Properties

Label 1458.3.b.c.1457.13
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.13
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +4.04819i q^{5} -13.2098 q^{7} +2.82843i q^{8} +5.72501 q^{10} -13.5794i q^{11} -18.5660 q^{13} +18.6814i q^{14} +4.00000 q^{16} -16.0261i q^{17} -0.654012 q^{19} -8.09638i q^{20} -19.2042 q^{22} -6.60266i q^{23} +8.61214 q^{25} +26.2563i q^{26} +26.4195 q^{28} +1.36420i q^{29} -18.6717 q^{31} -5.65685i q^{32} -22.6643 q^{34} -53.4756i q^{35} +16.8788 q^{37} +0.924912i q^{38} -11.4500 q^{40} +42.8656i q^{41} +0.0655728 q^{43} +27.1589i q^{44} -9.33756 q^{46} +46.8056i q^{47} +125.498 q^{49} -12.1794i q^{50} +37.1320 q^{52} +14.3109i q^{53} +54.9722 q^{55} -37.3628i q^{56} +1.92927 q^{58} -4.86429i q^{59} -15.7567 q^{61} +26.4057i q^{62} -8.00000 q^{64} -75.1588i q^{65} +39.5133 q^{67} +32.0522i q^{68} -75.6260 q^{70} +70.3335i q^{71} +68.3506 q^{73} -23.8702i q^{74} +1.30802 q^{76} +179.381i q^{77} -50.4483 q^{79} +16.1928i q^{80} +60.6211 q^{82} +146.909i q^{83} +64.8767 q^{85} -0.0927340i q^{86} +38.4085 q^{88} -19.9714i q^{89} +245.252 q^{91} +13.2053i q^{92} +66.1931 q^{94} -2.64757i q^{95} +105.729 q^{97} -177.480i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 4.04819i 0.809638i 0.914397 + 0.404819i \(0.132666\pi\)
−0.914397 + 0.404819i \(0.867334\pi\)
\(6\) 0 0
\(7\) −13.2098 −1.88711 −0.943554 0.331219i \(-0.892540\pi\)
−0.943554 + 0.331219i \(0.892540\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 5.72501 0.572501
\(11\) − 13.5794i − 1.23449i −0.786769 0.617247i \(-0.788248\pi\)
0.786769 0.617247i \(-0.211752\pi\)
\(12\) 0 0
\(13\) −18.5660 −1.42815 −0.714077 0.700067i \(-0.753153\pi\)
−0.714077 + 0.700067i \(0.753153\pi\)
\(14\) 18.6814i 1.33439i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 16.0261i − 0.942711i −0.881943 0.471355i \(-0.843765\pi\)
0.881943 0.471355i \(-0.156235\pi\)
\(18\) 0 0
\(19\) −0.654012 −0.0344217 −0.0172108 0.999852i \(-0.505479\pi\)
−0.0172108 + 0.999852i \(0.505479\pi\)
\(20\) − 8.09638i − 0.404819i
\(21\) 0 0
\(22\) −19.2042 −0.872920
\(23\) − 6.60266i − 0.287072i −0.989645 0.143536i \(-0.954153\pi\)
0.989645 0.143536i \(-0.0458473\pi\)
\(24\) 0 0
\(25\) 8.61214 0.344486
\(26\) 26.2563i 1.00986i
\(27\) 0 0
\(28\) 26.4195 0.943554
\(29\) 1.36420i 0.0470414i 0.999723 + 0.0235207i \(0.00748756\pi\)
−0.999723 + 0.0235207i \(0.992512\pi\)
\(30\) 0 0
\(31\) −18.6717 −0.602312 −0.301156 0.953575i \(-0.597372\pi\)
−0.301156 + 0.953575i \(0.597372\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −22.6643 −0.666597
\(35\) − 53.4756i − 1.52787i
\(36\) 0 0
\(37\) 16.8788 0.456184 0.228092 0.973640i \(-0.426751\pi\)
0.228092 + 0.973640i \(0.426751\pi\)
\(38\) 0.924912i 0.0243398i
\(39\) 0 0
\(40\) −11.4500 −0.286250
\(41\) 42.8656i 1.04550i 0.852486 + 0.522751i \(0.175094\pi\)
−0.852486 + 0.522751i \(0.824906\pi\)
\(42\) 0 0
\(43\) 0.0655728 0.00152495 0.000762475 1.00000i \(-0.499757\pi\)
0.000762475 1.00000i \(0.499757\pi\)
\(44\) 27.1589i 0.617247i
\(45\) 0 0
\(46\) −9.33756 −0.202991
\(47\) 46.8056i 0.995864i 0.867216 + 0.497932i \(0.165907\pi\)
−0.867216 + 0.497932i \(0.834093\pi\)
\(48\) 0 0
\(49\) 125.498 2.56118
\(50\) − 12.1794i − 0.243588i
\(51\) 0 0
\(52\) 37.1320 0.714077
\(53\) 14.3109i 0.270017i 0.990844 + 0.135008i \(0.0431061\pi\)
−0.990844 + 0.135008i \(0.956894\pi\)
\(54\) 0 0
\(55\) 54.9722 0.999494
\(56\) − 37.3628i − 0.667193i
\(57\) 0 0
\(58\) 1.92927 0.0332633
\(59\) − 4.86429i − 0.0824456i −0.999150 0.0412228i \(-0.986875\pi\)
0.999150 0.0412228i \(-0.0131253\pi\)
\(60\) 0 0
\(61\) −15.7567 −0.258306 −0.129153 0.991625i \(-0.541226\pi\)
−0.129153 + 0.991625i \(0.541226\pi\)
\(62\) 26.4057i 0.425899i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 75.1588i − 1.15629i
\(66\) 0 0
\(67\) 39.5133 0.589751 0.294875 0.955536i \(-0.404722\pi\)
0.294875 + 0.955536i \(0.404722\pi\)
\(68\) 32.0522i 0.471355i
\(69\) 0 0
\(70\) −75.6260 −1.08037
\(71\) 70.3335i 0.990613i 0.868718 + 0.495306i \(0.164944\pi\)
−0.868718 + 0.495306i \(0.835056\pi\)
\(72\) 0 0
\(73\) 68.3506 0.936310 0.468155 0.883646i \(-0.344919\pi\)
0.468155 + 0.883646i \(0.344919\pi\)
\(74\) − 23.8702i − 0.322571i
\(75\) 0 0
\(76\) 1.30802 0.0172108
\(77\) 179.381i 2.32962i
\(78\) 0 0
\(79\) −50.4483 −0.638586 −0.319293 0.947656i \(-0.603445\pi\)
−0.319293 + 0.947656i \(0.603445\pi\)
\(80\) 16.1928i 0.202410i
\(81\) 0 0
\(82\) 60.6211 0.739281
\(83\) 146.909i 1.76998i 0.465605 + 0.884992i \(0.345837\pi\)
−0.465605 + 0.884992i \(0.654163\pi\)
\(84\) 0 0
\(85\) 64.8767 0.763255
