Properties

Label 1452.3.e.h.485.3
Level $1452$
Weight $3$
Character 1452.485
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1452,3,Mod(485,1452)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1452, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1452.485");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.3
Root \(0.500000 + 3.07253i\) of defining polynomial
Character \(\chi\) \(=\) 1452.485
Dual form 1452.3.e.h.485.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 2.82843i) q^{3} -9.46168i q^{5} -9.38083 q^{7} +(-7.00000 - 5.65685i) q^{9} -21.3808 q^{13} +(26.7617 + 9.46168i) q^{15} +1.95279i q^{17} -4.76166 q^{19} +(9.38083 - 26.5330i) q^{21} -11.4145i q^{23} -64.5233 q^{25} +(23.0000 - 14.1421i) q^{27} +18.9234i q^{29} -12.7617 q^{31} +88.7584i q^{35} +11.2383 q^{37} +(21.3808 - 60.4741i) q^{39} -52.8645i q^{41} +48.7617 q^{43} +(-53.5233 + 66.2317i) q^{45} +26.4322i q^{47} +39.0000 q^{49} +(-5.52333 - 1.95279i) q^{51} +32.2906i q^{53} +(4.76166 - 13.4680i) q^{57} +28.0828i q^{59} +2.61917 q^{61} +(65.6658 + 53.0660i) q^{63} +202.299i q^{65} +109.047 q^{67} +(32.2850 + 11.4145i) q^{69} +53.1668i q^{71} +119.808 q^{73} +(64.5233 - 182.500i) q^{75} +38.6192 q^{79} +(17.0000 + 79.1960i) q^{81} -116.841i q^{83} +18.4767 q^{85} +(-53.5233 - 18.9234i) q^{87} +15.0178i q^{89} +200.570 q^{91} +(12.7617 - 36.0954i) q^{93} +45.0533i q^{95} -52.4767 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 28 q^{9} - 48 q^{13} + 32 q^{15} + 56 q^{19} - 108 q^{25} + 92 q^{27} + 24 q^{31} + 120 q^{37} + 48 q^{39} + 120 q^{43} - 64 q^{45} + 156 q^{49} + 128 q^{51} - 56 q^{57} + 48 q^{61} + 136 q^{67}+ \cdots - 360 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(4\) 0 0
\(5\) 9.46168i 1.89234i −0.323677 0.946168i \(-0.604919\pi\)
0.323677 0.946168i \(-0.395081\pi\)
\(6\) 0 0
\(7\) −9.38083 −1.34012 −0.670059 0.742307i \(-0.733731\pi\)
−0.670059 + 0.742307i \(0.733731\pi\)
\(8\) 0 0
\(9\) −7.00000 5.65685i −0.777778 0.628539i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −21.3808 −1.64468 −0.822340 0.568997i \(-0.807332\pi\)
−0.822340 + 0.568997i \(0.807332\pi\)
\(14\) 0 0
\(15\) 26.7617 + 9.46168i 1.78411 + 0.630778i
\(16\) 0 0
\(17\) 1.95279i 0.114870i 0.998349 + 0.0574350i \(0.0182922\pi\)
−0.998349 + 0.0574350i \(0.981708\pi\)
\(18\) 0 0
\(19\) −4.76166 −0.250614 −0.125307 0.992118i \(-0.539992\pi\)
−0.125307 + 0.992118i \(0.539992\pi\)
\(20\) 0 0
\(21\) 9.38083 26.5330i 0.446706 1.26348i
\(22\) 0 0
\(23\) 11.4145i 0.496281i −0.968724 0.248141i \(-0.920181\pi\)
0.968724 0.248141i \(-0.0798195\pi\)
\(24\) 0 0
\(25\) −64.5233 −2.58093
\(26\) 0 0
\(27\) 23.0000 14.1421i 0.851852 0.523783i
\(28\) 0 0
\(29\) 18.9234i 0.652529i 0.945278 + 0.326265i \(0.105790\pi\)
−0.945278 + 0.326265i \(0.894210\pi\)
\(30\) 0 0
\(31\) −12.7617 −0.411667 −0.205833 0.978587i \(-0.565990\pi\)
−0.205833 + 0.978587i \(0.565990\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 88.7584i 2.53595i
\(36\) 0 0
\(37\) 11.2383 0.303739 0.151869 0.988401i \(-0.451471\pi\)
0.151869 + 0.988401i \(0.451471\pi\)
\(38\) 0 0
\(39\) 21.3808 60.4741i 0.548226 1.55062i
\(40\) 0 0
\(41\) 52.8645i 1.28938i −0.764445 0.644689i \(-0.776987\pi\)
0.764445 0.644689i \(-0.223013\pi\)
\(42\) 0 0
\(43\) 48.7617 1.13399 0.566996 0.823720i \(-0.308105\pi\)
0.566996 + 0.823720i \(0.308105\pi\)
\(44\) 0 0
\(45\) −53.5233 + 66.2317i −1.18941 + 1.47182i
\(46\) 0 0
\(47\) 26.4322i 0.562388i 0.959651 + 0.281194i \(0.0907305\pi\)
−0.959651 + 0.281194i \(0.909270\pi\)
\(48\) 0 0
\(49\) 39.0000 0.795918
\(50\) 0 0
\(51\) −5.52333 1.95279i −0.108301 0.0382900i
\(52\) 0 0
\(53\) 32.2906i 0.609257i 0.952471 + 0.304628i \(0.0985323\pi\)
−0.952471 + 0.304628i \(0.901468\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.76166 13.4680i 0.0835379 0.236281i
\(58\) 0 0
\(59\) 28.0828i 0.475979i 0.971268 + 0.237989i \(0.0764884\pi\)
−0.971268 + 0.237989i \(0.923512\pi\)
\(60\) 0 0
\(61\) 2.61917 0.0429372 0.0214686 0.999770i \(-0.493166\pi\)
0.0214686 + 0.999770i \(0.493166\pi\)
\(62\) 0 0
\(63\) 65.6658 + 53.0660i 1.04231 + 0.842317i
\(64\) 0 0
\(65\) 202.299i 3.11228i
\(66\) 0 0
\(67\) 109.047 1.62756 0.813781 0.581172i \(-0.197406\pi\)
0.813781 + 0.581172i \(0.197406\pi\)
\(68\) 0 0
\(69\) 32.2850 + 11.4145i 0.467898 + 0.165427i
\(70\) 0 0
\(71\) 53.1668i 0.748828i 0.927262 + 0.374414i \(0.122156\pi\)
−0.927262 + 0.374414i \(0.877844\pi\)
\(72\) 0 0
\(73\) 119.808 1.64121 0.820605 0.571496i \(-0.193637\pi\)
0.820605 + 0.571496i \(0.193637\pi\)
\(74\) 0 0
\(75\) 64.5233 182.500i 0.860311 2.43333i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 38.6192 0.488850 0.244425 0.969668i \(-0.421401\pi\)
0.244425 + 0.969668i \(0.421401\pi\)
\(80\) 0 0
\(81\) 17.0000 + 79.1960i 0.209877 + 0.977728i
\(82\) 0 0
\(83\) 116.841i 1.40772i −0.710336 0.703862i \(-0.751457\pi\)
0.710336 0.703862i \(-0.248543\pi\)
\(84\) 0 0
\(85\) 18.4767 0.217373
\(86\) 0 0
\(87\) −53.5233 18.9234i −0.615211 0.217510i
\(88\) 0 0
\(89\) 15.0178i 0.168739i 0.996435 + 0.0843695i \(0.0268876\pi\)
−0.996435 + 0.0843695i \(0.973112\pi\)
\(90\) 0 0
\(91\) 200.570 2.20407
\(92\) 0 0
\(93\) 12.7617 36.0954i 0.137222 0.388123i
\(94\) 0 0
\(95\) 45.0533i 0.474245i
\(96\) 0 0
\(97\) −52.4767 −0.540997 −0.270498 0.962720i \(-0.587188\pi\)
−0.270498 + 0.962720i \(0.587188\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 139.670i 1.38287i 0.722438 + 0.691436i \(0.243022\pi\)
−0.722438 + 0.691436i \(0.756978\pi\)
\(102\) 0 0
\(103\) −33.0467 −0.320841 −0.160421 0.987049i \(-0.551285\pi\)
−0.160421 + 0.987049i \(0.551285\pi\)
\(104\) 0 0
\(105\) −251.047 88.7584i −2.39092 0.845318i
\(106\) 0 0
\(107\) 119.398i 1.11587i −0.829883 0.557937i \(-0.811593\pi\)
0.829883 0.557937i \(-0.188407\pi\)
\(108\) 0 0
\(109\) −172.712 −1.58452 −0.792259 0.610185i \(-0.791095\pi\)
−0.792259 + 0.610185i \(0.791095\pi\)
\(110\) 0 0
\(111\) −11.2383 + 31.7868i −0.101246 + 0.286368i
\(112\) 0 0
\(113\) 124.652i 1.10312i −0.834136 0.551559i \(-0.814033\pi\)
0.834136 0.551559i \(-0.185967\pi\)
\(114\) 0 0
\(115\) −108.000 −0.939130
\(116\) 0 0
\(117\) 149.666 + 120.948i 1.27920 + 1.03375i
\(118\) 0 0
\(119\) 18.3188i 0.153939i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 149.523 + 52.8645i 1.21564 + 0.429793i
\(124\) 0 0
\(125\) 373.957i 2.99166i
\(126\) 0 0
\(127\) 112.427 0.885256 0.442628 0.896705i \(-0.354046\pi\)
0.442628 + 0.896705i \(0.354046\pi\)
\(128\) 0 0
\(129\) −48.7617 + 137.919i −0.377997 + 1.06914i
\(130\) 0 0
\(131\) 68.4868i 0.522800i −0.965231 0.261400i \(-0.915816\pi\)
0.965231 0.261400i \(-0.0841842\pi\)
\(132\) 0 0
\(133\) 44.6684 0.335852
\(134\) 0 0
\(135\) −133.808 217.619i −0.991173 1.61199i
\(136\) 0 0
\(137\) 161.894i 1.18171i 0.806777 + 0.590856i \(0.201210\pi\)
−0.806777 + 0.590856i \(0.798790\pi\)
\(138\) 0 0
\(139\) −169.047 −1.21616 −0.608081 0.793875i \(-0.708061\pi\)
−0.608081 + 0.793875i \(0.708061\pi\)
\(140\) 0 0
\(141\) −74.7617 26.4322i −0.530225 0.187463i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 179.047 1.23480
\(146\) 0 0
\(147\) −39.0000 + 110.309i −0.265306 + 0.750399i
\(148\) 0 0
\(149\) 60.6756i 0.407219i 0.979052 + 0.203610i \(0.0652673\pi\)
−0.979052 + 0.203610i \(0.934733\pi\)
\(150\) 0 0
\(151\) −11.2875 −0.0747518 −0.0373759 0.999301i \(-0.511900\pi\)
−0.0373759 + 0.999301i \(0.511900\pi\)
\(152\) 0 0
\(153\) 11.0467 13.6695i 0.0722003 0.0893434i
\(154\) 0 0
\(155\) 120.747i 0.779011i
\(156\) 0 0
\(157\) −23.8083 −0.151645 −0.0758227 0.997121i \(-0.524158\pi\)
−0.0758227 + 0.997121i \(0.524158\pi\)
\(158\) 0 0
\(159\) −91.3316 32.2906i −0.574413 0.203086i
\(160\) 0 0
\(161\) 107.077i 0.665076i
\(162\) 0 0
\(163\) −69.0467 −0.423599 −0.211800 0.977313i \(-0.567932\pi\)
−0.211800 + 0.977313i \(0.567932\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 56.1655i 0.336320i 0.985760 + 0.168160i \(0.0537826\pi\)
−0.985760 + 0.168160i \(0.946217\pi\)
\(168\) 0 0
\(169\) 288.140 1.70497
\(170\) 0 0
\(171\) 33.3316 + 26.9360i 0.194922 + 0.157521i
\(172\) 0 0
\(173\) 158.593i 0.916725i 0.888765 + 0.458363i \(0.151564\pi\)
−0.888765 + 0.458363i \(0.848436\pi\)
\(174\) 0 0
\(175\) 605.282 3.45876
\(176\) 0 0
\(177\) −79.4300 28.0828i −0.448757 0.158660i
\(178\) 0 0
\(179\) 198.997i 1.11172i 0.831277 + 0.555859i \(0.187611\pi\)
−0.831277 + 0.555859i \(0.812389\pi\)
\(180\) 0 0
\(181\) −214.000 −1.18232 −0.591160 0.806554i \(-0.701330\pi\)
−0.591160 + 0.806554i \(0.701330\pi\)
\(182\) 0 0
\(183\) −2.61917 + 7.40813i −0.0143124 + 0.0404816i
\(184\) 0 0
\(185\) 106.334i 0.574776i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −215.759 + 132.665i −1.14158 + 0.701931i
\(190\) 0 0
\(191\) 71.4856i 0.374270i 0.982334 + 0.187135i \(0.0599202\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(192\) 0 0
\(193\) −138.570 −0.717979 −0.358990 0.933342i \(-0.616879\pi\)
−0.358990 + 0.933342i \(0.616879\pi\)
\(194\) 0 0
\(195\) −572.187 202.299i −2.93429 1.03743i
\(196\) 0 0
\(197\) 101.823i 0.516870i 0.966029 + 0.258435i \(0.0832068\pi\)
−0.966029 + 0.258435i \(0.916793\pi\)
\(198\) 0 0
\(199\) 77.7150 0.390528 0.195264 0.980751i \(-0.437444\pi\)
0.195264 + 0.980751i \(0.437444\pi\)
\(200\) 0 0
\(201\) −109.047 + 308.431i −0.542521 + 1.53448i
\(202\) 0 0
\(203\) 177.517i 0.874467i
\(204\) 0 0
\(205\) −500.187 −2.43993
\(206\) 0 0
\(207\) −64.5700 + 79.9013i −0.311932 + 0.385996i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 70.9533 0.336272 0.168136 0.985764i \(-0.446225\pi\)
0.168136 + 0.985764i \(0.446225\pi\)
\(212\) 0 0
\(213\) −150.378 53.1668i −0.706001 0.249609i
\(214\) 0 0
\(215\) 461.367i 2.14589i
\(216\) 0 0
\(217\) 119.715 0.551682
\(218\) 0 0
\(219\) −119.808 + 338.869i −0.547070 + 1.54735i
\(220\) 0 0
\(221\) 41.7523i 0.188924i
\(222\) 0 0
\(223\) −158.570 −0.711076 −0.355538 0.934662i \(-0.615702\pi\)
−0.355538 + 0.934662i \(0.615702\pi\)
\(224\) 0 0
\(225\) 451.663 + 364.999i 2.00739 + 1.62222i
\(226\) 0 0
\(227\) 324.254i 1.42843i 0.699925 + 0.714217i \(0.253217\pi\)
−0.699925 + 0.714217i \(0.746783\pi\)
\(228\) 0 0
\(229\) 51.8083 0.226237 0.113119 0.993581i \(-0.463916\pi\)
0.113119 + 0.993581i \(0.463916\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 124.652i 0.534988i −0.963559 0.267494i \(-0.913804\pi\)
0.963559 0.267494i \(-0.0861956\pi\)
\(234\) 0 0
\(235\) 250.093 1.06423
\(236\) 0 0
\(237\) −38.6192 + 109.232i −0.162950 + 0.460892i
\(238\) 0 0
\(239\) 360.148i 1.50690i 0.657507 + 0.753448i \(0.271611\pi\)
−0.657507 + 0.753448i \(0.728389\pi\)
\(240\) 0 0
\(241\) 3.52333 0.0146196 0.00730981 0.999973i \(-0.497673\pi\)
0.00730981 + 0.999973i \(0.497673\pi\)
\(242\) 0 0
\(243\) −241.000 31.1127i −0.991770 0.128036i
\(244\) 0 0
\(245\) 369.005i 1.50614i
\(246\) 0 0
\(247\) 101.808 0.412179
\(248\) 0 0
\(249\) 330.477 + 116.841i 1.32722 + 0.469242i
\(250\) 0 0
\(251\) 341.969i 1.36242i −0.732086 0.681212i \(-0.761453\pi\)
0.732086 0.681212i \(-0.238547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −18.4767 + 52.2599i −0.0724575 + 0.204941i
\(256\) 0 0
\(257\) 375.166i 1.45979i −0.683559 0.729895i \(-0.739569\pi\)
0.683559 0.729895i \(-0.260431\pi\)
\(258\) 0 0
\(259\) −105.425 −0.407046
\(260\) 0 0
\(261\) 107.047 132.463i 0.410140 0.507523i
\(262\) 0 0
\(263\) 256.511i 0.975328i −0.873031 0.487664i \(-0.837849\pi\)
0.873031 0.487664i \(-0.162151\pi\)
\(264\) 0 0
\(265\) 305.523 1.15292
\(266\) 0 0
\(267\) −42.4767 15.0178i −0.159089 0.0562463i
\(268\) 0 0
\(269\) 179.772i 0.668297i 0.942520 + 0.334148i \(0.108449\pi\)
−0.942520 + 0.334148i \(0.891551\pi\)
\(270\) 0 0
\(271\) −0.240875 −0.000888838 −0.000444419 1.00000i \(-0.500141\pi\)
−0.000444419 1.00000i \(0.500141\pi\)
\(272\) 0 0
\(273\) −200.570 + 567.298i −0.734689 + 2.07801i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −375.858 −1.35689 −0.678443 0.734653i \(-0.737345\pi\)
−0.678443 + 0.734653i \(0.737345\pi\)
\(278\) 0 0
\(279\) 89.3316 + 72.1909i 0.320185 + 0.258749i
\(280\) 0 0
\(281\) 103.776i 0.369310i 0.982803 + 0.184655i \(0.0591168\pi\)
−0.982803 + 0.184655i \(0.940883\pi\)
\(282\) 0 0
\(283\) 469.617 1.65942 0.829711 0.558193i \(-0.188505\pi\)
0.829711 + 0.558193i \(0.188505\pi\)
\(284\) 0 0
\(285\) −127.430 45.0533i −0.447123 0.158082i
\(286\) 0 0
\(287\) 495.913i 1.72792i
\(288\) 0 0
\(289\) 285.187 0.986805
\(290\) 0 0
\(291\) 52.4767 148.426i 0.180332 0.510057i
\(292\) 0 0
\(293\) 416.314i 1.42087i −0.703765 0.710433i \(-0.748499\pi\)
0.703765 0.710433i \(-0.251501\pi\)
\(294\) 0 0
\(295\) 265.710 0.900712
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 244.051i 0.816223i
\(300\) 0 0
\(301\) −457.425 −1.51968
\(302\) 0 0
\(303\) −395.047 139.670i −1.30378 0.460957i
\(304\) 0 0
\(305\) 24.7817i 0.0812516i
\(306\) 0 0
\(307\) −287.140 −0.935309 −0.467655 0.883911i \(-0.654901\pi\)
−0.467655 + 0.883911i \(0.654901\pi\)
\(308\) 0 0
\(309\) 33.0467 93.4700i 0.106947 0.302492i
\(310\) 0 0
\(311\) 380.861i 1.22463i 0.790612 + 0.612317i \(0.209762\pi\)
−0.790612 + 0.612317i \(0.790238\pi\)
\(312\) 0 0
\(313\) −341.233 −1.09020 −0.545101 0.838370i \(-0.683509\pi\)
−0.545101 + 0.838370i \(0.683509\pi\)
\(314\) 0 0
\(315\) 502.093 621.309i 1.59395 1.97241i
\(316\) 0 0
\(317\) 513.186i 1.61888i −0.587201 0.809441i \(-0.699770\pi\)
0.587201 0.809441i \(-0.300230\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 337.710 + 119.398i 1.05206 + 0.371958i
\(322\) 0 0
\(323\) 9.29853i 0.0287880i
\(324\) 0 0
\(325\) 1379.56 4.24481
\(326\) 0 0
\(327\) 172.712 488.505i 0.528173 1.49390i
\(328\) 0 0
\(329\) 247.956i 0.753667i
\(330\) 0 0
\(331\) 254.000 0.767372 0.383686 0.923464i \(-0.374655\pi\)
0.383686 + 0.923464i \(0.374655\pi\)
\(332\) 0 0
