Properties

Label 1458.2.c.h
Level 14581458
Weight 22
Character orbit 1458.c
Analytic conductor 11.64211.642
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,2,Mod(487,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.487");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1458=236 1458 = 2 \cdot 3^{6}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1458.c (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.642188614711.6421886147
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 37 3^{7}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q2β1q4+(β2+β1)q5+(β10+β9+2β3)q7q8+(β3+1)q10+(β11β9+β8++1)q11++(2β10+2β8+1)q98+O(q100) q + ( - \beta_1 + 1) q^{2} - \beta_1 q^{4} + ( - \beta_{2} + \beta_1) q^{5} + ( - \beta_{10} + \beta_{9} + \cdots - 2 \beta_{3}) q^{7} - q^{8} + (\beta_{3} + 1) q^{10} + ( - \beta_{11} - \beta_{9} + \beta_{8} + \cdots + 1) q^{11}+ \cdots + ( - 2 \beta_{10} + 2 \beta_{8} + \cdots - 1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q26q4+6q512q8+12q10+6q116q136q1624q17+12q19+6q206q22+12q236q2512q26+6q29+6q31+6q32+12q98+O(q100) 12 q + 6 q^{2} - 6 q^{4} + 6 q^{5} - 12 q^{8} + 12 q^{10} + 6 q^{11} - 6 q^{13} - 6 q^{16} - 24 q^{17} + 12 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} - 6 q^{25} - 12 q^{26} + 6 q^{29} + 6 q^{31} + 6 q^{32}+ \cdots - 12 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ366 \zeta_{36}^{6} Copy content Toggle raw display
β2\beta_{2}== ζ3610+ζ369+ζ363ζ362 -\zeta_{36}^{10} + \zeta_{36}^{9} + \zeta_{36}^{3} - \zeta_{36}^{2} Copy content Toggle raw display
β3\beta_{3}== ζ369ζ368+ζ3642ζ363+ζ362 \zeta_{36}^{9} - \zeta_{36}^{8} + \zeta_{36}^{4} - 2\zeta_{36}^{3} + \zeta_{36}^{2} Copy content Toggle raw display
β4\beta_{4}== ζ3611+ζ368ζ367+2ζ365ζ364ζ362+2ζ36 -\zeta_{36}^{11} + \zeta_{36}^{8} - \zeta_{36}^{7} + 2\zeta_{36}^{5} - \zeta_{36}^{4} - \zeta_{36}^{2} + 2\zeta_{36} Copy content Toggle raw display
β5\beta_{5}== ζ3611+ζ368+2ζ367ζ365ζ364ζ362ζ36 -\zeta_{36}^{11} + \zeta_{36}^{8} + 2\zeta_{36}^{7} - \zeta_{36}^{5} - \zeta_{36}^{4} - \zeta_{36}^{2} - \zeta_{36} Copy content Toggle raw display
β6\beta_{6}== ζ369+ζ368+ζ364+ζ363 \zeta_{36}^{9} + \zeta_{36}^{8} + \zeta_{36}^{4} + \zeta_{36}^{3} Copy content Toggle raw display
β7\beta_{7}== ζ3610ζ369+ζ368+ζ364ζ363ζ362 -\zeta_{36}^{10} - \zeta_{36}^{9} + \zeta_{36}^{8} + \zeta_{36}^{4} - \zeta_{36}^{3} - \zeta_{36}^{2} Copy content Toggle raw display
β8\beta_{8}== ζ3610ζ369ζ368+2ζ363 \zeta_{36}^{10} - \zeta_{36}^{9} - \zeta_{36}^{8} + 2\zeta_{36}^{3} Copy content Toggle raw display
β9\beta_{9}== ζ3611+ζ3610+2ζ367+2ζ365+ζ362ζ36 -\zeta_{36}^{11} + \zeta_{36}^{10} + 2\zeta_{36}^{7} + 2\zeta_{36}^{5} + \zeta_{36}^{2} - \zeta_{36} Copy content Toggle raw display
β10\beta_{10}== ζ3610ζ369+ζ364+2ζ363+ζ362 -\zeta_{36}^{10} - \zeta_{36}^{9} + \zeta_{36}^{4} + 2\zeta_{36}^{3} + \zeta_{36}^{2} Copy content Toggle raw display
β11\beta_{11}== 2ζ3611+ζ3610ζ367ζ365+ζ362+2ζ36 2\zeta_{36}^{11} + \zeta_{36}^{10} - \zeta_{36}^{7} - \zeta_{36}^{5} + \zeta_{36}^{2} + 2\zeta_{36} Copy content Toggle raw display
