Properties

Label 147.6.a.d
Level 147147
Weight 66
Character orbit 147.a
Self dual yes
Analytic conductor 23.57623.576
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 147=372 147 = 3 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 23.576421512523.5764215125
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q2+9q328q411q518q6+120q8+81q9+22q10+269q11252q12+308q1399q15+656q161896q17162q18+164q19+308q20++21789q99+O(q100) q - 2 q^{2} + 9 q^{3} - 28 q^{4} - 11 q^{5} - 18 q^{6} + 120 q^{8} + 81 q^{9} + 22 q^{10} + 269 q^{11} - 252 q^{12} + 308 q^{13} - 99 q^{15} + 656 q^{16} - 1896 q^{17} - 162 q^{18} + 164 q^{19} + 308 q^{20}+ \cdots + 21789 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 9.00000 −28.0000 −11.0000 −18.0000 0 120.000 81.0000 22.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.6.a.d 1
3.b odd 2 1 441.6.a.h 1
7.b odd 2 1 147.6.a.c 1
7.c even 3 2 147.6.e.g 2
7.d odd 6 2 21.6.e.a 2
21.c even 2 1 441.6.a.g 1
21.g even 6 2 63.6.e.a 2
28.f even 6 2 336.6.q.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.e.a 2 7.d odd 6 2
63.6.e.a 2 21.g even 6 2
147.6.a.c 1 7.b odd 2 1
147.6.a.d 1 1.a even 1 1 trivial
147.6.e.g 2 7.c even 3 2
336.6.q.b 2 28.f even 6 2
441.6.a.g 1 21.c even 2 1
441.6.a.h 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(147))S_{6}^{\mathrm{new}}(\Gamma_0(147)):

T2+2 T_{2} + 2 Copy content Toggle raw display
T5+11 T_{5} + 11 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T9 T - 9 Copy content Toggle raw display
55 T+11 T + 11 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T269 T - 269 Copy content Toggle raw display
1313 T308 T - 308 Copy content Toggle raw display
1717 T+1896 T + 1896 Copy content Toggle raw display
1919 T164 T - 164 Copy content Toggle raw display
2323 T+3264 T + 3264 Copy content Toggle raw display
2929 T2417 T - 2417 Copy content Toggle raw display
3131 T+2841 T + 2841 Copy content Toggle raw display
3737 T+11328 T + 11328 Copy content Toggle raw display
4141 T16856 T - 16856 Copy content Toggle raw display
4343 T+7894 T + 7894 Copy content Toggle raw display
4747 T+21102 T + 21102 Copy content Toggle raw display
5353 T+29691 T + 29691 Copy content Toggle raw display
5959 T8163 T - 8163 Copy content Toggle raw display
6161 T+15166 T + 15166 Copy content Toggle raw display
6767 T+32078 T + 32078 Copy content Toggle raw display
7171 T+38274 T + 38274 Copy content Toggle raw display
7373 T+34866 T + 34866 Copy content Toggle raw display
7979 T13529 T - 13529 Copy content Toggle raw display
8383 T68103 T - 68103 Copy content Toggle raw display
8989 T114922 T - 114922 Copy content Toggle raw display
9797 T+154959 T + 154959 Copy content Toggle raw display
show more
show less