\(333\) −78.6684 63.5736i −0.236241 0.190912i
\(334\) 0 0
\(335\) 1031.76i 3.07989i
\(336\) 0 0
\(337\) 195.425 0.579896 0.289948 0.957042i \(-0.406362\pi\)
0.289948 + 0.957042i \(0.406362\pi\)
\(338\) 0 0
\(339\) 352.570 + 124.652i 1.04003 + 0.367706i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 93.8083 0.273494
\(344\) 0 0
\(345\) 108.000 305.470i 0.313043 0.885421i
\(346\) 0 0
\(347\) 488.706i 1.40838i 0.710014 + 0.704188i \(0.248689\pi\)
−0.710014 + 0.704188i \(0.751311\pi\)
\(348\) 0 0
\(349\) 619.189 1.77418 0.887090 0.461596i \(-0.152723\pi\)
0.887090 + 0.461596i \(0.152723\pi\)
\(350\) 0 0
\(351\) −491.759 + 302.371i −1.40102 + 0.861455i
\(352\) 0 0
\(353\) 419.010i 1.18700i −0.804835 0.593499i \(-0.797746\pi\)
0.804835 0.593499i \(-0.202254\pi\)
\(354\) 0 0
\(355\) 503.047 1.41703
\(356\) 0 0
\(357\) 51.8134 + 18.3188i 0.145136 + 0.0513132i
\(358\) 0 0
\(359\) 366.146i 1.01990i −0.860203 0.509952i \(-0.829663\pi\)
0.860203 0.509952i \(-0.170337\pi\)
\(360\) 0 0
\(361\) −338.327 −0.937193
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1133.59i 3.10572i
\(366\) 0 0
\(367\) −376.280 −1.02529 −0.512643 0.858602i \(-0.671334\pi\)
−0.512643 + 0.858602i \(0.671334\pi\)
\(368\) 0 0
\(369\) −299.047 + 370.051i −0.810425 + 1.00285i
\(370\) 0 0
\(371\) 302.913i 0.816477i
\(372\) 0 0
\(373\) 65.4792 0.175547 0.0877737 0.996140i \(-0.472025\pi\)
0.0877737 + 0.996140i \(0.472025\pi\)
\(374\) 0 0
\(375\) −1057.71 373.957i −2.82056 0.997218i
\(376\) 0 0
\(377\) 404.597i 1.07320i
\(378\) 0 0
\(379\) 285.233 0.752594 0.376297 0.926499i \(-0.377197\pi\)
0.376297 + 0.926499i \(0.377197\pi\)
\(380\) 0 0
\(381\) −112.427 + 317.993i −0.295085 + 0.834627i
\(382\) 0 0
\(383\) 657.505i 1.71672i 0.513045 + 0.858362i \(0.328517\pi\)
−0.513045 + 0.858362i \(0.671483\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −341.332 275.838i −0.881994 0.712759i
\(388\) 0 0
\(389\) 317.350i 0.815810i 0.913024 + 0.407905i \(0.133741\pi\)
−0.913024 + 0.407905i \(0.866259\pi\)
\(390\) 0 0
\(391\) 22.2901 0.0570078
\(392\) 0 0
\(393\) 193.710 + 68.4868i 0.492901 + 0.174267i
\(394\) 0 0
\(395\) 365.402i 0.925069i
\(396\) 0 0
\(397\) 245.617 0.618682 0.309341 0.950951i \(-0.399892\pi\)
0.309341 + 0.950951i \(0.399892\pi\)
\(398\) 0 0
\(399\) −44.6684 + 126.341i −0.111951 + 0.316645i
\(400\) 0 0
\(401\) 248.700i 0.620200i 0.950704 + 0.310100i \(0.100362\pi\)
−0.950704 + 0.310100i \(0.899638\pi\)
\(402\) 0 0
\(403\) 272.855 0.677059
\(404\) 0 0
\(405\) 749.327 160.849i 1.85019 0.397157i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −358.285 −0.876002 −0.438001 0.898974i \(-0.644313\pi\)
−0.438001 + 0.898974i \(0.644313\pi\)
\(410\) 0 0
\(411\) −457.907 161.894i −1.11413 0.393904i
\(412\) 0 0
\(413\) 263.440i 0.637868i
\(414\) 0 0
\(415\) −1105.51 −2.66389
\(416\) 0 0
\(417\) 169.047 478.136i 0.405388 1.14661i
\(418\) 0 0
\(419\) 630.329i 1.50437i −0.658955 0.752183i \(-0.729001\pi\)
0.658955 0.752183i \(-0.270999\pi\)
\(420\) 0 0
\(421\) 7.62171 0.0181038 0.00905191 0.999959i \(-0.497119\pi\)
0.00905191 + 0.999959i \(0.497119\pi\)
\(422\) 0 0
\(423\) 149.523 185.026i 0.353483 0.437413i
\(424\) 0 0
\(425\) 126.001i 0.296472i
\(426\) 0 0
\(427\) −24.5700 −0.0575409
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 411.804i 0.955461i 0.878506 + 0.477730i \(0.158540\pi\)
−0.878506 + 0.477730i \(0.841460\pi\)
\(432\) 0 0
\(433\) 655.327 1.51346 0.756728 0.653730i \(-0.226797\pi\)
0.756728 + 0.653730i \(0.226797\pi\)
\(434\) 0 0
\(435\) −179.047 + 506.420i −0.411601 + 1.16418i
\(436\) 0 0
\(437\) 54.3518i 0.124375i
\(438\) 0 0
\(439\) −169.951 −0.387132 −0.193566 0.981087i \(-0.562005\pi\)
−0.193566 + 0.981087i \(0.562005\pi\)
\(440\) 0 0
\(441\) −273.000 220.617i −0.619048 0.500266i
\(442\) 0 0
\(443\) 391.532i 0.883820i 0.897060 + 0.441910i \(0.145699\pi\)
−0.897060 + 0.441910i \(0.854301\pi\)
\(444\) 0 0
\(445\) 142.093 0.319311
\(446\) 0 0
\(447\) −171.617 60.6756i −0.383930 0.135740i
\(448\) 0 0
\(449\) 680.032i 1.51455i 0.653098 + 0.757274i \(0.273469\pi\)
−0.653098 + 0.757274i \(0.726531\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 11.2875 31.9259i 0.0249173 0.0704767i
\(454\) 0 0
\(455\) 1897.73i 4.17083i
\(456\) 0 0
\(457\) 251.052 0.549347 0.274674 0.961538i \(-0.411430\pi\)
0.274674 + 0.961538i \(0.411430\pi\)
\(458\) 0 0
\(459\) 27.6166 + 44.9142i 0.0601670 + 0.0978523i
\(460\) 0 0
\(461\) 21.0153i 0.0455863i −0.999740 0.0227931i \(-0.992744\pi\)
0.999740 0.0227931i \(-0.00725591\pi\)
\(462\) 0 0
