Properties

Label 147.4.a.i
Level $147$
Weight $4$
Character orbit 147.a
Self dual yes
Analytic conductor $8.673$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,4,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.67328077084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} - 3 q^{3} + (3 \beta + 7) q^{4} + ( - 2 \beta - 2) q^{5} + (3 \beta + 3) q^{6} + ( - 5 \beta - 41) q^{8} + 9 q^{9} + (6 \beta + 30) q^{10} + (10 \beta - 8) q^{11} + ( - 9 \beta - 21) q^{12}+ \cdots + (90 \beta - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 6 q^{3} + 17 q^{4} - 6 q^{5} + 9 q^{6} - 87 q^{8} + 18 q^{9} + 66 q^{10} - 6 q^{11} - 51 q^{12} - 16 q^{13} + 18 q^{15} + 137 q^{16} + 6 q^{17} - 27 q^{18} - 64 q^{19} - 222 q^{20} - 276 q^{22}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.27492
−3.27492
−5.27492 −3.00000 19.8248 −10.5498 15.8248 0 −62.3746 9.00000 55.6495
1.2 2.27492 −3.00000 −2.82475 4.54983 −6.82475 0 −24.6254 9.00000 10.3505
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.4.a.i 2
3.b odd 2 1 441.4.a.r 2
4.b odd 2 1 2352.4.a.bz 2
7.b odd 2 1 21.4.a.c 2
7.c even 3 2 147.4.e.m 4
7.d odd 6 2 147.4.e.l 4
21.c even 2 1 63.4.a.e 2
21.g even 6 2 441.4.e.q 4
21.h odd 6 2 441.4.e.p 4
28.d even 2 1 336.4.a.m 2
35.c odd 2 1 525.4.a.n 2
35.f even 4 2 525.4.d.g 4
56.e even 2 1 1344.4.a.bo 2
56.h odd 2 1 1344.4.a.bg 2
84.h odd 2 1 1008.4.a.ba 2
105.g even 2 1 1575.4.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.c 2 7.b odd 2 1
63.4.a.e 2 21.c even 2 1
147.4.a.i 2 1.a even 1 1 trivial
147.4.e.l 4 7.d odd 6 2
147.4.e.m 4 7.c even 3 2
336.4.a.m 2 28.d even 2 1
441.4.a.r 2 3.b odd 2 1
441.4.e.p 4 21.h odd 6 2
441.4.e.q 4 21.g even 6 2
525.4.a.n 2 35.c odd 2 1
525.4.d.g 4 35.f even 4 2
1008.4.a.ba 2 84.h odd 2 1
1344.4.a.bg 2 56.h odd 2 1
1344.4.a.bo 2 56.e even 2 1
1575.4.a.p 2 105.g even 2 1
2352.4.a.bz 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(147))\):

\( T_{2}^{2} + 3T_{2} - 12 \) Copy content Toggle raw display
\( T_{5}^{2} + 6T_{5} - 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T - 12 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 6T - 48 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 6T - 1416 \) Copy content Toggle raw display
$13$ \( T^{2} + 16T - 1988 \) Copy content Toggle raw display
$17$ \( T^{2} - 6T - 48 \) Copy content Toggle raw display
$19$ \( T^{2} + 64T - 7184 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T - 16464 \) Copy content Toggle raw display
$29$ \( T^{2} + 252T + 7668 \) Copy content Toggle raw display
$31$ \( T^{2} + 40T - 73472 \) Copy content Toggle raw display
$37$ \( T^{2} + 248T - 3092 \) Copy content Toggle raw display
$41$ \( T^{2} - 450T + 37800 \) Copy content Toggle raw display
$43$ \( T^{2} - 376T + 2512 \) Copy content Toggle raw display
$47$ \( T^{2} - 12T - 65856 \) Copy content Toggle raw display
$53$ \( T^{2} + 1104 T + 304476 \) Copy content Toggle raw display
$59$ \( T^{2} + 804T - 30144 \) Copy content Toggle raw display
$61$ \( T^{2} - 428T - 28076 \) Copy content Toggle raw display
$67$ \( T^{2} - 148T - 160736 \) Copy content Toggle raw display
$71$ \( T^{2} - 954T + 214704 \) Copy content Toggle raw display
$73$ \( T^{2} + 1072 T + 285244 \) Copy content Toggle raw display
$79$ \( T^{2} + 572T - 84416 \) Copy content Toggle raw display
$83$ \( T^{2} + 1944 T + 813456 \) Copy content Toggle raw display
$89$ \( T^{2} + 366T - 253848 \) Copy content Toggle raw display
$97$ \( T^{2} + 808T - 922292 \) Copy content Toggle raw display
show more
show less