Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1458,3,Mod(1457,1458)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1458.1457");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1458 = 2 \cdot 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1458.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(39.7276225437\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | no (minimal twist has level 54) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1457.1 | − | 1.41421i | 0 | −2.00000 | − | 8.37465i | 0 | −11.2416 | 2.82843i | 0 | −11.8435 | ||||||||||||||||
1457.2 | − | 1.41421i | 0 | −2.00000 | − | 8.36153i | 0 | 9.16954 | 2.82843i | 0 | −11.8250 | ||||||||||||||||
1457.3 | − | 1.41421i | 0 | −2.00000 | − | 7.83103i | 0 | −0.901000 | 2.82843i | 0 | −11.0748 | ||||||||||||||||
1457.4 | − | 1.41421i | 0 | −2.00000 | − | 5.99439i | 0 | 7.30820 | 2.82843i | 0 | −8.47735 | ||||||||||||||||
1457.5 | − | 1.41421i | 0 | −2.00000 | − | 3.15510i | 0 | −1.44205 | 2.82843i | 0 | −4.46199 | ||||||||||||||||
1457.6 | − | 1.41421i | 0 | −2.00000 | − | 2.89319i | 0 | −2.31381 | 2.82843i | 0 | −4.09159 | ||||||||||||||||
1457.7 | − | 1.41421i | 0 | −2.00000 | − | 2.32339i | 0 | −6.28987 | 2.82843i | 0 | −3.28577 | ||||||||||||||||
1457.8 | − | 1.41421i | 0 | −2.00000 | − | 2.03782i | 0 | 12.8548 | 2.82843i | 0 | −2.88192 | ||||||||||||||||
1457.9 | − | 1.41421i | 0 | −2.00000 | − | 0.904788i | 0 | −7.18058 | 2.82843i | 0 | −1.27956 | ||||||||||||||||
1457.10 | − | 1.41421i | 0 | −2.00000 | − | 0.589631i | 0 | −3.15313 | 2.82843i | 0 | −0.833865 | ||||||||||||||||
1457.11 | − | 1.41421i | 0 | −2.00000 | 1.13188i | 0 | −1.91375 | 2.82843i | 0 | 1.60072 | |||||||||||||||||
1457.12 | − | 1.41421i | 0 | −2.00000 | 3.04245i | 0 | 8.22876 | 2.82843i | 0 | 4.30268 | |||||||||||||||||
1457.13 | − | 1.41421i | 0 | −2.00000 | 4.04819i | 0 | −13.2098 | 2.82843i | 0 | 5.72501 | |||||||||||||||||
1457.14 | − | 1.41421i | 0 | −2.00000 | 4.50363i | 0 | 1.28890 | 2.82843i | 0 | 6.36909 | |||||||||||||||||
1457.15 | − | 1.41421i | 0 | −2.00000 | 5.53495i | 0 | 10.9212 | 2.82843i | 0 | 7.82759 | |||||||||||||||||
1457.16 | − | 1.41421i | 0 | −2.00000 | 7.63957i | 0 | 5.75438 | 2.82843i | 0 | 10.8040 | |||||||||||||||||
1457.17 | − | 1.41421i | 0 | −2.00000 | 7.93206i | 0 | 0.453662 | 2.82843i | 0 | 11.2176 | |||||||||||||||||
1457.18 | − | 1.41421i | 0 | −2.00000 | 8.63280i | 0 | −8.33391 | 2.82843i | 0 | 12.2086 | |||||||||||||||||
1457.19 | 1.41421i | 0 | −2.00000 | − | 8.63280i | 0 | −8.33391 | − | 2.82843i | 0 | 12.2086 | ||||||||||||||||
1457.20 | 1.41421i | 0 | −2.00000 | − | 7.93206i | 0 | 0.453662 | − | 2.82843i | 0 | 11.2176 | ||||||||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1458.3.b.c | 36 | |
3.b | odd | 2 | 1 | inner | 1458.3.b.c | 36 | |
27.e | even | 9 | 1 | 54.3.f.a | ✓ | 36 | |
27.e | even | 9 | 1 | 162.3.f.a | 36 | ||
27.f | odd | 18 | 1 | 54.3.f.a | ✓ | 36 | |
27.f | odd | 18 | 1 | 162.3.f.a | 36 | ||
108.j | odd | 18 | 1 | 432.3.bc.c | 36 | ||
108.l | even | 18 | 1 | 432.3.bc.c | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.3.f.a | ✓ | 36 | 27.e | even | 9 | 1 | |
54.3.f.a | ✓ | 36 | 27.f | odd | 18 | 1 | |
162.3.f.a | 36 | 27.e | even | 9 | 1 | ||
162.3.f.a | 36 | 27.f | odd | 18 | 1 | ||
432.3.bc.c | 36 | 108.j | odd | 18 | 1 | ||
432.3.bc.c | 36 | 108.l | even | 18 | 1 | ||
1458.3.b.c | 36 | 1.a | even | 1 | 1 | trivial | |
1458.3.b.c | 36 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{36} + 540 T_{5}^{34} + 130950 T_{5}^{32} + 18848214 T_{5}^{30} + 1793815389 T_{5}^{28} + \cdots + 18\!\cdots\!25 \) acting on \(S_{3}^{\mathrm{new}}(1458, [\chi])\).