\(86\) − 0.0927340i − 0.00107830i
\(87\) 0 0
\(88\) 38.4085 0.436460
\(89\) − 19.9714i − 0.224397i −0.993686 0.112199i \(-0.964211\pi\)
0.993686 0.112199i \(-0.0357893\pi\)
\(90\) 0 0
\(91\) 245.252 2.69508
\(92\) 13.2053i 0.143536i
\(93\) 0 0
\(94\) 66.1931 0.704182
\(95\) − 2.64757i − 0.0278691i
\(96\) 0 0
\(97\) 105.729 1.08999 0.544993 0.838441i \(-0.316532\pi\)
0.544993 + 0.838441i \(0.316532\pi\)
\(98\) − 177.480i − 1.81103i
\(99\) 0 0
\(100\) −17.2243 −0.172243
\(101\) 60.2773i 0.596805i 0.954440 + 0.298402i \(0.0964538\pi\)
−0.954440 + 0.298402i \(0.903546\pi\)
\(102\) 0 0
\(103\) −96.1261 −0.933263 −0.466631 0.884452i \(-0.654533\pi\)
−0.466631 + 0.884452i \(0.654533\pi\)
\(104\) − 52.5126i − 0.504929i
\(105\) 0 0
\(106\) 20.2386 0.190931
\(107\) − 107.330i − 1.00308i −0.865133 0.501542i \(-0.832766\pi\)
0.865133 0.501542i \(-0.167234\pi\)
\(108\) 0 0
\(109\) 85.1199 0.780917 0.390458 0.920621i \(-0.372317\pi\)
0.390458 + 0.920621i \(0.372317\pi\)
\(110\) − 77.7424i − 0.706749i
\(111\) 0 0
\(112\) −52.8390 −0.471777
\(113\) 168.175i 1.48827i 0.668029 + 0.744135i \(0.267138\pi\)
−0.668029 + 0.744135i \(0.732862\pi\)
\(114\) 0 0
\(115\) 26.7288 0.232424
\(116\) − 2.72840i − 0.0235207i
\(117\) 0 0
\(118\) −6.87914 −0.0582978
\(119\) 211.701i 1.77900i
\(120\) 0 0
\(121\) −63.4013 −0.523977
\(122\) 22.2833i 0.182650i
\(123\) 0 0
\(124\) 37.3433 0.301156
\(125\) 136.068i 1.08855i
\(126\) 0 0
\(127\) 171.665 1.35169 0.675845 0.737044i \(-0.263779\pi\)
0.675845 + 0.737044i \(0.263779\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −106.291 −0.817620
\(131\) − 175.072i − 1.33643i −0.743970 0.668213i \(-0.767060\pi\)
0.743970 0.668213i \(-0.232940\pi\)
\(132\) 0 0
\(133\) 8.63934 0.0649574
\(134\) − 55.8803i − 0.417017i
\(135\) 0 0
\(136\) 45.3286 0.333299
\(137\) 49.0934i 0.358346i 0.983818 + 0.179173i \(0.0573421\pi\)
−0.983818 + 0.179173i \(0.942658\pi\)
\(138\) 0 0
\(139\) −139.886 −1.00637 −0.503186 0.864178i \(-0.667839\pi\)
−0.503186 + 0.864178i \(0.667839\pi\)
\(140\) 106.951i 0.763937i
\(141\) 0 0
\(142\) 99.4666 0.700469
\(143\) 252.116i 1.76305i
\(144\) 0 0
\(145\) −5.52254 −0.0380865
\(146\) − 96.6624i − 0.662071i
\(147\) 0 0
\(148\) −33.7576 −0.228092
\(149\) − 240.264i − 1.61251i −0.591566 0.806257i \(-0.701490\pi\)
0.591566 0.806257i \(-0.298510\pi\)
\(150\) 0 0
\(151\) 20.3771 0.134947 0.0674737 0.997721i \(-0.478506\pi\)
0.0674737 + 0.997721i \(0.478506\pi\)
\(152\) − 1.84982i − 0.0121699i
\(153\) 0 0
\(154\) 253.683 1.64729
\(155\) − 75.5865i − 0.487655i
\(156\) 0 0
\(157\) −224.762 −1.43161 −0.715803 0.698303i \(-0.753939\pi\)
−0.715803 + 0.698303i \(0.753939\pi\)
\(158\) 71.3446i 0.451548i
\(159\) 0 0
\(160\) 22.9000 0.143125
\(161\) 87.2195i 0.541736i
\(162\) 0 0
\(163\) −155.441 −0.953626 −0.476813 0.879005i \(-0.658208\pi\)
−0.476813 + 0.879005i \(0.658208\pi\)
\(164\) − 85.7311i − 0.522751i
\(165\) 0 0
\(166\) 207.760 1.25157
\(167\) − 321.068i − 1.92256i −0.275565 0.961282i \(-0.588865\pi\)
0.275565 0.961282i \(-0.411135\pi\)
\(168\) 0 0
\(169\) 175.697 1.03963
\(170\) − 91.7495i − 0.539703i
\(171\) 0 0
\(172\) −0.131146 −0.000762475 0
\(173\) 142.485i 0.823613i 0.911271 + 0.411806i \(0.135102\pi\)
−0.911271 + 0.411806i \(0.864898\pi\)
\(174\) 0 0
\(175\) −113.764 −0.650082
\(176\) − 54.3178i − 0.308624i
\(177\) 0 0
\(178\) −28.2438 −0.158673
\(179\) − 214.891i − 1.20051i −0.799810 0.600253i \(-0.795066\pi\)
0.799810 0.600253i \(-0.204934\pi\)
\(180\) 0 0
\(181\) 301.745 1.66710 0.833550 0.552444i \(-0.186305\pi\)
0.833550 + 0.552444i \(0.186305\pi\)
\(182\) − 346.839i − 1.90571i
\(183\) 0 0
\(184\) 18.6751 0.101495
\(185\) 68.3286i 0.369344i
\(186\) 0 0
\(187\) −217.625 −1.16377
\(188\) − 93.6112i − 0.497932i
\(189\) 0 0
\(190\) −3.74422 −0.0197064
\(191\) − 297.894i − 1.55965i −0.625996 0.779826i \(-0.715307\pi\)
0.625996 0.779826i \(-0.284693\pi\)
\(192\) 0 0
\(193\) 125.871 0.652182 0.326091 0.945338i \(-0.394268\pi\)
0.326091 + 0.945338i \(0.394268\pi\)
\(194\) − 149.523i − 0.770737i
\(195\) 0 0
\(196\) −250.995 −1.28059
\(197\) − 43.4026i − 0.220318i −0.993914 0.110159i \(-0.964864\pi\)
0.993914 0.110159i \(-0.0351359\pi\)
\(198\) 0 0
\(199\) −75.6687 −0.380245 −0.190122 0.981760i \(-0.560888\pi\)
−0.190122 + 0.981760i \(0.560888\pi\)
\(200\) 24.3588i 0.121794i
\(201\) 0 0
\(202\) 85.2450 0.422005
\(203\) − 18.0207i − 0.0887721i
\(204\) 0 0
\(205\) −173.528 −0.846478
\(206\) 135.943i 0.659917i
\(207\) 0 0
\(208\) −74.2640 −0.357039
\(209\) 8.88112i 0.0424934i
\(210\) 0 0
\(211\) 215.427 1.02098 0.510490 0.859884i \(-0.329464\pi\)