\(463\) 672.093 1.45161 0.725803 0.687903i \(-0.241469\pi\)
0.725803 + 0.687903i \(0.241469\pi\)
\(464\) 0 0
\(465\) −341.523 120.747i −0.734459 0.259670i
\(466\) 0 0
\(467\) 339.877i 0.727787i 0.931441 + 0.363894i \(0.118553\pi\)
−0.931441 + 0.363894i \(0.881447\pi\)
\(468\) 0 0
\(469\) −1022.95 −2.18113
\(470\) 0 0
\(471\) 23.8083 67.3401i 0.0505484 0.142973i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 307.238 0.646818
\(476\) 0 0
\(477\) 182.663 226.034i 0.382942 0.473866i
\(478\) 0 0
\(479\) 414.500i 0.865345i 0.901551 + 0.432672i \(0.142429\pi\)
−0.901551 + 0.432672i \(0.857571\pi\)
\(480\) 0 0
\(481\) −240.285 −0.499553
\(482\) 0 0
\(483\) −302.860 107.077i −0.627039 0.221692i
\(484\) 0 0
\(485\) 496.517i 1.02375i
\(486\) 0 0
\(487\) −453.902 −0.932036 −0.466018 0.884775i \(-0.654312\pi\)
−0.466018 + 0.884775i \(0.654312\pi\)
\(488\) 0 0
\(489\) 69.0467 195.293i 0.141200 0.399373i
\(490\) 0 0
\(491\) 447.093i 0.910576i −0.890344 0.455288i \(-0.849536\pi\)
0.890344 0.455288i \(-0.150464\pi\)
\(492\) 0 0
\(493\) −36.9533 −0.0749561
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 498.748i 1.00352i
\(498\) 0 0
\(499\) −333.047 −0.667428 −0.333714 0.942674i \(-0.608302\pi\)
−0.333714 + 0.942674i \(0.608302\pi\)
\(500\) 0 0
\(501\) −158.860 56.1655i −0.317086 0.112107i
\(502\) 0 0
\(503\) 207.552i 0.412629i −0.978486 0.206314i \(-0.933853\pi\)
0.978486 0.206314i \(-0.0661470\pi\)
\(504\) 0 0
\(505\) 1321.51 2.61686
\(506\) 0 0
\(507\) −288.140 + 814.983i −0.568323 + 1.60746i
\(508\) 0 0
\(509\) 204.414i 0.401600i 0.979632 + 0.200800i \(0.0643542\pi\)
−0.979632 + 0.200800i \(0.935646\pi\)
\(510\) 0 0
\(511\) −1123.90 −2.19942
\(512\) 0 0
\(513\) −109.518 + 67.3401i −0.213486 + 0.131267i
\(514\) 0 0
\(515\) 312.677i 0.607139i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −448.570 158.593i −0.864297 0.305575i
\(520\) 0 0
\(521\) 522.647i 1.00316i 0.865111 + 0.501581i \(0.167248\pi\)
−0.865111 + 0.501581i \(0.832752\pi\)
\(522\) 0 0
\(523\) 209.135 0.399875 0.199938 0.979809i \(-0.435926\pi\)
0.199938 + 0.979809i \(0.435926\pi\)
\(524\) 0 0
\(525\) −605.282 + 1712.00i −1.15292 + 3.26095i
\(526\) 0 0
\(527\) 24.9209i 0.0472882i
\(528\) 0 0
\(529\) 398.710 0.753705
\(530\) 0 0
\(531\) 158.860 196.579i 0.299171 0.370206i
\(532\) 0 0
\(533\) 1130.29i 2.12061i
\(534\) 0 0
\(535\) −1129.71 −2.11161
\(536\) 0 0
\(537\) −562.850 198.997i −1.04814 0.370573i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1025.47 −1.89551 −0.947753 0.319004i \(-0.896652\pi\)
−0.947753 + 0.319004i \(0.896652\pi\)
\(542\) 0 0
\(543\) 214.000 605.283i 0.394107 1.11470i
\(544\) 0 0
\(545\) 1634.15i 2.99844i
\(546\) 0 0
\(547\) 641.332 1.17245 0.586226 0.810147i \(-0.300613\pi\)
0.586226 + 0.810147i \(0.300613\pi\)
\(548\) 0 0
\(549\) −18.3342 14.8163i −0.0333956 0.0269877i
\(550\) 0 0
\(551\) 90.1066i 0.163533i
\(552\) 0 0
\(553\) −362.280 −0.655117
\(554\) 0 0
\(555\) 300.757 + 106.334i 0.541904 + 0.191592i
\(556\) 0 0
\(557\) 695.654i 1.24893i 0.781053 + 0.624465i \(0.214683\pi\)
−0.781053 + 0.624465i \(0.785317\pi\)
\(558\) 0 0
\(559\) −1042.56 −1.86505
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 674.173i 1.19747i −0.800949 0.598733i \(-0.795671\pi\)
0.800949 0.598733i \(-0.204329\pi\)
\(564\) 0 0
\(565\) −1179.42 −2.08747
\(566\) 0 0
\(567\) −159.474 742.924i −0.281259 1.31027i
\(568\) 0 0
\(569\) 507.164i 0.891325i 0.895201 + 0.445663i \(0.147032\pi\)
−0.895201 + 0.445663i \(0.852968\pi\)
\(570\) 0 0
\(571\) 43.1400 0.0755516 0.0377758 0.999286i \(-0.487973\pi\)
0.0377758 + 0.999286i \(0.487973\pi\)
\(572\) 0 0
\(573\) −202.192 71.4856i −0.352865 0.124757i
\(574\) 0 0
\(575\) 736.499i 1.28087i
\(576\) 0 0
\(577\) −83.9067 −0.145419 −0.0727094 0.997353i \(-0.523165\pi\)
−0.0727094 + 0.997353i \(0.523165\pi\)
\(578\) 0 0
\(579\) 138.570 391.935i 0.239326 0.676917i
\(580\) 0 0
\(581\) 1096.07i 1.88652i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1144.37 1416.09i 1.95619 2.42067i
\(586\) 0 0
\(587\) 350.384i 0.596907i −0.954424 0.298453i \(-0.903529\pi\)
0.954424 0.298453i \(-0.0964708\pi\)
\(588\) 0 0
\(589\) 60.7667 0.103169
\(590\) 0 0
\(591\) −288.000 101.823i −0.487310 0.172290i
\(592\) 0 0
\(593\) 555.240i 0.936324i 0.883643 + 0.468162i \(0.155084\pi\)
−0.883643 + 0.468162i \(0.844916\pi\)
\(594\) 0 0
\(595\) −173.327 −0.291305
\(596\) 0 0
\(597\) −77.7150 + 219.811i −0.130176 + 0.368193i
\(598\) 0 0
\(599\) 282.943i 0.472360i −0.971709 0.236180i \(-0.924105\pi\)
0.971709 0.236180i \(-0.0758955\pi\)
\(600\) 0 0
\(601\) −255.052 −0.424379 −0.212189 0.977229i \(-0.568059\pi\)
