Properties

Label 147.3.j.a
Level $147$
Weight $3$
Character orbit 147.j
Analytic conductor $4.005$
Analytic rank $0$
Dimension $108$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,3,Mod(13,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 147.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.00545988610\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 108 q - 32 q^{4} - 2 q^{7} + 12 q^{8} + 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 108 q - 32 q^{4} - 2 q^{7} + 12 q^{8} + 54 q^{9} + 66 q^{11} - 2 q^{14} + 60 q^{15} - 96 q^{16} - 98 q^{17} - 112 q^{20} + 24 q^{21} - 116 q^{22} + 64 q^{23} + 126 q^{24} + 130 q^{25} + 224 q^{26} - 204 q^{28} + 72 q^{29} - 48 q^{30} - 220 q^{32} + 784 q^{34} - 376 q^{35} + 96 q^{36} + 156 q^{37} - 280 q^{38} - 60 q^{39} - 728 q^{40} - 196 q^{41} - 144 q^{42} - 56 q^{43} - 840 q^{44} - 42 q^{45} - 16 q^{46} + 266 q^{47} + 122 q^{49} - 244 q^{50} + 60 q^{51} + 168 q^{52} + 148 q^{53} - 252 q^{55} + 686 q^{56} - 120 q^{57} + 252 q^{58} + 700 q^{59} + 540 q^{60} - 112 q^{61} + 392 q^{62} - 78 q^{63} + 496 q^{64} - 12 q^{65} - 196 q^{67} + 898 q^{70} - 732 q^{71} + 90 q^{72} + 126 q^{73} - 508 q^{74} - 210 q^{76} - 230 q^{77} + 420 q^{78} + 136 q^{79} - 162 q^{81} - 1960 q^{82} - 574 q^{83} - 72 q^{84} - 480 q^{85} - 392 q^{86} - 252 q^{87} - 108 q^{88} - 742 q^{89} + 152 q^{91} - 42 q^{92} + 24 q^{93} + 98 q^{94} + 68 q^{95} - 504 q^{96} - 508 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1 −0.828971 3.63196i 1.35417 1.07992i −8.90007 + 4.28605i −5.61004 + 4.47386i −5.04478 4.02308i −3.05350 6.29890i 13.6538 + 17.1213i 0.667563 2.92478i 20.8995 + 16.6668i
13.2 −0.773997 3.39110i −1.35417 + 1.07992i −7.29663 + 3.51387i −4.11712 + 3.28330i 4.71023 + 3.75628i 6.78745 + 1.71188i 8.88871 + 11.1461i 0.667563 2.92478i 14.3206 + 11.4203i
13.3 −0.706945 3.09733i −1.35417 + 1.07992i −5.48980 + 2.64375i 6.01934 4.80027i 4.30218 + 3.43087i 0.865390 6.94630i 4.14628 + 5.19927i 0.667563 2.92478i −19.1234 15.2504i
13.4 −0.603450 2.64389i 1.35417 1.07992i −3.02212 + 1.45538i 2.36014 1.88215i −3.67235 2.92860i 6.86496 1.36831i −1.09177 1.36903i 0.667563 2.92478i −6.40041 5.10416i
13.5 −0.505025 2.21266i 1.35417 1.07992i −1.03694 + 0.499363i −0.315841 + 0.251875i −3.07338 2.45094i −6.99310 + 0.310829i −4.03160 5.05546i 0.667563 2.92478i 0.716821 + 0.571645i
13.6 −0.319991 1.40197i −1.35417 + 1.07992i 1.74074 0.838296i 1.59667 1.27330i 1.94734 + 1.55295i 5.60091 + 4.19878i −5.31867 6.66941i 0.667563 2.92478i −2.29606 1.83104i
13.7 −0.261314 1.14489i −1.35417 + 1.07992i 2.36138 1.13718i −5.42860 + 4.32916i 1.59025 + 1.26818i −1.30136 6.87797i −4.84776 6.07890i 0.667563 2.92478i 6.37500 + 5.08389i
