.0 −0.994269
\(743\) −34554.0 −1.70614 −0.853071 0.521795i \(-0.825263\pi\)
−0.853071 + 0.521795i \(0.825263\pi\)
\(744\) −832.000 −0.0409981
\(745\) 0 0
\(746\) −5436.00 −0.266791
\(747\) −3956.00 −0.193765
\(748\) −4992.00 −0.244018
\(749\) −61568.0 −3.00353
\(750\) 0 0
\(751\) −10484.0 −0.509410 −0.254705 0.967019i \(-0.581978\pi\)
−0.254705 + 0.967019i \(0.581978\pi\)
\(752\) 928.000 0.0450009
\(753\) −3432.00 −0.166094
\(754\) 1276.00 0.0616302
\(755\) 0 0
\(756\) 12800.0 0.615782
\(757\) 33384.0 1.60286 0.801428 0.598091i \(-0.204074\pi\)
0.801428 + 0.598091i \(0.204074\pi\)
\(758\) 16208.0 0.776650
\(759\) 5088.00 0.243324
\(760\) 0 0
\(761\) −13434.0 −0.639924 −0.319962 0.947430i \(-0.603670\pi\)
−0.319962 + 0.947430i \(0.603670\pi\)
\(762\) −2600.00 −0.123606
\(763\) 40128.0 1.90397
\(764\) −4704.00 −0.222755
\(765\) 0 0
\(766\) −21768.0 −1.02678
\(767\) 15224.0 0.716697
\(768\) −512.000 −0.0240563
\(769\) −26018.0 −1.22007 −0.610035 0.792375i \(-0.708844\pi\)
−0.610035 + 0.792375i \(0.708844\pi\)
\(770\) 0 0
\(771\) −5764.00 −0.269242
\(772\) −18960.0 −0.883919
\(773\) 6648.00 0.309330 0.154665 0.987967i \(-0.450570\pi\)
0.154665 + 0.987967i \(0.450570\pi\)
\(774\) 24196.0 1.12365
\(775\) 0 0
\(776\) −1408.00 −0.0651343
\(777\) 0 0
\(778\) −10292.0 −0.474275
\(779\) −4248.00 −0.195379
\(780\) 0 0
\(781\) 8352.00 0.382661
\(782\) 44096.0 2.01646
\(783\) −2900.00 −0.132360
\(784\) 10896.0 0.496356
\(785\) 0 0
\(786\) 4288.00 0.194590
\(787\) 14032.0 0.635561 0.317781 0.948164i \(-0.397062\pi\)
0.317781 + 0.948164i \(0.397062\pi\)
\(788\) −17144.0 −0.775038
\(789\) 2508.00 0.113165
\(790\) 0 0
\(791\) −4736.00 −0.212886
\(792\) −2208.00 −0.0990630
\(793\) −16060.0 −0.719177
\(794\) 5636.00 0.251907
\(795\) 0 0
\(796\) 14944.0 0.665422
\(797\) 39096.0 1.73758 0.868790 0.495181i \(-0.164898\pi\)
0.868790 + 0.495181i \(0.164898\pi\)
\(798\) −1536.00 −0.0681376
\(799\) −6032.00 −0.267080
\(800\) 0 0
\(801\) 966.000 0.0426117
\(802\) −7188.00 −0.316480
\(803\) 4848.00 0.213054
\(804\) −1120.00 −0.0491286
\(805\) 0 0
\(806\) −2288.00 −0.0999893
\(807\) 8228.00 0.358909
\(808\) −10640.0 −0.463260
\(809\) −30354.0 −1.31915 −0.659573 0.751640i \(-0.729263\pi\)
−0.659573 + 0.751640i \(0.729263\pi\)
\(810\) 0 0
\(811\) −21396.0 −0.926406 −0.463203 0.886252i \(-0.653300\pi\)
−0.463203 + 0.886252i \(0.653300\pi\)
\(812\) −3712.00 −0.160426
\(813\) −6320.00 −0.272635
\(814\) 0 0
\(815\) 0 0
\(816\) 3328.00 0.142774
\(817\) −6312.00 −0.270292
\(818\) 14484.0 0.619097
\(819\) 16192.0 0.690835
\(820\) 0 0
\(821\) 12942.0 0.550157 0.275079 0.961422i \(-0.411296\pi\)
0.275079 + 0.961422i \(0.411296\pi\)
\(822\) −8832.00 −0.374758
\(823\) 26066.0 1.10401 0.552007 0.833839i \(-0.313862\pi\)
0.552007 + 0.833839i \(0.313862\pi\)
\(824\) −8416.00 −0.355807
\(825\) 0 0
\(826\) −44288.0 −1.86559
\(827\) 5670.00 0.238410 0.119205 0.992870i \(-0.461965\pi\)
0.119205 + 0.992870i \(0.461965\pi\)
\(828\) 19504.0 0.818612