ζ36\zeta_{36}== (3β11+2β10+2β8+β7β6+3β5+3β4+4β3+2β2)/9 ( 3\beta_{11} + 2\beta_{10} + 2\beta_{8} + \beta_{7} - \beta_{6} + 3\beta_{5} + 3\beta_{4} + 4\beta_{3} + 2\beta_{2} ) / 9 Copy content Toggle raw display
ζ362\zeta_{36}^{2}== (β10β8β7β2)/3 ( \beta_{10} - \beta_{8} - \beta_{7} - \beta_{2} ) / 3 Copy content Toggle raw display
ζ363\zeta_{36}^{3}== (β10+β8β7+β6β3+β2)/9 ( \beta_{10} + \beta_{8} - \beta_{7} + \beta_{6} - \beta_{3} + \beta_{2} ) / 9 Copy content Toggle raw display
ζ364\zeta_{36}^{4}== (β8+β7+β6+β3)/3 ( \beta_{8} + \beta_{7} + \beta_{6} + \beta_{3} ) / 3 Copy content Toggle raw display
ζ365\zeta_{36}^{5}== (β10+3β9β8+β7β63β52β3+2β2)/9 ( -\beta_{10} + 3\beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} - 3\beta_{5} - 2\beta_{3} + 2\beta_{2} ) / 9 Copy content Toggle raw display
ζ366\zeta_{36}^{6}== β1 \beta_1 Copy content Toggle raw display
ζ367\zeta_{36}^{7}== (3β11+β10+3β9+β8+2β72β6+3β5+2β3+4β2)/9 ( 3\beta_{11} + \beta_{10} + 3\beta_{9} + \beta_{8} + 2\beta_{7} - 2\beta_{6} + 3\beta_{5} + 2\beta_{3} + 4\beta_{2} ) / 9 Copy content Toggle raw display
ζ368\zeta_{36}^{8}== (β8+β6β3β2)/3 ( -\beta_{8} + \beta_{6} - \beta_{3} - \beta_{2} ) / 3 Copy content Toggle raw display
ζ369\zeta_{36}^{9}== (β10β82β7+2β6+β3+2β2)/9 ( -\beta_{10} - \beta_{8} - 2\beta_{7} + 2\beta_{6} + \beta_{3} + 2\beta_{2} ) / 9 Copy content Toggle raw display
ζ3610\zeta_{36}^{10}== (β10+β8+β6β2)/3 ( -\beta_{10} + \beta_{8} + \beta_{6} - \beta_{2} ) / 3 Copy content Toggle raw display
ζ3611\zeta_{36}^{11}== (3β112β10+3β92β8+2β72β63β5++4β2)/9 ( 3 \beta_{11} - 2 \beta_{10} + 3 \beta_{9} - 2 \beta_{8} + 2 \beta_{7} - 2 \beta_{6} - 3 \beta_{5} + \cdots + 4 \beta_{2} ) / 9 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1458Z)×\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times.

nn 731731
χ(n)\chi(n) β1-\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
487.1
−0.642788 + 0.766044i
−0.342020 0.939693i
0.984808 + 0.173648i
0.642788 0.766044i
0.342020 + 0.939693i
−0.984808 0.173648i
−0.642788 0.766044i
−0.342020 + 0.939693i
0.984808 0.173648i
0.642788 + 0.766044i
0.342020 0.939693i
−0.984808 + 0.173648i
0.500000 0.866025i 0 −0.500000 0.866025i −1.30572 2.26157i 0 2.56729 4.44667i −1.00000 0 −2.61144
487.2 0.500000 0.866025i 0 −0.500000 0.866025i −0.192377 0.333207i 0 −0.474416 + 0.821712i −1.00000 0 −0.384754
487.3 0.500000 0.866025i 0 −0.500000 0.866025i 0.400019 + 0.692853i 0 −2.09287 + 3.62496i −1.00000 0 0.800038
487.4 0.500000 0.866025i 0 −0.500000 0.866025i 0.426333 + 0.738430i 0 −0.687903 + 1.19148i −1.00000 0 0.852666
487.5 0.500000 0.866025i 0 −0.500000 0.866025i 1.53967 + 2.66679i 0 0.127119 0.220177i −1.00000 0 3.07935
487.6 0.500000 0.866025i 0 −0.500000 0.866025i 2.13207 + 3.69285i 0 0.560783 0.971305i −1.00000 0 4.26414
973.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.30572 + 2.26157i 0 2.56729 + 4.44667i −1.00000 0 −2.61144
973.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.192377 + 0.333207i 0 −0.474416 0.821712i −1.00000 0 −0.384754
973.3 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.400019 0.692853i 0 −2.09287 3.62496i −1.00000 0 0.800038
973.4 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.426333 0.738430i 0 −0.687903 1.19148i −1.00000 0 0.852666