0.510490 + 0.859884i \(0.329464\pi\)
\(212\) − 28.6218i − 0.135008i
\(213\) 0 0
\(214\) −151.788 −0.709287
\(215\) 0.265451i 0.00123466i
\(216\) 0 0
\(217\) 246.648 1.13663
\(218\) − 120.378i − 0.552191i
\(219\) 0 0
\(220\) −109.944 −0.499747
\(221\) 297.540i 1.34634i
\(222\) 0 0
\(223\) −83.2080 −0.373130 −0.186565 0.982443i \(-0.559736\pi\)
−0.186565 + 0.982443i \(0.559736\pi\)
\(224\) 74.7257i 0.333597i
\(225\) 0 0
\(226\) 237.835 1.05237
\(227\) 62.5222i 0.275428i 0.990472 + 0.137714i \(0.0439755\pi\)
−0.990472 + 0.137714i \(0.956024\pi\)
\(228\) 0 0
\(229\) 145.202 0.634071 0.317035 0.948414i \(-0.397313\pi\)
0.317035 + 0.948414i \(0.397313\pi\)
\(230\) − 37.8003i − 0.164349i
\(231\) 0 0
\(232\) −3.85854 −0.0166316
\(233\) 135.303i 0.580702i 0.956920 + 0.290351i \(0.0937720\pi\)
−0.956920 + 0.290351i \(0.906228\pi\)
\(234\) 0 0
\(235\) −189.478 −0.806289
\(236\) 9.72858i 0.0412228i
\(237\) 0 0
\(238\) 299.390 1.25794
\(239\) − 146.553i − 0.613193i −0.951840 0.306597i \(-0.900810\pi\)
0.951840 0.306597i \(-0.0991903\pi\)
\(240\) 0 0
\(241\) 317.139 1.31593 0.657966 0.753048i \(-0.271417\pi\)
0.657966 + 0.753048i \(0.271417\pi\)
\(242\) 89.6629i 0.370508i
\(243\) 0 0
\(244\) 31.5133 0.129153
\(245\) 508.039i 2.07363i
\(246\) 0 0
\(247\) 12.1424 0.0491595
\(248\) − 52.8114i − 0.212949i
\(249\) 0 0
\(250\) 192.430 0.769719
\(251\) − 159.268i − 0.634534i −0.948336 0.317267i \(-0.897235\pi\)
0.948336 0.317267i \(-0.102765\pi\)
\(252\) 0 0
\(253\) −89.6604 −0.354389
\(254\) − 242.770i − 0.955789i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 60.5675i 0.235671i 0.993033 + 0.117836i \(0.0375956\pi\)
−0.993033 + 0.117836i \(0.962404\pi\)
\(258\) 0 0
\(259\) −222.965 −0.860868
\(260\) 150.318i 0.578144i
\(261\) 0 0
\(262\) −247.589 −0.944996
\(263\) 337.834i 1.28454i 0.766479 + 0.642269i \(0.222007\pi\)
−0.766479 + 0.642269i \(0.777993\pi\)
\(264\) 0 0
\(265\) −57.9332 −0.218616
\(266\) − 12.2179i − 0.0459318i
\(267\) 0 0
\(268\) −79.0266 −0.294875
\(269\) − 39.0580i − 0.145197i −0.997361 0.0725986i \(-0.976871\pi\)
0.997361 0.0725986i \(-0.0231292\pi\)
\(270\) 0 0
\(271\) 247.005 0.911459 0.455730 0.890118i \(-0.349378\pi\)
0.455730 + 0.890118i \(0.349378\pi\)
\(272\) − 64.1043i − 0.235678i
\(273\) 0 0
\(274\) 69.4285 0.253389
\(275\) − 116.948i − 0.425266i
\(276\) 0 0
\(277\) −190.714 −0.688498 −0.344249 0.938878i \(-0.611866\pi\)
−0.344249 + 0.938878i \(0.611866\pi\)
\(278\) 197.828i 0.711613i
\(279\) 0 0
\(280\) 151.252 0.540185
\(281\) − 135.602i − 0.482571i −0.970454 0.241285i \(-0.922431\pi\)
0.970454 0.241285i \(-0.0775689\pi\)
\(282\) 0 0
\(283\) 464.108 1.63996 0.819979 0.572394i \(-0.193985\pi\)
0.819979 + 0.572394i \(0.193985\pi\)
\(284\) − 140.667i − 0.495306i
\(285\) 0 0
\(286\) 356.546 1.24666
\(287\) − 566.244i − 1.97297i
\(288\) 0 0
\(289\) 32.1647 0.111296
\(290\) 7.81005i 0.0269312i
\(291\) 0 0
\(292\) −136.701 −0.468155
\(293\) − 135.326i − 0.461862i −0.972970 0.230931i \(-0.925823\pi\)
0.972970 0.230931i \(-0.0741772\pi\)
\(294\) 0 0
\(295\) 19.6916 0.0667511
\(296\) 47.7404i 0.161285i
\(297\) 0 0
\(298\) −339.785 −1.14022
\(299\) 122.585i 0.409983i
\(300\) 0 0
\(301\) −0.866201 −0.00287775
\(302\) − 28.8175i − 0.0954223i
\(303\) 0 0
\(304\) −2.61605 −0.00860542
\(305\) − 63.7860i − 0.209134i
\(306\) 0 0
\(307\) 348.616 1.13556 0.567778 0.823182i \(-0.307803\pi\)
0.567778 + 0.823182i \(0.307803\pi\)
\(308\) − 358.762i − 1.16481i
\(309\) 0 0
\(310\) −106.895 −0.344824
\(311\) 219.028i 0.704270i 0.935949 + 0.352135i \(0.114544\pi\)
−0.935949 + 0.352135i \(0.885456\pi\)
\(312\) 0 0
\(313\) 272.107 0.869350 0.434675 0.900587i \(-0.356863\pi\)
0.434675 + 0.900587i \(0.356863\pi\)
\(314\) 317.861i 1.01230i
\(315\) 0 0
\(316\) 100.897 0.319293
\(317\) 467.002i 1.47319i 0.676333 + 0.736596i \(0.263568\pi\)
−0.676333 + 0.736596i \(0.736432\pi\)
\(318\) 0 0
\(319\) 18.5251 0.0580723
\(320\) − 32.3855i − 0.101205i
\(321\) 0 0
\(322\) 123.347 0.383065
\(323\) 10.4812i 0.0324497i
\(324\) 0 0
\(325\) −159.893 −0.491979
\(326\) 219.827i 0.674316i
\(327\) 0 0
\(328\) −121.242 −0.369641
\(329\) − 618.290i − 1.87930i
\(330\) 0 0
\(331\) 103.885 0.313851 0.156925 0.987610i \(-0.449842\pi\)
0.156925 + 0.987610i \(0.449842\pi\)
\(332\) − 293.817i − 0.884992i
\(333\) 0 0
\(334\) −454.059 −1.35946
\(335\) 159.957i 0.477485i
\(336\) 0 0
\(337\) −563.183 −1.67117 −0.835583 0.549364i \(-0.814870\pi\)
−0.835583 + 0.549364i \(0.814870\pi\)
\(338\) − 248.473i − 0.735126i
\(339\) 0 0
\(340\) −129.753 −0.381627
\(341\) 253.551i 0.743551i
\(342\) 0 0
\(343\) −1010.52 −2.94611