−0.212189 + 0.977229i \(0.568059\pi\)
\(602\) 0 0
\(603\) −763.327 616.861i −1.26588 1.02299i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 328.427 0.541067 0.270533 0.962711i \(-0.412800\pi\)
0.270533 + 0.962711i \(0.412800\pi\)
\(608\) 0 0
\(609\) 502.093 + 177.517i 0.824455 + 0.291489i
\(610\) 0 0
\(611\) 565.143i 0.924948i
\(612\) 0 0
\(613\) −119.288 −0.194596 −0.0972981 0.995255i \(-0.531020\pi\)
−0.0972981 + 0.995255i \(0.531020\pi\)
\(614\) 0 0
\(615\) 500.187 1414.74i 0.813312 2.30039i
\(616\) 0 0
\(617\) 1047.39i 1.69755i −0.528757 0.848773i \(-0.677342\pi\)
0.528757 0.848773i \(-0.322658\pi\)
\(618\) 0 0
\(619\) 125.813 0.203253 0.101626 0.994823i \(-0.467595\pi\)
0.101626 + 0.994823i \(0.467595\pi\)
\(620\) 0 0
\(621\) −161.425 262.533i −0.259944 0.422758i
\(622\) 0 0
\(623\) 140.879i 0.226130i
\(624\) 0 0
\(625\) 1925.18 3.08028
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.9461i 0.0348905i
\(630\) 0 0
\(631\) 524.182 0.830716 0.415358 0.909658i \(-0.363656\pi\)
0.415358 + 0.909658i \(0.363656\pi\)
\(632\) 0 0
\(633\) −70.9533 + 200.686i −0.112091 + 0.317040i
\(634\) 0 0
\(635\) 1063.75i 1.67520i
\(636\) 0 0
\(637\) −833.852 −1.30903
\(638\) 0 0
\(639\) 300.757 372.167i 0.470668 0.582421i
\(640\) 0 0
\(641\) 658.412i 1.02716i −0.858041 0.513582i \(-0.828318\pi\)
0.858041 0.513582i \(-0.171682\pi\)
\(642\) 0 0
\(643\) −1081.42 −1.68183 −0.840917 0.541163i \(-0.817984\pi\)
−0.840917 + 0.541163i \(0.817984\pi\)
\(644\) 0 0
\(645\) 1304.94 + 461.367i 2.02317 + 0.715298i
\(646\) 0 0
\(647\) 141.786i 0.219144i −0.993979 0.109572i \(-0.965052\pi\)
0.993979 0.109572i \(-0.0349480\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −119.715 + 338.605i −0.183894 + 0.520131i
\(652\) 0 0
\(653\) 697.304i 1.06785i −0.845533 0.533924i \(-0.820717\pi\)
0.845533 0.533924i \(-0.179283\pi\)
\(654\) 0 0
\(655\) −648.000 −0.989313
\(656\) 0 0
\(657\) −838.658 677.738i −1.27650 1.03156i
\(658\) 0 0
\(659\) 986.245i 1.49658i 0.663372 + 0.748289i \(0.269125\pi\)
−0.663372 + 0.748289i \(0.730875\pi\)
\(660\) 0 0
\(661\) −1114.66 −1.68632 −0.843161 0.537662i \(-0.819308\pi\)
−0.843161 + 0.537662i \(0.819308\pi\)
\(662\) 0 0
\(663\) 118.093 + 41.7523i 0.178120 + 0.0629748i
\(664\) 0 0
\(665\) 422.638i 0.635545i
\(666\) 0 0
\(667\) 216.000 0.323838
\(668\) 0 0
\(669\) 158.570 448.504i 0.237025 0.670409i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 418.855 0.622370 0.311185 0.950349i \(-0.399274\pi\)
0.311185 + 0.950349i \(0.399274\pi\)
\(674\) 0 0
\(675\) −1484.04 + 912.498i −2.19857 + 1.35185i
\(676\) 0 0
\(677\) 51.0508i 0.0754074i −0.999289 0.0377037i \(-0.987996\pi\)
0.999289 0.0377037i \(-0.0120043\pi\)
\(678\) 0 0
\(679\) 492.275 0.725000
\(680\) 0 0
\(681\) −917.130 324.254i −1.34674 0.476144i
\(682\) 0 0
\(683\) 1177.29i 1.72371i −0.507156 0.861854i \(-0.669303\pi\)
0.507156 0.861854i \(-0.330697\pi\)
\(684\) 0 0
\(685\) 1531.79 2.23619
\(686\) 0 0
\(687\) −51.8083 + 146.536i −0.0754124 + 0.213298i
\(688\) 0 0
\(689\) 690.400i 1.00203i
\(690\) 0 0
\(691\) 177.233 0.256488 0.128244 0.991743i \(-0.459066\pi\)
0.128244 + 0.991743i \(0.459066\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1599.46i 2.30139i
\(696\) 0 0
\(697\) 103.233 0.148111
\(698\) 0 0
\(699\) 352.570 + 124.652i 0.504392 + 0.178329i
\(700\) 0 0
\(701\) 373.352i 0.532600i 0.963890 + 0.266300i \(0.0858011\pi\)
−0.963890 + 0.266300i \(0.914199\pi\)
\(702\) 0 0
\(703\) −53.5132 −0.0761212
\(704\) 0 0
\(705\) −250.093 + 707.371i −0.354742 + 1.00336i
\(706\) 0 0
\(707\) 1310.22i 1.85321i
\(708\) 0 0
\(709\) 701.518 0.989447 0.494724 0.869050i \(-0.335269\pi\)
0.494724 + 0.869050i \(0.335269\pi\)
\(710\) 0 0
\(711\) −270.334 218.463i −0.380217 0.307262i
\(712\) 0 0
\(713\) 145.668i 0.204302i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1018.65 360.148i −1.42072 0.502299i
\(718\) 0 0
\(719\) 1411.74i 1.96348i 0.190226 + 0.981740i \(0.439078\pi\)
−0.190226 + 0.981740i \(0.560922\pi\)
\(720\) 0 0
\(721\) 310.005 0.429965
\(722\) 0 0
\(723\) −3.52333 + 9.96547i −0.00487320 + 0.0137835i
\(724\) 0 0
\(725\) 1221.00i 1.68413i
\(726\) 0 0
\(727\) 1061.52 1.46014 0.730068 0.683375i \(-0.239489\pi\)
0.730068 + 0.683375i \(0.239489\pi\)
\(728\) 0 0
\(729\) 329.000 650.538i 0.451303 0.892371i
\(730\) 0 0
\(731\) 95.2213i 0.130262i
\(732\) 0 0
\(733\) 853.764 1.16475 0.582377 0.812919i \(-0.302123\pi\)
0.582377 + 0.812919i \(0.302123\pi\)
\(734\) 0 0
\(735\) 1043.70 + 369.005i 1.42001 + 0.502048i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1198.56 1.62187 0.810934 0.585138i \(-0.198960\pi\)