13.8 −0.193320 0.846990i 1.35417 1.07992i 2.92386 1.40805i 7.20531 5.74604i −1.17647 0.938201i −4.78185 + 5.11213i −3.92453 4.92121i 0.667563 2.92478i −6.25977 4.99200i
13.9 0.0266310 + 0.116678i −1.35417 + 1.07992i 3.59097 1.72932i 4.71829 3.76271i −0.162066 0.129243i −6.37412 2.89320i 0.595879 + 0.747209i 0.667563 2.92478i 0.564680 + 0.450317i
13.10 0.0269077 + 0.117890i 1.35417 1.07992i 3.59070 1.72919i −1.53269 + 1.22228i 0.163749 + 0.130586i 3.03105 6.30973i 0.602047 + 0.754943i 0.667563 2.92478i −0.185336 0.147801i
13.11 0.138992 + 0.608965i −1.35417 + 1.07992i 3.25236 1.56625i −3.41184 + 2.72085i −0.845850 0.674543i −4.25494 + 5.55837i 2.96363 + 3.71628i 0.667563 2.92478i −2.13112 1.69951i
13.12 0.225717 + 0.988930i 1.35417 1.07992i 2.67684 1.28910i −0.139490 + 0.111239i 1.37362 + 1.09543i 0.360741 + 6.99070i 4.40882 + 5.52848i 0.667563 2.92478i −0.141493 0.112837i
13.13 0.408782 + 1.79099i −1.35417 + 1.07992i 0.563331 0.271286i 3.73365 2.97749i −2.48768 1.98386i 6.36620 2.91058i 5.29768 + 6.64308i 0.667563 2.92478i 6.85890 + 5.46979i
13.14 0.578194 + 2.53323i 1.35417 1.07992i −2.47908 + 1.19386i 5.94954 4.74460i 3.51865 + 2.80603i −1.51760 6.83351i 2.02253 + 2.53617i 0.667563 2.92478i 15.4592 + 12.3283i
13.15 0.642006 + 2.81281i 1.35417 1.07992i −3.89586 + 1.87615i −6.93256 + 5.52853i 3.90699 + 3.11572i −6.97777 0.557365i −0.582974 0.731026i 0.667563 2.92478i −20.0015 15.9506i
13.16 0.657943 + 2.88264i 1.35417 1.07992i −4.27282 + 2.05768i 0.899409 0.717255i 4.00397 + 3.19306i 5.24404 + 4.63682i −1.36877 1.71638i 0.667563 2.92478i 2.65934 + 2.12076i
13.17 0.668697 + 2.92975i −1.35417 + 1.07992i −4.53242 + 2.18270i −3.04415 + 2.42763i −4.06942 3.24525i 1.44694 + 6.84882i −1.93099 2.42138i 0.667563 2.92478i −9.14798 7.29527i
13.18 0.819146 + 3.58891i −1.35417 + 1.07992i −8.60543 + 4.14416i −0.593123 + 0.473000i −4.98499 3.97540i −3.45051 6.09048i −12.7413 15.9771i 0.667563 2.92478i −2.18341 1.74121i
34.1 −0.828971 + 3.63196i 1.35417 + 1.07992i −8.90007 4.28605i −5.61004 4.47386i −5.04478 + 4.02308i −3.05350 + 6.29890i 13.6538 17.1213i 0.667563 + 2.92478i 20.8995 16.6668i
34.2 −0.773997 + 3.39110i −1.35417 1.07992i −7.29663 3.51387i −4.11712 3.28330i 4.71023 3.75628i 6.78745 1.71188i 8.88871 11.1461i 0.667563 + 2.92478i 14.3206 11.4203i
See next 80 embeddings (of 108 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
49.f odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.3.j.a 108
3.b odd 2 1 441.3.v.c 108
49.f odd 14 1 inner 147.3.j.a 108
147.k even 14 1 441.3.v.c 108
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.3.j.a 108 1.a even 1 1 trivial
147.3.j.a 108 49.f odd 14 1 inner
441.3.v.c 108 3.b odd 2 1
441.3.v.c 108 147.k even 14 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(147, [\chi])\).