\(344\) 0.185468i 0 0.000539151i
\(345\) 0 0
\(346\) 201.504 0.582382
\(347\) − 271.814i − 0.783326i −0.920109 0.391663i \(-0.871900\pi\)
0.920109 0.391663i \(-0.128100\pi\)
\(348\) 0 0
\(349\) 80.2151 0.229843 0.114921 0.993375i \(-0.463338\pi\)
0.114921 + 0.993375i \(0.463338\pi\)
\(350\) 160.887i 0.459677i
\(351\) 0 0
\(352\) −76.8169 −0.218230
\(353\) − 119.373i − 0.338167i −0.985602 0.169084i \(-0.945919\pi\)
0.985602 0.169084i \(-0.0540808\pi\)
\(354\) 0 0
\(355\) −284.723 −0.802038
\(356\) 39.9427i 0.112199i
\(357\) 0 0
\(358\) −303.901 −0.848886
\(359\) − 260.178i − 0.724729i −0.932037 0.362364i \(-0.881970\pi\)
0.932037 0.362364i \(-0.118030\pi\)
\(360\) 0 0
\(361\) −360.572 −0.998815
\(362\) − 426.732i − 1.17882i
\(363\) 0 0
\(364\) −490.505 −1.34754
\(365\) 276.697i 0.758073i
\(366\) 0 0
\(367\) −391.857 −1.06773 −0.533866 0.845569i \(-0.679261\pi\)
−0.533866 + 0.845569i \(0.679261\pi\)
\(368\) − 26.4106i − 0.0717680i
\(369\) 0 0
\(370\) 96.6312 0.261166
\(371\) − 189.043i − 0.509550i
\(372\) 0 0
\(373\) −111.052 −0.297726 −0.148863 0.988858i \(-0.547561\pi\)
−0.148863 + 0.988858i \(0.547561\pi\)
\(374\) 307.769i 0.822911i
\(375\) 0 0
\(376\) −132.386 −0.352091
\(377\) − 25.3277i − 0.0671823i
\(378\) 0 0
\(379\) 396.757 1.04685 0.523427 0.852071i \(-0.324653\pi\)
0.523427 + 0.852071i \(0.324653\pi\)
\(380\) 5.29513i 0.0139346i
\(381\) 0 0
\(382\) −421.285 −1.10284
\(383\) 226.074i 0.590273i 0.955455 + 0.295136i \(0.0953650\pi\)
−0.955455 + 0.295136i \(0.904635\pi\)
\(384\) 0 0
\(385\) −726.169 −1.88615
\(386\) − 178.009i − 0.461162i
\(387\) 0 0
\(388\) −211.457 −0.544993
\(389\) 647.691i 1.66502i 0.554014 + 0.832508i \(0.313096\pi\)
−0.554014 + 0.832508i \(0.686904\pi\)
\(390\) 0 0
\(391\) −105.815 −0.270626
\(392\) 354.961i 0.905513i
\(393\) 0 0
\(394\) −61.3805 −0.155788
\(395\) − 204.224i − 0.517023i
\(396\) 0 0
\(397\) −360.160 −0.907204 −0.453602 0.891204i \(-0.649861\pi\)
−0.453602 + 0.891204i \(0.649861\pi\)
\(398\) 107.012i 0.268873i
\(399\) 0 0
\(400\) 34.4486 0.0861214
\(401\) − 246.471i − 0.614641i −0.951606 0.307321i \(-0.900568\pi\)
0.951606 0.307321i \(-0.0994324\pi\)
\(402\) 0 0
\(403\) 346.658 0.860194
\(404\) − 120.555i − 0.298402i
\(405\) 0 0
\(406\) −25.4852 −0.0627714
\(407\) − 229.205i − 0.563156i
\(408\) 0 0
\(409\) 44.0009 0.107582 0.0537909 0.998552i \(-0.482870\pi\)
0.0537909 + 0.998552i \(0.482870\pi\)
\(410\) 245.406i 0.598550i
\(411\) 0 0
\(412\) 192.252 0.466631
\(413\) 64.2561i 0.155584i
\(414\) 0 0
\(415\) −594.715 −1.43305
\(416\) 105.025i 0.252464i
\(417\) 0 0
\(418\) 12.5598 0.0300474
\(419\) 299.934i 0.715834i 0.933753 + 0.357917i \(0.116513\pi\)
−0.933753 + 0.357917i \(0.883487\pi\)
\(420\) 0 0
\(421\) 378.263 0.898487 0.449244 0.893409i \(-0.351693\pi\)
0.449244 + 0.893409i \(0.351693\pi\)
\(422\) − 304.660i − 0.721942i
\(423\) 0 0
\(424\) −40.4773 −0.0954653
\(425\) − 138.019i − 0.324750i
\(426\) 0 0
\(427\) 208.142 0.487451
\(428\) 214.660i 0.501542i
\(429\) 0 0
\(430\) 0.375405 0.000873035 0
\(431\) 739.788i 1.71645i 0.513278 + 0.858223i \(0.328431\pi\)
−0.513278 + 0.858223i \(0.671569\pi\)
\(432\) 0 0
\(433\) −856.804 −1.97876 −0.989381 0.145344i \(-0.953571\pi\)
−0.989381 + 0.145344i \(0.953571\pi\)
\(434\) − 348.813i − 0.803717i
\(435\) 0 0
\(436\) −170.240 −0.390458
\(437\) 4.31821i 0.00988150i
\(438\) 0 0
\(439\) 802.600 1.82825 0.914123 0.405438i \(-0.132881\pi\)
0.914123 + 0.405438i \(0.132881\pi\)
\(440\) 155.485i 0.353375i
\(441\) 0 0
\(442\) 420.786 0.952004
\(443\) 305.701i 0.690071i 0.938590 + 0.345035i \(0.112133\pi\)
−0.938590 + 0.345035i \(0.887867\pi\)
\(444\) 0 0
\(445\) 80.8479 0.181681
\(446\) 117.674i 0.263843i
\(447\) 0 0
\(448\) 105.678 0.235888
\(449\) 412.782i 0.919337i 0.888091 + 0.459668i \(0.152032\pi\)
−0.888091 + 0.459668i \(0.847968\pi\)
\(450\) 0 0
\(451\) 582.090 1.29067
\(452\) − 336.349i − 0.744135i
\(453\) 0 0
\(454\) 88.4198 0.194757
\(455\) 992.829i 2.18204i
\(456\) 0 0
\(457\) 495.281 1.08377 0.541883 0.840454i \(-0.317711\pi\)
0.541883 + 0.840454i \(0.317711\pi\)
\(458\) − 205.347i − 0.448356i
\(459\) 0 0
\(460\) −53.4576 −0.116212
\(461\) 815.426i 1.76882i 0.466711 + 0.884410i \(0.345439\pi\)
−0.466711 + 0.884410i \(0.654561\pi\)
\(462\) 0 0
\(463\) 416.269 0.899069 0.449534 0.893263i \(-0.351590\pi\)
0.449534 + 0.893263i \(0.351590\pi\)
\(464\) 5.45680i 0.0117603i
\(465\) 0 0
\(466\) 191.348 0.410618
\(467\) 142.682i 0.305530i 0.988263 + 0.152765i \(0.0488178\pi\)
−0.988263 + 0.152765i \(0.951182\pi\)
\(468\) 0 0
\(469\) −521.961 −1.11292
\(470\) 267.962i 0.570133i
