Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1458,2,Mod(487,1458)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1458, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1458.487");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1458.c (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
487.1 |
|
0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | −1.30572 | − | 2.26157i | 0 | 2.56729 | − | 4.44667i | −1.00000 | 0 | −2.61144 | ||||||||||||||||||||||||||||||||||||||||||||||
487.2 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | −0.192377 | − | 0.333207i | 0 | −0.474416 | + | 0.821712i | −1.00000 | 0 | −0.384754 | |||||||||||||||||||||||||||||||||||||||||||||||
487.3 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0.400019 | + | 0.692853i | 0 | −2.09287 | + | 3.62496i | −1.00000 | 0 | 0.800038 | |||||||||||||||||||||||||||||||||||||||||||||||
487.4 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0.426333 | + | 0.738430i | 0 | −0.687903 | + | 1.19148i | −1.00000 | 0 | 0.852666 | |||||||||||||||||||||||||||||||||||||||||||||||
487.5 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | 1.53967 | + | 2.66679i | 0 | 0.127119 | − | 0.220177i | −1.00000 | 0 | 3.07935 | |||||||||||||||||||||||||||||||||||||||||||||||
487.6 | 0.500000 | − | 0.866025i | 0 | −0.500000 | − | 0.866025i | 2.13207 | + | 3.69285i | 0 | 0.560783 | − | 0.971305i | −1.00000 | 0 | 4.26414 | |||||||||||||||||||||||||||||||||||||||||||||||
973.1 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | −1.30572 | + | 2.26157i | 0 | 2.56729 | + | 4.44667i | −1.00000 | 0 | −2.61144 | |||||||||||||||||||||||||||||||||||||||||||||||
973.2 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | −0.192377 | + | 0.333207i | 0 | −0.474416 | − | 0.821712i | −1.00000 | 0 | −0.384754 | |||||||||||||||||||||||||||||||||||||||||||||||
973.3 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0.400019 | − | 0.692853i | 0 | −2.09287 | − | 3.62496i | −1.00000 | 0 | 0.800038 | |||||||||||||||||||||||||||||||||||||||||||||||
973.4 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0.426333 | − | 0.738430i | 0 | −0.687903 | − | 1.19148i | −1.00000 | 0 | 0.852666 | |||||||||||||||||||||||||||||||||||||||||||||||
973.5 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | 1.53967 | − | 2.66679i | 0 | 0.127119 | + | 0.220177i | −1.00000 | 0 | 3.07935 | |||||||||||||||||||||||||||||||||||||||||||||||
973.6 | 0.500000 | + | 0.866025i | 0 | −0.500000 | + | 0.866025i | 2.13207 | − | 3.69285i | 0 | 0.560783 | + | 0.971305i | −1.00000 | 0 | 4.26414 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1458.2.c.h | 12 | |
3.b | odd | 2 | 1 | 1458.2.c.e | 12 | ||
9.c | even | 3 | 1 | 1458.2.a.e | ✓ | 6 | |
9.c | even | 3 | 1 | inner | 1458.2.c.h | 12 | |
9.d | odd | 6 | 1 | 1458.2.a.h | yes | 6 | |
9.d | odd | 6 | 1 | 1458.2.c.e | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1458.2.a.e | ✓ | 6 | 9.c | even | 3 | 1 | |
1458.2.a.h | yes | 6 | 9.d | odd | 6 | 1 | |
1458.2.c.e | 12 | 3.b | odd | 2 | 1 | ||
1458.2.c.e | 12 | 9.d | odd | 6 | 1 | ||
1458.2.c.h | 12 | 1.a | even | 1 | 1 | trivial | |
1458.2.c.h | 12 | 9.c | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .