Defining parameters
Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 147.m (of order \(21\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{21})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(37\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(147, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 108 | 144 |
Cusp forms | 204 | 108 | 96 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(147, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
147.2.m.a | $48$ | $1.174$ | None | \(-1\) | \(-4\) | \(0\) | \(0\) | ||
147.2.m.b | $60$ | $1.174$ | None | \(1\) | \(5\) | \(-2\) | \(5\) |
Decomposition of \(S_{2}^{\mathrm{old}}(147, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(147, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)