\(471\) 0 0
\(472\) 13.7583 0.0291489
\(473\) − 0.890443i − 0.00188254i
\(474\) 0 0
\(475\) −5.63244 −0.0118578
\(476\) − 423.401i − 0.889499i
\(477\) 0 0
\(478\) −207.257 −0.433593
\(479\) 103.522i 0.216121i 0.994144 + 0.108060i \(0.0344640\pi\)
−0.994144 + 0.108060i \(0.965536\pi\)
\(480\) 0 0
\(481\) −313.372 −0.651501
\(482\) − 448.503i − 0.930504i
\(483\) 0 0
\(484\) 126.803 0.261989
\(485\) 428.010i 0.882495i
\(486\) 0 0
\(487\) −757.163 −1.55475 −0.777374 0.629038i \(-0.783449\pi\)
−0.777374 + 0.629038i \(0.783449\pi\)
\(488\) − 44.5666i − 0.0913249i
\(489\) 0 0
\(490\) 718.475 1.46628
\(491\) 567.663i 1.15614i 0.815988 + 0.578069i \(0.196193\pi\)
−0.815988 + 0.578069i \(0.803807\pi\)
\(492\) 0 0
\(493\) 21.8628 0.0443464
\(494\) − 17.1719i − 0.0347610i
\(495\) 0 0
\(496\) −74.6866 −0.150578
\(497\) − 929.088i − 1.86939i
\(498\) 0 0
\(499\) 464.176 0.930212 0.465106 0.885255i \(-0.346016\pi\)
0.465106 + 0.885255i \(0.346016\pi\)
\(500\) − 272.137i − 0.544274i
\(501\) 0 0
\(502\) −225.239 −0.448683
\(503\) 7.86969i 0.0156455i 0.999969 + 0.00782275i \(0.00249009\pi\)
−0.999969 + 0.00782275i \(0.997510\pi\)
\(504\) 0 0
\(505\) −244.014 −0.483196
\(506\) 126.799i 0.250591i
\(507\) 0 0
\(508\) −343.329 −0.675845
\(509\) − 61.2790i − 0.120391i −0.998187 0.0601955i \(-0.980828\pi\)
0.998187 0.0601955i \(-0.0191724\pi\)
\(510\) 0 0
\(511\) −902.895 −1.76692
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) 85.6553 0.166645
\(515\) − 389.137i − 0.755605i
\(516\) 0 0
\(517\) 635.594 1.22939
\(518\) 315.320i 0.608726i
\(519\) 0 0
\(520\) 212.581 0.408810
\(521\) 967.977i 1.85792i 0.370179 + 0.928961i \(0.379296\pi\)
−0.370179 + 0.928961i \(0.620704\pi\)
\(522\) 0 0
\(523\) −365.117 −0.698121 −0.349061 0.937100i \(-0.613499\pi\)
−0.349061 + 0.937100i \(0.613499\pi\)
\(524\) 350.144i 0.668213i
\(525\) 0 0
\(526\) 477.769 0.908306
\(527\) 299.234i 0.567806i
\(528\) 0 0
\(529\) 485.405 0.917590
\(530\) 81.9299i 0.154585i
\(531\) 0 0
\(532\) −17.2787 −0.0324787
\(533\) − 795.842i − 1.49314i
\(534\) 0 0
\(535\) 434.492 0.812135
\(536\) 111.761i 0.208508i
\(537\) 0 0
\(538\) −55.2364 −0.102670
\(539\) − 1704.19i − 3.16176i
\(540\) 0 0
\(541\) 1.90773 0.00352630 0.00176315 0.999998i \(-0.499439\pi\)
0.00176315 + 0.999998i \(0.499439\pi\)
\(542\) − 349.318i − 0.644499i
\(543\) 0 0
\(544\) −90.6572 −0.166649
\(545\) 344.582i 0.632260i
\(546\) 0 0
\(547\) −0.721037 −0.00131817 −0.000659083 1.00000i \(-0.500210\pi\)
−0.000659083 1.00000i \(0.500210\pi\)
\(548\) − 98.1867i − 0.179173i
\(549\) 0 0
\(550\) −165.390 −0.300708
\(551\) − 0.892203i − 0.00161924i
\(552\) 0 0
\(553\) 666.409 1.20508
\(554\) 269.710i 0.486842i
\(555\) 0 0
\(556\) 279.771 0.503186
\(557\) 635.859i 1.14158i 0.821096 + 0.570789i \(0.193363\pi\)
−0.821096 + 0.570789i \(0.806637\pi\)
\(558\) 0 0
\(559\) −1.21743 −0.00217786
\(560\) − 213.902i − 0.381969i
\(561\) 0 0
\(562\) −191.771 −0.341229
\(563\) − 96.3409i − 0.171121i −0.996333 0.0855603i \(-0.972732\pi\)
0.996333 0.0855603i \(-0.0272680\pi\)
\(564\) 0 0
\(565\) −680.803 −1.20496
\(566\) − 656.348i − 1.15962i
\(567\) 0 0
\(568\) −198.933 −0.350234
\(569\) − 1041.74i − 1.83083i −0.402507 0.915417i \(-0.631861\pi\)
0.402507 0.915417i \(-0.368139\pi\)
\(570\) 0 0
\(571\) −260.344 −0.455944 −0.227972 0.973668i \(-0.573210\pi\)
−0.227972 + 0.973668i \(0.573210\pi\)
\(572\) − 504.232i − 0.881525i
\(573\) 0 0
\(574\) −800.789 −1.39510
\(575\) − 56.8630i − 0.0988922i
\(576\) 0 0
\(577\) 384.941 0.667142 0.333571 0.942725i \(-0.391746\pi\)
0.333571 + 0.942725i \(0.391746\pi\)
\(578\) − 45.4877i − 0.0786984i
\(579\) 0 0
\(580\) 11.0451 0.0190432
\(581\) − 1940.63i − 3.34015i
\(582\) 0 0
\(583\) 194.334 0.333334
\(584\) 193.325i 0.331036i
\(585\) 0 0
\(586\) −191.379 −0.326586
\(587\) 1038.58i 1.76930i 0.466259 + 0.884648i \(0.345601\pi\)
−0.466259 + 0.884648i \(0.654399\pi\)
\(588\) 0 0
\(589\) 12.2115 0.0207326
\(590\) − 27.8481i − 0.0472002i
\(591\) 0 0
\(592\) 67.5152 0.114046
\(593\) 464.135i 0.782690i 0.920244 + 0.391345i \(0.127990\pi\)
−0.920244 + 0.391345i \(0.872010\pi\)
\(594\) 0 0
\(595\) −857.005 −1.44034
\(596\) 480.529i 0.806257i
\(597\) 0 0
\(598\) 173.361 0.289902
\(599\) 816.768i 1.36355i 0.731561 + 0.681776i \(0.238792\pi\)
−0.731561 + 0.681776i \(0.761208\pi\)
\(600\) 0 0
\(601\) 241.299 0.401495 0.200748 0.979643i \(-0.435663\pi\)
0.200748 + 0.979643i \(0.435663\pi\)
\(602\) 1.22499i 0.00203487i
\(603\) 0 0
\(604\) −40.7541 −0.0674737
\(605\) − 256.660i − 0.424232i
\(606\) 0 0
\(607\) −524.042 −0.863331 −0.431665 0.902034i \(-0.642074\pi\)
