Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [147,3,Mod(13,147)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(147, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 11]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("147.13");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 147.j (of order \(14\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.00545988610\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −0.828971 | − | 3.63196i | 1.35417 | − | 1.07992i | −8.90007 | + | 4.28605i | −5.61004 | + | 4.47386i | −5.04478 | − | 4.02308i | −3.05350 | − | 6.29890i | 13.6538 | + | 17.1213i | 0.667563 | − | 2.92478i | 20.8995 | + | 16.6668i |
13.2 | −0.773997 | − | 3.39110i | −1.35417 | + | 1.07992i | −7.29663 | + | 3.51387i | −4.11712 | + | 3.28330i | 4.71023 | + | 3.75628i | 6.78745 | + | 1.71188i | 8.88871 | + | 11.1461i | 0.667563 | − | 2.92478i | 14.3206 | + | 11.4203i |
13.3 | −0.706945 | − | 3.09733i | −1.35417 | + | 1.07992i | −5.48980 | + | 2.64375i | 6.01934 | − | 4.80027i | 4.30218 | + | 3.43087i | 0.865390 | − | 6.94630i | 4.14628 | + | 5.19927i | 0.667563 | − | 2.92478i | −19.1234 | − | 15.2504i |
13.4 | −0.603450 | − | 2.64389i | 1.35417 | − | 1.07992i | −3.02212 | + | 1.45538i | 2.36014 | − | 1.88215i | −3.67235 | − | 2.92860i | 6.86496 | − | 1.36831i | −1.09177 | − | 1.36903i | 0.667563 | − | 2.92478i | −6.40041 | − | 5.10416i |
13.5 | −0.505025 | − | 2.21266i | 1.35417 | − | 1.07992i | −1.03694 | + | 0.499363i | −0.315841 | + | 0.251875i | −3.07338 | − | 2.45094i | −6.99310 | + | 0.310829i | −4.03160 | − | 5.05546i | 0.667563 | − | 2.92478i | 0.716821 | + | 0.571645i |
13.6 | −0.319991 | − | 1.40197i | −1.35417 | + | 1.07992i | 1.74074 | − | 0.838296i | 1.59667 | − | 1.27330i | 1.94734 | + | 1.55295i | 5.60091 | + | 4.19878i | −5.31867 | − | 6.66941i | 0.667563 | − | 2.92478i | −2.29606 | − | 1.83104i |
13.7 | −0.261314 | − | 1.14489i | −1.35417 | + | 1.07992i | 2.36138 | − | 1.13718i | −5.42860 | + | 4.32916i | 1.59025 | + | 1.26818i | −1.30136 | − | 6.87797i | −4.84776 | − | 6.07890i | 0.667563 | − | 2.92478i | 6.37500 | + | 5.08389i |
13.8 | −0.193320 | − | 0.846990i | 1.35417 | − | 1.07992i | 2.92386 | − | 1.40805i | 7.20531 | − | 5.74604i | −1.17647 | − | 0.938201i | −4.78185 | + | 5.11213i | −3.92453 | − | 4.92121i | 0.667563 | − | 2.92478i | −6.25977 | − | 4.99200i |
13.9 | 0.0266310 | + | 0.116678i | −1.35417 | + | 1.07992i | 3.59097 | − | 1.72932i | 4.71829 | − | 3.76271i | −0.162066 | − | 0.129243i | −6.37412 | − | 2.89320i | 0.595879 | + | 0.747209i | 0.667563 | − | 2.92478i | 0.564680 | + | 0.450317i |
13.10 | 0.0269077 | + | 0.117890i | 1.35417 | − | 1.07992i | 3.59070 | − | 1.72919i | −1.53269 | + | 1.22228i | 0.163749 | + | 0.130586i | 3.03105 | − | 6.30973i | 0.602047 | + | 0.754943i | 0.667563 | − | 2.92478i | −0.185336 | − | 0.147801i |
