Properties

Label 147.2.m
Level $147$
Weight $2$
Character orbit 147.m
Rep. character $\chi_{147}(4,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $108$
Newform subspaces $2$
Sturm bound $37$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 147.m (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 2 \)
Sturm bound: \(37\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(147, [\chi])\).

Total New Old
Modular forms 252 108 144
Cusp forms 204 108 96
Eisenstein series 48 0 48

Trace form

\( 108 q + q^{3} + 8 q^{4} - 2 q^{5} - 4 q^{6} + 5 q^{7} + 12 q^{8} + 9 q^{9} - 4 q^{10} - 20 q^{11} + 2 q^{12} - 2 q^{13} - 2 q^{14} - 10 q^{15} - 2 q^{16} - 14 q^{17} - 55 q^{19} - 48 q^{20} - 4 q^{21}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(147, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
147.2.m.a 147.m 49.g $48$ $1.174$ None 147.2.m.a \(-1\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{21}]$
147.2.m.b 147.m 49.g $60$ $1.174$ None 147.2.m.b \(1\) \(5\) \(-2\) \(5\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{2}^{\mathrm{old}}(147, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(147, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)