−0.431665 + 0.902034i \(0.642074\pi\)
\(608\) 3.69965i 0.00608495i
\(609\) 0 0
\(610\) −90.2070 −0.147880
\(611\) − 868.993i − 1.42225i
\(612\) 0 0
\(613\) −328.647 −0.536129 −0.268064 0.963401i \(-0.586384\pi\)
−0.268064 + 0.963401i \(0.586384\pi\)
\(614\) − 493.017i − 0.802960i
\(615\) 0 0
\(616\) −507.366 −0.823647
\(617\) 837.400i 1.35721i 0.734502 + 0.678606i \(0.237416\pi\)
−0.734502 + 0.678606i \(0.762584\pi\)
\(618\) 0 0
\(619\) −205.957 −0.332726 −0.166363 0.986065i \(-0.553202\pi\)
−0.166363 + 0.986065i \(0.553202\pi\)
\(620\) 151.173i 0.243827i
\(621\) 0 0
\(622\) 309.752 0.497994
\(623\) 263.817i 0.423462i
\(624\) 0 0
\(625\) −335.527 −0.536844
\(626\) − 384.817i − 0.614724i
\(627\) 0 0
\(628\) 449.524 0.715803
\(629\) − 270.501i − 0.430049i
\(630\) 0 0
\(631\) 379.363 0.601208 0.300604 0.953749i \(-0.402812\pi\)
0.300604 + 0.953749i \(0.402812\pi\)
\(632\) − 142.689i − 0.225774i
\(633\) 0 0
\(634\) 660.440 1.04170
\(635\) 694.931i 1.09438i
\(636\) 0 0
\(637\) −2329.99 −3.65776
\(638\) − 26.1984i − 0.0410633i
\(639\) 0 0
\(640\) −45.8001 −0.0715626
\(641\) − 883.358i − 1.37809i −0.724717 0.689047i \(-0.758029\pi\)
0.724717 0.689047i \(-0.241971\pi\)
\(642\) 0 0
\(643\) −967.318 −1.50438 −0.752192 0.658944i \(-0.771003\pi\)
−0.752192 + 0.658944i \(0.771003\pi\)
\(644\) − 174.439i − 0.270868i
\(645\) 0 0
\(646\) 14.8227 0.0229454
\(647\) − 199.904i − 0.308971i −0.987995 0.154485i \(-0.950628\pi\)
0.987995 0.154485i \(-0.0493719\pi\)
\(648\) 0 0
\(649\) −66.0543 −0.101779
\(650\) 226.123i 0.347882i
\(651\) 0 0
\(652\) 310.882 0.476813
\(653\) − 167.043i − 0.255809i −0.991786 0.127904i \(-0.959175\pi\)
0.991786 0.127904i \(-0.0408251\pi\)
\(654\) 0 0
\(655\) 708.724 1.08202
\(656\) 171.462i 0.261375i
\(657\) 0 0
\(658\) −874.395 −1.32887
\(659\) 128.860i 0.195538i 0.995209 + 0.0977691i \(0.0311707\pi\)
−0.995209 + 0.0977691i \(0.968829\pi\)
\(660\) 0 0
\(661\) −290.981 −0.440214 −0.220107 0.975476i \(-0.570641\pi\)
−0.220107 + 0.975476i \(0.570641\pi\)
\(662\) − 146.915i − 0.221926i
\(663\) 0 0
\(664\) −415.521 −0.625784
\(665\) 34.9737i 0.0525920i
\(666\) 0 0
\(667\) 9.00734 0.0135043
\(668\) 642.137i 0.961282i
\(669\) 0 0
\(670\) 226.214 0.337633
\(671\) 213.967i 0.318877i
\(672\) 0 0
\(673\) −449.428 −0.667799 −0.333899 0.942609i \(-0.608365\pi\)
−0.333899 + 0.942609i \(0.608365\pi\)
\(674\) 796.461i 1.18169i
\(675\) 0 0
\(676\) −351.393 −0.519813
\(677\) 1138.56i 1.68178i 0.541208 + 0.840889i \(0.317967\pi\)
−0.541208 + 0.840889i \(0.682033\pi\)
\(678\) 0 0
\(679\) −1396.65 −2.05692
\(680\) 183.499i 0.269851i
\(681\) 0 0
\(682\) 358.575 0.525770
\(683\) 108.489i 0.158842i 0.996841 + 0.0794209i \(0.0253071\pi\)
−0.996841 + 0.0794209i \(0.974693\pi\)
\(684\) 0 0
\(685\) −198.739 −0.290130
\(686\) 1429.08i 2.08321i
\(687\) 0 0
\(688\) 0.262291 0.000381237 0
\(689\) − 265.696i − 0.385625i
\(690\) 0 0
\(691\) 1128.37 1.63296 0.816478 0.577377i \(-0.195924\pi\)
0.816478 + 0.577377i \(0.195924\pi\)
\(692\) − 284.970i − 0.411806i
\(693\) 0 0
\(694\) −384.403 −0.553895
\(695\) − 566.284i − 0.814798i
\(696\) 0 0
\(697\) 686.967 0.985606
\(698\) − 113.441i − 0.162523i
\(699\) 0 0
\(700\) 227.529 0.325041
\(701\) − 778.410i − 1.11043i −0.831707 0.555214i \(-0.812636\pi\)
0.831707 0.555214i \(-0.187364\pi\)
\(702\) 0 0
\(703\) −11.0389 −0.0157026
\(704\) 108.636i 0.154312i
\(705\) 0 0
\(706\) −168.819 −0.239120
\(707\) − 796.248i − 1.12624i
\(708\) 0 0
\(709\) −343.565 −0.484576 −0.242288 0.970204i \(-0.577898\pi\)
−0.242288 + 0.970204i \(0.577898\pi\)
\(710\) 402.660i 0.567126i
\(711\) 0 0
\(712\) 56.4876 0.0793365
\(713\) 123.283i 0.172907i
\(714\) 0 0
\(715\) −1020.61 −1.42743
\(716\) 429.781i 0.600253i
\(717\) 0 0
\(718\) −367.947 −0.512461
\(719\) 610.207i 0.848689i 0.905501 + 0.424344i \(0.139495\pi\)
−0.905501 + 0.424344i \(0.860505\pi\)
\(720\) 0 0
\(721\) 1269.80 1.76117
\(722\) 509.926i 0.706269i
\(723\) 0 0
\(724\) −603.490 −0.833550
\(725\) 11.7487i 0.0162051i
\(726\) 0 0
\(727\) 208.437 0.286708 0.143354 0.989671i \(-0.454211\pi\)
0.143354 + 0.989671i \(0.454211\pi\)
\(728\) 693.679i 0.952855i
\(729\) 0 0
\(730\) 391.308 0.536038
\(731\) − 1.05088i − 0.00143759i
\(732\) 0 0
\(733\) −249.421 −0.340274 −0.170137 0.985420i \(-0.554421\pi\)
−0.170137 + 0.985420i \(0.554421\pi\)
\(734\) 554.170i 0.755000i
\(735\) 0 0
\(736\) −37.3503 −0.0507476
\(737\) − 536.569i − 0.728044i
\(738\) 0 0
\(739\) 175.446 0.237411 0.118705 0.992930i \(-0.462126\pi\)
0.118705 + 0.992930i \(0.462126\pi\)
\(740\) − 136.657i − 0.184672i
\(741\) 0 0
\(742\) −267.347 −0.360307
