Properties

Label 1458.3.b.c
Level $1458$
Weight $3$
Character orbit 1458.b
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1457.1 1.41421i 0 −2.00000 8.37465i 0 −11.2416 2.82843i 0 −11.8435
1457.2 1.41421i 0 −2.00000 8.36153i 0 9.16954 2.82843i 0 −11.8250
1457.3 1.41421i 0 −2.00000 7.83103i 0 −0.901000 2.82843i 0 −11.0748
1457.4 1.41421i 0 −2.00000 5.99439i 0 7.30820 2.82843i 0 −8.47735
1457.5 1.41421i 0 −2.00000 3.15510i 0 −1.44205 2.82843i 0 −4.46199
1457.6 1.41421i 0 −2.00000 2.89319i 0 −2.31381 2.82843i 0 −4.09159
1457.7 1.41421i 0 −2.00000 2.32339i 0 −6.28987 2.82843i 0 −3.28577
1457.8 1.41421i 0 −2.00000 2.03782i 0 12.8548 2.82843i 0 −2.88192
1457.9 1.41421i 0 −2.00000 0.904788i 0 −7.18058 2.82843i 0 −1.27956
1457.10 1.41421i 0 −2.00000 0.589631i 0 −3.15313 2.82843i 0 −0.833865
1457.11 1.41421i 0 −2.00000 1.13188i 0 −1.91375 2.82843i 0 1.60072
1457.12 1.41421i 0 −2.00000 3.04245i 0 8.22876 2.82843i 0 4.30268
1457.13 1.41421i 0 −2.00000 4.04819i 0 −13.2098 2.82843i 0 5.72501
1457.14 1.41421i 0 −2.00000 4.50363i 0 1.28890 2.82843i 0 6.36909
1457.15 1.41421i 0 −2.00000 5.53495i 0 10.9212 2.82843i 0 7.82759
1457.16 1.41421i 0 −2.00000 7.63957i 0 5.75438 2.82843i 0 10.8040
1457.17 1.41421i 0 −2.00000 7.93206i 0 0.453662 2.82843i 0 11.2176
1457.18 1.41421i 0 −2.00000 8.63280i 0 −8.33391 2.82843i 0 12.2086
1457.19 1.41421i 0 −2.00000 8.63280i 0 −8.33391 2.82843i 0 12.2086
1457.20 1.41421i 0 −2.00000 7.93206i 0 0.453662 2.82843i 0 11.2176
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1457.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1458.3.b.c 36
3.b odd 2 1 inner 1458.3.b.c 36
27.e even 9 1 54.3.f.a 36
27.e even 9 1 162.3.f.a 36
27.f odd 18 1 54.3.f.a 36
27.f odd 18 1 162.3.f.a 36
108.j odd 18 1 432.3.bc.c 36
108.l even 18 1 432.3.bc.c 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.3.f.a 36 27.e even 9 1
54.3.f.a 36 27.f odd 18 1
162.3.f.a 36 27.e even 9 1
162.3.f.a 36 27.f odd 18 1
432.3.bc.c 36 108.j odd 18 1
432.3.bc.c 36 108.l even 18 1
1458.3.b.c 36 1.a even 1 1 trivial
1458.3.b.c 36 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{36} + 540 T_{5}^{34} + 130950 T_{5}^{32} + 18848214 T_{5}^{30} + 1793815389 T_{5}^{28} + \cdots + 18\!\cdots\!25 \) acting on \(S_{3}^{\mathrm{new}}(1458, [\chi])\). Copy content Toggle raw display