\(829\) −39850.0 −1.66954 −0.834769 0.550600i \(-0.814399\pi\)
−0.834769 + 0.550600i \(0.814399\pi\)
\(830\) 0 0
\(831\) −11500.0 −0.480061
\(832\) −1408.00 −0.0586702
\(833\) −70824.0 −2.94587
\(834\) −11632.0 −0.482953
\(835\) 0 0
\(836\) 576.000 0.0238294
\(837\) 5200.00 0.214741
\(838\) 312.000 0.0128614
\(839\) −19868.0 −0.817544 −0.408772 0.912637i \(-0.634043\pi\)
−0.408772 + 0.912637i \(0.634043\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 26500.0 1.08462
\(843\) −340.000 −0.0138911
\(844\) −7312.00 −0.298210
\(845\) 0 0
\(846\) −2668.00 −0.108425
\(847\) −37984.0 −1.54090
\(848\) −5024.00 −0.203449
\(849\) −3384.00 −0.136795
\(850\) 0 0
\(851\) 0 0
\(852\) −5568.00 −0.223893
\(853\) 32196.0 1.29234 0.646172 0.763192i \(-0.276369\pi\)
0.646172 + 0.763192i \(0.276369\pi\)
\(854\) 46720.0 1.87204
\(855\) 0 0
\(856\) −15392.0 −0.614588
\(857\) −35166.0 −1.40169 −0.700845 0.713314i \(-0.747193\pi\)
−0.700845 + 0.713314i \(0.747193\pi\)
\(858\) 1056.00 0.0420178
\(859\) −33416.0 −1.32729 −0.663643 0.748049i \(-0.730991\pi\)
−0.663643 + 0.748049i \(0.730991\pi\)
\(860\) 0 0
\(861\) 22656.0 0.896765
\(862\) 25760.0 1.01785
\(863\) 27852.0 1.09860 0.549301 0.835625i \(-0.314894\pi\)
0.549301 + 0.835625i \(0.314894\pi\)
\(864\) 3200.00 0.126003
\(865\) 0 0
\(866\) −4288.00 −0.168259
\(867\) −11806.0 −0.462460
\(868\) 6656.00 0.260276
\(869\) 1392.00 0.0543387
\(870\) 0 0
\(871\) −3080.00 −0.119818
\(872\) 10032.0 0.389594
\(873\) 4048.00 0.156935
\(874\) −5088.00 −0.196916
\(875\) 0 0
\(876\) −3232.00 −0.124657
\(877\) 30686.0 1.18152 0.590760 0.806848i \(-0.298828\pi\)
0.590760 + 0.806848i \(0.298828\pi\)
\(878\) −8496.00 −0.326567
\(879\) −11736.0 −0.450336
\(880\) 0 0
\(881\) 20622.0 0.788618 0.394309 0.918978i \(-0.370984\pi\)
0.394309 + 0.918978i \(0.370984\pi\)
\(882\) −31326.0 −1.19592
\(883\) −23584.0 −0.898828 −0.449414 0.893324i \(-0.648367\pi\)
−0.449414 + 0.893324i \(0.648367\pi\)
\(884\) 9152.00 0.348207
\(885\) 0 0
\(886\) −32620.0 −1.23690
\(887\) 45682.0 1.72926 0.864629 0.502411i \(-0.167554\pi\)
0.864629 + 0.502411i \(0.167554\pi\)
\(888\) 0 0
\(889\) 20800.0 0.784713
\(890\) 0 0
\(891\) 5052.00 0.189953
\(892\) −12272.0 −0.460647
\(893\) 696.000 0.0260815
\(894\) −7352.00 −0.275042
\(895\) 0 0
\(896\) 4096.00 0.152721
\(897\) −9328.00 −0.347216
\(898\) −22524.0 −0.837011
\(899\) −1508.00 −0.0559451
\(900\) 0 0
\(901\) 32656.0 1.20747
\(902\) −8496.00 −0.313621
\(903\) 33664.0 1.24061
\(904\) −1184.00 −0.0435611
\(905\) 0 0
\(906\) 10176.0 0.373151
\(907\) 47118.0 1.72495 0.862474 0.506102i \(-0.168914\pi\)
0.862474 + 0.506102i \(0.168914\pi\)
\(908\) −18336.0 −0.670156
\(909\) 30590.0 1.11618
\(910\) 0 0
\(911\) −8148.00 −0.296329 −0.148164 0.988963i \(-0.547336\pi\)
−0.148164 + 0.988963i \(0.547336\pi\)
\(912\) −384.000 −0.0139424
\(913\) 2064.00 0.0748176
\(914\) −24036.0 −0.869847
\(915\) 0 0
\(916\) −824.000 −0.0297224
\(917\) −34304.0 −1.23535
\(918\) −20800.0 −0.747824