\(743\) − 668.397i − 0.899592i −0.893131 0.449796i \(-0.851497\pi\)
0.893131 0.449796i \(-0.148503\pi\)
\(744\) 0 0
\(745\) 972.637 1.30555
\(746\) 157.051i 0.210524i
\(747\) 0 0
\(748\) 435.251 0.581886
\(749\) 1417.80i 1.89293i
\(750\) 0 0
\(751\) 422.749 0.562915 0.281457 0.959574i \(-0.409182\pi\)
0.281457 + 0.959574i \(0.409182\pi\)
\(752\) 187.222i 0.248966i
\(753\) 0 0
\(754\) −35.8188 −0.0475051
\(755\) 82.4903i 0.109259i
\(756\) 0 0
\(757\) 938.792 1.24015 0.620074 0.784543i \(-0.287103\pi\)
0.620074 + 0.784543i \(0.287103\pi\)
\(758\) − 561.100i − 0.740237i
\(759\) 0 0
\(760\) 7.48844 0.00985322
\(761\) − 719.677i − 0.945699i −0.881143 0.472849i \(-0.843225\pi\)
0.881143 0.472849i \(-0.156775\pi\)
\(762\) 0 0
\(763\) −1124.41 −1.47367
\(764\) 595.787i 0.779826i
\(765\) 0 0
\(766\) 319.717 0.417386
\(767\) 90.3104i 0.117745i
\(768\) 0 0
\(769\) −1264.85 −1.64480 −0.822402 0.568907i \(-0.807367\pi\)
−0.822402 + 0.568907i \(0.807367\pi\)
\(770\) 1026.96i 1.33371i
\(771\) 0 0
\(772\) −251.742 −0.326091
\(773\) 947.031i 1.22514i 0.790418 + 0.612568i \(0.209864\pi\)
−0.790418 + 0.612568i \(0.790136\pi\)
\(774\) 0 0
\(775\) −160.803 −0.207488
\(776\) 299.046i 0.385368i
\(777\) 0 0
\(778\) 915.973 1.17734
\(779\) − 28.0346i − 0.0359879i
\(780\) 0 0
\(781\) 955.090 1.22291
\(782\) 149.645i 0.191361i
\(783\) 0 0
\(784\) 501.991 0.640294
\(785\) − 909.880i − 1.15908i
\(786\) 0 0
\(787\) 785.830 0.998513 0.499256 0.866454i \(-0.333607\pi\)
0.499256 + 0.866454i \(0.333607\pi\)
\(788\) 86.8051i 0.110159i
\(789\) 0 0
\(790\) −288.817 −0.365591
\(791\) − 2221.55i − 2.80853i
\(792\) 0 0
\(793\) 292.538 0.368901
\(794\) 509.343i 0.641490i
\(795\) 0 0
\(796\) 151.337 0.190122
\(797\) 706.554i 0.886517i 0.896394 + 0.443259i \(0.146178\pi\)
−0.896394 + 0.443259i \(0.853822\pi\)
\(798\) 0 0
\(799\) 750.110 0.938811
\(800\) − 48.7176i − 0.0608970i
\(801\) 0 0
\(802\) −348.563 −0.434617
\(803\) − 928.164i − 1.15587i
\(804\) 0 0
\(805\) −353.081 −0.438610
\(806\) − 490.249i − 0.608249i
\(807\) 0 0
\(808\) −170.490 −0.211002
\(809\) 604.777i 0.747562i 0.927517 + 0.373781i \(0.121939\pi\)
−0.927517 + 0.373781i \(0.878061\pi\)
\(810\) 0 0
\(811\) 679.911 0.838362 0.419181 0.907903i \(-0.362317\pi\)
0.419181 + 0.907903i \(0.362317\pi\)
\(812\) 36.0415i 0.0443861i
\(813\) 0 0
\(814\) −324.144 −0.398212
\(815\) − 629.255i − 0.772093i
\(816\) 0 0
\(817\) −0.0428854 −5.24913e−5 0
\(818\) − 62.2267i − 0.0760718i
\(819\) 0 0
\(820\) 347.056 0.423239
\(821\) − 1256.17i − 1.53004i −0.644005 0.765021i \(-0.722728\pi\)
0.644005 0.765021i \(-0.277272\pi\)
\(822\) 0 0
\(823\) 643.659 0.782089 0.391044 0.920372i \(-0.372114\pi\)
0.391044 + 0.920372i \(0.372114\pi\)
\(824\) − 271.886i − 0.329958i
\(825\) 0 0
\(826\) 90.8718 0.110014
\(827\) − 1057.49i − 1.27871i −0.768914 0.639353i \(-0.779202\pi\)
0.768914 0.639353i \(-0.220798\pi\)
\(828\) 0 0
\(829\) −99.0671 −0.119502 −0.0597510 0.998213i \(-0.519031\pi\)
−0.0597510 + 0.998213i \(0.519031\pi\)
\(830\) 841.054i 1.01332i
\(831\) 0 0
\(832\) 148.528 0.178519
\(833\) − 2011.24i − 2.41445i
\(834\) 0 0
\(835\) 1299.75 1.55658
\(836\) − 17.7622i − 0.0212467i
\(837\) 0 0
\(838\) 424.171 0.506171
\(839\) − 288.672i − 0.344067i −0.985091 0.172034i \(-0.944966\pi\)
0.985091 0.172034i \(-0.0550338\pi\)
\(840\) 0 0
\(841\) 839.139 0.997787
\(842\) − 534.945i − 0.635327i
\(843\) 0 0
\(844\) −430.854 −0.510490
\(845\) 711.254i 0.841720i
\(846\) 0 0
\(847\) 837.515 0.988802
\(848\) 57.2435i 0.0675041i
\(849\) 0 0
\(850\) −195.188 −0.229633
\(851\) − 111.445i − 0.130958i
\(852\) 0 0
\(853\) 721.783 0.846170 0.423085 0.906090i \(-0.360947\pi\)
0.423085 + 0.906090i \(0.360947\pi\)
\(854\) − 294.357i − 0.344680i
\(855\) 0 0
\(856\) 303.575 0.354644
\(857\) − 229.144i − 0.267379i −0.991023 0.133690i \(-0.957318\pi\)
0.991023 0.133690i \(-0.0426825\pi\)
\(858\) 0 0
\(859\) −635.243 −0.739514 −0.369757 0.929128i \(-0.620559\pi\)
−0.369757 + 0.929128i \(0.620559\pi\)
\(860\) − 0.530903i 0 0.000617329i
\(861\) 0 0
\(862\) 1046.22 1.21371
\(863\) − 644.463i − 0.746771i −0.927676 0.373385i \(-0.878197\pi\)
0.927676 0.373385i \(-0.121803\pi\)
\(864\) 0 0
\(865\) −576.807 −0.666828
\(866\) 1211.70i 1.39920i
\(867\) 0 0
\(868\) −493.296 −0.568313
\(869\) 685.059i 0.788331i
\(870\) 0 0
\(871\) −733.604 −0.842255
\(872\) 240.755i 0.276096i
\(873\) 0 0
\(874\) 6.10688 0.00698727
\(875\) − 1797.43i − 2.05421i
\(876\) 0 0
\(877\) 1665.19 1.89873 0.949365 0.314176i \(-0.101728\pi\)
0.949365 + 0.314176i \(0.101728\pi\)
\(878\) − 1135.05i − 1.29276i
\(879\) 0 0
\(880\) 219.889 0.249874