0.810934 + 0.585138i \(0.198960\pi\)
\(740\) 0 0
\(741\) −101.808 + 287.957i −0.137393 + 0.388606i
\(742\) 0 0
\(743\) 1368.20i 1.84145i 0.390207 + 0.920727i \(0.372404\pi\)
−0.390207 + 0.920727i \(0.627596\pi\)
\(744\) 0 0
\(745\) 574.093 0.770595
\(746\) 0 0
\(747\) −660.953 + 817.888i −0.884810 + 1.09490i
\(748\) 0 0
\(749\) 1120.06i 1.49540i
\(750\) 0 0
\(751\) 544.368 0.724858 0.362429 0.932011i \(-0.381948\pi\)
0.362429 + 0.932011i \(0.381948\pi\)
\(752\) 0 0
\(753\) 967.233 + 341.969i 1.28451 + 0.454142i
\(754\) 0 0
\(755\) 106.799i 0.141456i
\(756\) 0 0
\(757\) 190.482 0.251627 0.125814 0.992054i \(-0.459846\pi\)
0.125814 + 0.992054i \(0.459846\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 318.861i 0.419003i −0.977808 0.209502i \(-0.932816\pi\)
0.977808 0.209502i \(-0.0671841\pi\)
\(762\) 0 0
\(763\) 1620.19 2.12344
\(764\) 0 0
\(765\) −129.337 104.520i −0.169068 0.136627i
\(766\) 0 0
\(767\) 600.433i 0.782833i
\(768\) 0 0
\(769\) −369.233 −0.480147 −0.240074 0.970755i \(-0.577172\pi\)
−0.240074 + 0.970755i \(0.577172\pi\)
\(770\) 0 0
\(771\) 1061.13 + 375.166i 1.37630 + 0.486597i
\(772\) 0 0
\(773\) 217.014i 0.280743i −0.990099 0.140371i \(-0.955170\pi\)
0.990099 0.140371i \(-0.0448296\pi\)
\(774\) 0 0
\(775\) 823.425 1.06248
\(776\) 0 0
\(777\) 105.425 298.187i 0.135682 0.383767i
\(778\) 0 0
\(779\) 251.723i 0.323136i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 267.617 + 435.237i 0.341784 + 0.555858i
\(784\) 0 0
\(785\) 225.267i 0.286964i
\(786\) 0 0
\(787\) 840.565 1.06806 0.534031 0.845465i \(-0.320677\pi\)
0.534031 + 0.845465i \(0.320677\pi\)
\(788\) 0 0
\(789\) 725.523 + 256.511i 0.919548 + 0.325109i
\(790\) 0 0
\(791\) 1169.34i 1.47831i
\(792\) 0 0
\(793\) −56.0000 −0.0706179
\(794\) 0 0
\(795\) −305.523 + 864.150i −0.384306 + 1.08698i
\(796\) 0 0
\(797\) 625.517i 0.784839i −0.919786 0.392419i \(-0.871638\pi\)
0.919786 0.392419i \(-0.128362\pi\)
\(798\) 0 0
\(799\) −51.6166 −0.0646015
\(800\) 0 0
\(801\) 84.9533 105.124i 0.106059 0.131241i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1013.13 1.25855
\(806\) 0 0
\(807\) −508.472 179.772i −0.630076 0.222766i
\(808\) 0 0
\(809\) 435.237i 0.537994i −0.963141 0.268997i \(-0.913308\pi\)
0.963141 0.268997i \(-0.0866922\pi\)
\(810\) 0 0
\(811\) 1052.95 1.29833 0.649167 0.760646i \(-0.275118\pi\)
0.649167 + 0.760646i \(0.275118\pi\)
\(812\) 0 0
\(813\) 0.240875 0.681298i 0.000296279 0.000838004i
\(814\) 0 0
\(815\) 653.297i 0.801592i
\(816\) 0 0
\(817\) −232.187 −0.284194
\(818\) 0 0
\(819\) −1403.99 1134.60i −1.71427 1.38534i
\(820\) 0 0
\(821\) 968.670i 1.17987i 0.807452 + 0.589933i \(0.200846\pi\)
−0.807452 + 0.589933i \(0.799154\pi\)
\(822\) 0 0
\(823\) −1164.66 −1.41514 −0.707572 0.706641i \(-0.750209\pi\)
−0.707572 + 0.706641i \(0.750209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1199.05i 1.44988i 0.688811 + 0.724940i \(0.258133\pi\)
−0.688811 + 0.724940i \(0.741867\pi\)
\(828\) 0 0
\(829\) −894.943 −1.07955 −0.539773 0.841811i \(-0.681490\pi\)
−0.539773 + 0.841811i \(0.681490\pi\)
\(830\) 0 0
\(831\) 375.858 1063.09i 0.452295 1.27928i
\(832\) 0 0
\(833\) 76.1588i 0.0914272i
\(834\) 0 0
\(835\) 531.420 0.636431
\(836\) 0 0
\(837\) −293.518 + 180.477i −0.350679 + 0.215624i
\(838\) 0 0
\(839\) 1032.07i 1.23011i 0.788482 + 0.615057i \(0.210867\pi\)
−0.788482 + 0.615057i \(0.789133\pi\)
\(840\) 0 0
\(841\) 482.907 0.574205
\(842\) 0 0
\(843\) −293.523 103.776i −0.348189 0.123103i
\(844\) 0 0
\(845\) 2726.29i 3.22638i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −469.617 + 1328.28i −0.553141 + 1.56452i
\(850\) 0 0
\(851\) 128.280i 0.150740i
\(852\) 0 0
\(853\) −1193.47 −1.39914 −0.699572 0.714563i \(-0.746626\pi\)
−0.699572 + 0.714563i \(0.746626\pi\)
\(854\) 0 0
\(855\) 254.860 315.373i 0.298082 0.368858i
\(856\) 0 0
\(857\) 727.781i 0.849220i 0.905376 + 0.424610i \(0.139589\pi\)
−0.905376 + 0.424610i \(0.860411\pi\)
\(858\) 0 0
\(859\) −582.187 −0.677749 −0.338875 0.940832i \(-0.610046\pi\)
−0.338875 + 0.940832i \(0.610046\pi\)
\(860\) 0 0
\(861\) −1402.65 495.913i −1.62910 0.575973i
\(862\) 0 0
\(863\) 112.029i 0.129813i −0.997891 0.0649066i \(-0.979325\pi\)
0.997891 0.0649066i \(-0.0206749\pi\)
\(864\) 0 0
\(865\) 1500.56 1.73475
\(866\) 0 0
\(867\) −285.187 + 806.630i −0.328935 + 0.930369i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2331.51 −2.67682
\(872\) 0 0
\(873\) 367.337 + 296.853i 0.420775 + 0.340038i
\(874\) 0 0
\(875\) 3508.03i 4.00917i
\(876\) 0 0