\(919\) −24736.0 −0.887884 −0.443942 0.896056i \(-0.646420\pi\)
−0.443942 + 0.896056i \(0.646420\pi\)
\(920\) 0 0
\(921\) 11844.0 0.423749
\(922\) −180.000 −0.00642948
\(923\) −15312.0 −0.546046
\(924\) −3072.00 −0.109374
\(925\) 0 0
\(926\) 3200.00 0.113562
\(927\) 24196.0 0.857283
\(928\) −928.000 −0.0328266
\(929\) −27230.0 −0.961666 −0.480833 0.876812i \(-0.659666\pi\)
−0.480833 + 0.876812i \(0.659666\pi\)
\(930\) 0 0
\(931\) 8172.00 0.287676
\(932\) 23288.0 0.818480
\(933\) −18936.0 −0.664455
\(934\) −1140.00 −0.0399378
\(935\) 0 0
\(936\) 4048.00 0.141360
\(937\) −33250.0 −1.15926 −0.579632 0.814878i \(-0.696804\pi\)
−0.579632 + 0.814878i \(0.696804\pi\)
\(938\) 8960.00 0.311892
\(939\) −14580.0 −0.506710
\(940\) 0 0
\(941\) 26870.0 0.930858 0.465429 0.885085i \(-0.345900\pi\)
0.465429 + 0.885085i \(0.345900\pi\)
\(942\) 11824.0 0.408967
\(943\) 75048.0 2.59162
\(944\) −11072.0 −0.381740
\(945\) 0 0
\(946\) −12624.0 −0.433871
\(947\) 38414.0 1.31815 0.659075 0.752078i \(-0.270948\pi\)
0.659075 + 0.752078i \(0.270948\pi\)
\(948\) −928.000 −0.0317933
\(949\) −8888.00 −0.304022
\(950\) 0 0
\(951\) −10096.0 −0.344254
\(952\) −26624.0 −0.906396
\(953\) −18602.0 −0.632296 −0.316148 0.948710i \(-0.602390\pi\)
−0.316148 + 0.948710i \(0.602390\pi\)
\(954\) 14444.0 0.490191
\(955\) 0 0
\(956\) 864.000 0.0292299
\(957\) 696.000 0.0235094
\(958\) −5304.00 −0.178877
\(959\) 70656.0 2.37915
\(960\) 0 0
\(961\) −27087.0 −0.909234
\(962\) 0 0
\(963\) 44252.0 1.48079
\(964\) −1672.00 −0.0558625
\(965\) 0 0
\(966\) 27136.0 0.903816
\(967\) −20794.0 −0.691510 −0.345755 0.938325i \(-0.612377\pi\)
−0.345755 + 0.938325i \(0.612377\pi\)
\(968\) −9496.00 −0.315303
\(969\) 2496.00 0.0827483
\(970\) 0 0
\(971\) −6720.00 −0.222096 −0.111048 0.993815i \(-0.535421\pi\)
−0.111048 + 0.993815i \(0.535421\pi\)
\(972\) −14168.0 −0.467530
\(973\) 93056.0 3.06602
\(974\) 22656.0 0.745323
\(975\) 0 0
\(976\) 11680.0 0.383061
\(977\) 45274.0 1.48254 0.741271 0.671206i \(-0.234223\pi\)
0.741271 + 0.671206i \(0.234223\pi\)
\(978\) 2888.00 0.0944254
\(979\) −504.000 −0.0164534
\(980\) 0 0
\(981\) −28842.0 −0.938689
\(982\) −8416.00 −0.273488
\(983\) 6542.00 0.212266 0.106133 0.994352i \(-0.466153\pi\)
0.106133 + 0.994352i \(0.466153\pi\)
\(984\) 5664.00 0.183498
\(985\) 0 0
\(986\) 6032.00 0.194826
\(987\) −3712.00 −0.119710
\(988\) −1056.00 −0.0340039
\(989\) 111512. 3.58531
\(990\) 0 0
\(991\) 48432.0 1.55247 0.776233 0.630447i \(-0.217128\pi\)
0.776233 + 0.630447i \(0.217128\pi\)
\(992\) 1664.00 0.0532581
\(993\) −9744.00 −0.311396
\(994\) 44544.0 1.42138
\(995\) 0 0
\(996\) −1376.00 −0.0437753
\(997\) 1256.00 0.0398976 0.0199488 0.999801i \(-0.493650\pi\)
0.0199488 + 0.999801i \(0.493650\pi\)
\(998\) 28488.0 0.903579
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.4.a.f.1.1 1
5.4 even 2 290.4.a.a.1.1 1
20.19 odd 2 2320.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.4.a.a.1.1 1 5.4 even 2
1450.4.a.f.1.1 1 1.1 even 1 trivial
2320.4.a.b.1.1 1 20.19 odd 2