13.11 | 0.138992 | + | 0.608965i | −1.35417 | + | 1.07992i | 3.25236 | − | 1.56625i | −3.41184 | + | 2.72085i | −0.845850 | − | 0.674543i | −4.25494 | + | 5.55837i | 2.96363 | + | 3.71628i | 0.667563 | − | 2.92478i | −2.13112 | − | 1.69951i |
13.12 | 0.225717 | + | 0.988930i | 1.35417 | − | 1.07992i | 2.67684 | − | 1.28910i | −0.139490 | + | 0.111239i | 1.37362 | + | 1.09543i | 0.360741 | + | 6.99070i | 4.40882 | + | 5.52848i | 0.667563 | − | 2.92478i | −0.141493 | − | 0.112837i |
13.13 | 0.408782 | + | 1.79099i | −1.35417 | + | 1.07992i | 0.563331 | − | 0.271286i | 3.73365 | − | 2.97749i | −2.48768 | − | 1.98386i | 6.36620 | − | 2.91058i | 5.29768 | + | 6.64308i | 0.667563 | − | 2.92478i | 6.85890 | + | 5.46979i |
13.14 | 0.578194 | + | 2.53323i | 1.35417 | − | 1.07992i | −2.47908 | + | 1.19386i | 5.94954 | − | 4.74460i | 3.51865 | + | 2.80603i | −1.51760 | − | 6.83351i | 2.02253 | + | 2.53617i | 0.667563 | − | 2.92478i | 15.4592 | + | 12.3283i |
13.15 | 0.642006 | + | 2.81281i | 1.35417 | − | 1.07992i | −3.89586 | + | 1.87615i | −6.93256 | + | 5.52853i | 3.90699 | + | 3.11572i | −6.97777 | − | 0.557365i | −0.582974 | − | 0.731026i | 0.667563 | − | 2.92478i | −20.0015 | − | 15.9506i |
13.16 | 0.657943 | + | 2.88264i | 1.35417 | − | 1.07992i | −4.27282 | + | 2.05768i | 0.899409 | − | 0.717255i | 4.00397 | + | 3.19306i | 5.24404 | + | 4.63682i | −1.36877 | − | 1.71638i | 0.667563 | − | 2.92478i | 2.65934 | + | 2.12076i |
13.17 | 0.668697 | + | 2.92975i | −1.35417 | + | 1.07992i | −4.53242 | + | 2.18270i | −3.04415 | + | 2.42763i | −4.06942 | − | 3.24525i | 1.44694 | + | 6.84882i | −1.93099 | − | 2.42138i | 0.667563 | − | 2.92478i | −9.14798 | − | 7.29527i |
13.18 | 0.819146 | + | 3.58891i | −1.35417 | + | 1.07992i | −8.60543 | + | 4.14416i | −0.593123 | + | 0.473000i | −4.98499 | − | 3.97540i | −3.45051 | − | 6.09048i | −12.7413 | − | 15.9771i | 0.667563 | − | 2.92478i | −2.18341 | − | 1.74121i |
34.1 | −0.828971 | + | 3.63196i | 1.35417 | + | 1.07992i | −8.90007 | − | 4.28605i | −5.61004 | − | 4.47386i | −5.04478 | + | 4.02308i | −3.05350 | + | 6.29890i | 13.6538 | − | 17.1213i | 0.667563 | + | 2.92478i | 20.8995 | − | 16.6668i |
34.2 | −0.773997 | + | 3.39110i | −1.35417 | − | 1.07992i | −7.29663 | − | 3.51387i | −4.11712 | − | 3.28330i | 4.71023 | − | 3.75628i | 6.78745 | − | 1.71188i | 8.88871 | − | 11.1461i | 0.667563 | + | 2.92478i | 14.3206 | − | 11.4203i |
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
49.f | odd | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 147.3.j.a | ✓ | 108 |
3.b | odd | 2 | 1 | 441.3.v.c | 108 | ||
49.f | odd | 14 | 1 | inner | 147.3.j.a | ✓ | 108 |
147.k | even | 14 | 1 | 441.3.v.c | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
147.3.j.a | ✓ | 108 | 1.a | even | 1 | 1 | trivial |
147.3.j.a | ✓ | 108 | 49.f | odd | 14 | 1 | inner |
441.3.v.c | 108 | 3.b | odd | 2 | 1 | ||
441.3.v.c | 108 | 147.k | even | 14 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(147, [\chi])\).