\(877\) −353.666 −0.403268 −0.201634 0.979461i \(-0.564625\pi\)
−0.201634 + 0.979461i \(0.564625\pi\)
\(878\) 0 0
\(879\) 1177.51 + 416.314i 1.33961 + 0.473622i
\(880\) 0 0
\(881\) 638.279i 0.724494i 0.932082 + 0.362247i \(0.117990\pi\)
−0.932082 + 0.362247i \(0.882010\pi\)
\(882\) 0 0
\(883\) 330.570 0.374371 0.187186 0.982325i \(-0.440063\pi\)
0.187186 + 0.982325i \(0.440063\pi\)
\(884\) 0 0
\(885\) −265.710 + 751.541i −0.300237 + 0.849199i
\(886\) 0 0
\(887\) 215.968i 0.243481i −0.992562 0.121741i \(-0.961152\pi\)
0.992562 0.121741i \(-0.0388476\pi\)
\(888\) 0 0
\(889\) −1054.66 −1.18635
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 125.861i 0.140942i
\(894\) 0 0
\(895\) 1882.85 2.10374
\(896\) 0 0
\(897\) −690.280 244.051i −0.769543 0.272074i
\(898\) 0 0
\(899\) 241.493i 0.268625i
\(900\) 0 0
\(901\) −63.0568 −0.0699854
\(902\) 0 0
\(903\) 457.425 1293.79i 0.506561 1.43277i
\(904\) 0 0
\(905\) 2024.80i 2.23735i
\(906\) 0 0
\(907\) 243.907 0.268916 0.134458 0.990919i \(-0.457071\pi\)
0.134458 + 0.990919i \(0.457071\pi\)
\(908\) 0 0
\(909\) 790.093 977.691i 0.869190 1.07557i
\(910\) 0 0
\(911\) 932.940i 1.02408i −0.858961 0.512041i \(-0.828889\pi\)
0.858961 0.512041i \(-0.171111\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 70.0933 + 24.7817i 0.0766047 + 0.0270839i
\(916\) 0 0
\(917\) 642.463i 0.700614i
\(918\) 0 0
\(919\) 379.847 0.413327 0.206663 0.978412i \(-0.433739\pi\)
0.206663 + 0.978412i \(0.433739\pi\)
\(920\) 0 0
\(921\) 287.140 812.154i 0.311770 0.881818i
\(922\) 0 0
\(923\) 1136.75i 1.23158i
\(924\) 0 0
\(925\) −725.135 −0.783930
\(926\) 0 0
\(927\) 231.327 + 186.940i 0.249543 + 0.201661i
\(928\) 0 0
\(929\) 842.857i 0.907273i 0.891187 + 0.453637i \(0.149874\pi\)
−0.891187 + 0.453637i \(0.850126\pi\)
\(930\) 0 0
\(931\) −185.705 −0.199468
\(932\) 0 0
\(933\) −1077.24 380.861i −1.15460 0.408211i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −537.233 −0.573355 −0.286677 0.958027i \(-0.592551\pi\)
−0.286677 + 0.958027i \(0.592551\pi\)
\(938\) 0 0
\(939\) 341.233 965.153i 0.363401 1.02785i
\(940\) 0 0
\(941\) 1676.04i 1.78113i −0.454858 0.890564i \(-0.650310\pi\)
0.454858 0.890564i \(-0.349690\pi\)
\(942\) 0 0
\(943\) −603.420 −0.639894
\(944\) 0 0
\(945\) 1255.23 + 2041.44i 1.32829 + 2.16026i
\(946\) 0 0
\(947\) 939.705i 0.992296i 0.868238 + 0.496148i \(0.165253\pi\)
−0.868238 + 0.496148i \(0.834747\pi\)
\(948\) 0 0
\(949\) −2561.60 −2.69926
\(950\) 0 0
\(951\) 1451.51 + 513.186i 1.52630 + 0.539627i
\(952\) 0 0
\(953\) 1531.58i 1.60712i 0.595226 + 0.803559i \(0.297063\pi\)
−0.595226 + 0.803559i \(0.702937\pi\)
\(954\) 0 0
\(955\) 676.373 0.708244
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1518.70i 1.58363i
\(960\) 0 0
\(961\) −798.140 −0.830531
\(962\) 0 0
\(963\) −675.420 + 835.789i −0.701371 + 0.867902i
\(964\) 0 0
\(965\) 1311.10i 1.35866i
\(966\) 0 0
\(967\) 448.427 0.463731 0.231865 0.972748i \(-0.425517\pi\)
0.231865 + 0.972748i \(0.425517\pi\)
\(968\) 0 0
\(969\) 26.3002 + 9.29853i 0.0271416 + 0.00959601i
\(970\) 0 0
\(971\) 1630.24i 1.67893i −0.543411 0.839467i \(-0.682868\pi\)
0.543411 0.839467i \(-0.317132\pi\)
\(972\) 0 0
\(973\) 1585.80 1.62980
\(974\) 0 0
\(975\) −1379.56 + 3901.99i −1.41494 + 4.00204i
\(976\) 0 0
\(977\) 482.382i 0.493738i 0.969049 + 0.246869i \(0.0794018\pi\)
−0.969049 + 0.246869i \(0.920598\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1208.99 + 977.009i 1.23240 + 0.995932i
\(982\) 0 0
\(983\) 1632.22i 1.66045i 0.557430 + 0.830224i \(0.311788\pi\)
−0.557430 + 0.830224i \(0.688212\pi\)
\(984\) 0 0
\(985\) 963.420 0.978091
\(986\) 0 0
\(987\) 701.327 + 247.956i 0.710564 + 0.251222i
\(988\) 0 0
\(989\) 556.588i 0.562779i
\(990\) 0 0
\(991\) −138.482 −0.139739 −0.0698697 0.997556i \(-0.522258\pi\)
−0.0698697 + 0.997556i \(0.522258\pi\)
\(992\) 0 0
\(993\) −254.000 + 718.420i −0.255791 + 0.723485i
\(994\) 0 0
\(995\) 735.314i 0.739009i
\(996\) 0 0
\(997\) −1420.42 −1.42469 −0.712346 0.701829i \(-0.752367\pi\)
−0.712346 + 0.701829i \(0.752367\pi\)
\(998\) 0 0
\(999\) 258.482 158.934i 0.258740 0.159093i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.e.h.485.3 4
3.2 odd 2 inner 1452.3.e.h.485.2 4
11.10 odd 2 132.3.e.b.89.3 yes 4
33.32 even 2 132.3.e.b.89.2 4
44.43 even 2 528.3.i.c.353.1 4
132.131 odd 2 528.3.i.c.353.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.e.b.89.2 4 33.32 even 2
132.3.e.b.89.3 yes 4 11.10 odd 2
528.3.i.c.353.1 4 44.43 even 2
528.3.i.c.353.4 4 132.131 odd 2
1452.3.e.h.485.2 4 3.2 odd 2 inner
1452.3.e.h.485.3 4 1.1 even 1 trivial