973.5 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 1.53967 2.66679i 0 0.127119 + 0.220177i −1.00000 0 3.07935
973.6 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 2.13207 3.69285i 0 0.560783 + 0.971305i −1.00000 0 4.26414
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 487.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1458.2.c.h 12
3.b odd 2 1 1458.2.c.e 12
9.c even 3 1 1458.2.a.e 6
9.c even 3 1 inner 1458.2.c.h 12
9.d odd 6 1 1458.2.a.h yes 6
9.d odd 6 1 1458.2.c.e 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1458.2.a.e 6 9.c even 3 1
1458.2.a.h yes 6 9.d odd 6 1
1458.2.c.e 12 3.b odd 2 1
1458.2.c.e 12 9.d odd 6 1
1458.2.c.h 12 1.a even 1 1 trivial
1458.2.c.h 12 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5126T511+36T51084T59+297T58540T57+1782T56++81 T_{5}^{12} - 6 T_{5}^{11} + 36 T_{5}^{10} - 84 T_{5}^{9} + 297 T_{5}^{8} - 540 T_{5}^{7} + 1782 T_{5}^{6} + \cdots + 81 acting on S2new(1458,[χ])S_{2}^{\mathrm{new}}(1458, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)6 (T^{2} - T + 1)^{6} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T126T11++81 T^{12} - 6 T^{11} + \cdots + 81 Copy content Toggle raw display
77 T12+24T10++64 T^{12} + 24 T^{10} + \cdots + 64 Copy content Toggle raw display
1111 T126T11++5184 T^{12} - 6 T^{11} + \cdots + 5184 Copy content Toggle raw display
1313 T12+6T11++32761 T^{12} + 6 T^{11} + \cdots + 32761 Copy content Toggle raw display
1717 (T6+12T5+963)2 (T^{6} + 12 T^{5} + \cdots - 963)^{2} Copy content Toggle raw display
1919 (T66T5+3176)2 (T^{6} - 6 T^{5} + \cdots - 3176)^{2} Copy content Toggle raw display
2323 T1212T11++59351616 T^{12} - 12 T^{11} + \cdots + 59351616 Copy content Toggle raw display
2929 T126T11++30437289 T^{12} - 6 T^{11} + \cdots + 30437289 Copy content Toggle raw display
3131 T12++2870387776 T^{12} + \cdots + 2870387776 Copy content Toggle raw display
3737 (T696T4++8317)2 (T^{6} - 96 T^{4} + \cdots + 8317)^{2} Copy content Toggle raw display
4141 T12++1913975001 T^{12} + \cdots + 1913975001 Copy content Toggle raw display
4343 T126T11++87616 T^{12} - 6 T^{11} + \cdots + 87616 Copy content Toggle raw display
4747 T12++574848576 T^{12} + \cdots + 574848576 Copy content Toggle raw display
5353 (T6+24T5+43083)2 (T^{6} + 24 T^{5} + \cdots - 43083)^{2} Copy content Toggle raw display
5959 T12++962985024 T^{12} + \cdots + 962985024 Copy content Toggle raw display
6161 T12++2591115409 T^{12} + \cdots + 2591115409 Copy content Toggle raw display
6767 T12++1134881344 T^{12} + \cdots + 1134881344 Copy content Toggle raw display
7171 (T66T5+59688)2 (T^{6} - 6 T^{5} + \cdots - 59688)^{2} Copy content Toggle raw display
7373 (T6+24T5++252361)2 (T^{6} + 24 T^{5} + \cdots + 252361)^{2} Copy content Toggle raw display
7979 T1212T11++13957696 T^{12} - 12 T^{11} + \cdots + 13957696 Copy content Toggle raw display
8383 T12++2237668416 T^{12} + \cdots + 2237668416 Copy content Toggle raw display
8989 (T6+12T5++71613)2 (T^{6} + 12 T^{5} + \cdots + 71613)^{2} Copy content Toggle raw display
9797 T12++298206642889 T^{12} + \cdots + 298206642889 Copy content Toggle raw display
show more
show less