\(881\) − 398.999i − 0.452893i −0.974024 0.226447i \(-0.927289\pi\)
0.974024 0.226447i \(-0.0727109\pi\)
\(882\) 0 0
\(883\) 13.9020 0.0157440 0.00787202 0.999969i \(-0.497494\pi\)
0.00787202 + 0.999969i \(0.497494\pi\)
\(884\) − 595.081i − 0.673168i
\(885\) 0 0
\(886\) 432.327 0.487954
\(887\) − 841.224i − 0.948392i −0.880419 0.474196i \(-0.842739\pi\)
0.880419 0.474196i \(-0.157261\pi\)
\(888\) 0 0
\(889\) −2267.65 −2.55078
\(890\) − 114.336i − 0.128468i
\(891\) 0 0
\(892\) 166.416 0.186565
\(893\) − 30.6114i − 0.0342793i
\(894\) 0 0
\(895\) 869.919 0.971976
\(896\) − 149.451i − 0.166798i
\(897\) 0 0
\(898\) 583.762 0.650069
\(899\) − 25.4719i − 0.0283336i
\(900\) 0 0
\(901\) 229.347 0.254548
\(902\) − 823.200i − 0.912639i
\(903\) 0 0
\(904\) −475.670 −0.526183
\(905\) 1221.52i 1.34975i
\(906\) 0 0
\(907\) −1074.23 −1.18437 −0.592187 0.805800i \(-0.701735\pi\)
−0.592187 + 0.805800i \(0.701735\pi\)
\(908\) − 125.044i − 0.137714i
\(909\) 0 0
\(910\) 1404.07 1.54294
\(911\) − 680.759i − 0.747265i −0.927577 0.373633i \(-0.878112\pi\)
0.927577 0.373633i \(-0.121888\pi\)
\(912\) 0 0
\(913\) 1994.94 2.18504
\(914\) − 700.434i − 0.766339i
\(915\) 0 0
\(916\) −290.404 −0.317035
\(917\) 2312.66i 2.52198i
\(918\) 0 0
\(919\) 643.866 0.700616 0.350308 0.936635i \(-0.386077\pi\)
0.350308 + 0.936635i \(0.386077\pi\)
\(920\) 75.6005i 0.0821745i
\(921\) 0 0
\(922\) 1153.19 1.25074
\(923\) − 1305.81i − 1.41475i
\(924\) 0 0
\(925\) 145.363 0.157149
\(926\) − 588.693i − 0.635738i
\(927\) 0 0
\(928\) 7.71708 0.00831582
\(929\) 822.844i 0.885731i 0.896588 + 0.442866i \(0.146038\pi\)
−0.896588 + 0.442866i \(0.853962\pi\)
\(930\) 0 0
\(931\) −82.0769 −0.0881600
\(932\) − 270.607i − 0.290351i
\(933\) 0 0
\(934\) 201.784 0.216042
\(935\) − 880.989i − 0.942234i
\(936\) 0 0
\(937\) −320.345 −0.341884 −0.170942 0.985281i \(-0.554681\pi\)
−0.170942 + 0.985281i \(0.554681\pi\)
\(938\) 738.165i 0.786956i
\(939\) 0 0
\(940\) 378.956 0.403145
\(941\) 343.761i 0.365314i 0.983177 + 0.182657i \(0.0584698\pi\)
−0.983177 + 0.182657i \(0.941530\pi\)
\(942\) 0 0
\(943\) 283.027 0.300134
\(944\) − 19.4572i − 0.0206114i
\(945\) 0 0
\(946\) −1.25928 −0.00133116
\(947\) 1025.04i 1.08240i 0.840893 + 0.541202i \(0.182031\pi\)
−0.840893 + 0.541202i \(0.817969\pi\)
\(948\) 0 0
\(949\) −1269.00 −1.33720
\(950\) 7.96548i 0.00838471i
\(951\) 0 0
\(952\) −598.780 −0.628970
\(953\) 1837.44i 1.92806i 0.265794 + 0.964030i \(0.414366\pi\)
−0.265794 + 0.964030i \(0.585634\pi\)
\(954\) 0 0
\(955\) 1205.93 1.26275
\(956\) 293.106i 0.306597i
\(957\) 0 0
\(958\) 146.402 0.152820
\(959\) − 648.511i − 0.676237i
\(960\) 0 0
\(961\) −612.369 −0.637221
\(962\) 443.175i 0.460681i
\(963\) 0 0
\(964\) −634.279 −0.657966
\(965\) 509.551i 0.528032i
\(966\) 0 0
\(967\) 530.916 0.549034 0.274517 0.961582i \(-0.411482\pi\)
0.274517 + 0.961582i \(0.411482\pi\)
\(968\) − 179.326i − 0.185254i
\(969\) 0 0
\(970\) 605.297 0.624018
\(971\) 53.7560i 0.0553615i 0.999617 + 0.0276807i \(0.00881218\pi\)
−0.999617 + 0.0276807i \(0.991188\pi\)
\(972\) 0 0
\(973\) 1847.86 1.89913
\(974\) 1070.79i 1.09937i
\(975\) 0 0
\(976\) −63.0266 −0.0645765
\(977\) − 808.421i − 0.827452i −0.910401 0.413726i \(-0.864227\pi\)
0.910401 0.413726i \(-0.135773\pi\)
\(978\) 0 0
\(979\) −271.200 −0.277017
\(980\) − 1016.08i − 1.03681i
\(981\) 0 0
\(982\) 802.797 0.817512
\(983\) − 859.543i − 0.874408i −0.899362 0.437204i \(-0.855969\pi\)
0.899362 0.437204i \(-0.144031\pi\)
\(984\) 0 0
\(985\) 175.702 0.178378
\(986\) − 30.9186i − 0.0313576i
\(987\) 0 0
\(988\) −24.2848 −0.0245797
\(989\) − 0.432955i 0 0.000437770i
\(990\) 0 0
\(991\) −606.599 −0.612108 −0.306054 0.952014i \(-0.599009\pi\)
−0.306054 + 0.952014i \(0.599009\pi\)
\(992\) 105.623i 0.106475i
\(993\) 0 0
\(994\) −1313.93 −1.32186
\(995\) − 306.321i − 0.307861i
\(996\) 0 0
\(997\) 1244.36 1.24811 0.624054 0.781381i \(-0.285485\pi\)
0.624054 + 0.781381i \(0.285485\pi\)
\(998\) − 656.444i − 0.657759i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.13 36
3.2 odd 2 inner 1458.3.b.c.1457.24 36
27.2 odd 18 162.3.f.a.17.5 36
27.13 even 9 162.3.f.a.143.5 36
27.14 odd 18 54.3.f.a.47.2 yes 36
27.25 even 9 54.3.f.a.23.2 36
108.79 odd 18 432.3.bc.c.401.4 36
108.95 even 18 432.3.bc.c.209.4 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.23.2 36 27.25 even 9
54.3.f.a.47.2 yes 36 27.14 odd 18
162.3.f.a.17.5 36 27.2 odd 18
162.3.f.a.143.5 36 27.13 even 9
432.3.bc.c.209.4 36 108.95 even 18
432.3.bc.c.401.4 36 108.79 odd 18
1458.3.b.c.1457.13 36 1.1 even 1 trivial
1458.3.b.c.1457.24 36 3.2 odd 2 inner