Properties

Label 147.6.a.m.1.1
Level $147$
Weight $6$
Character 147.1
Self dual yes
Analytic conductor $23.576$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(1,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 97x^{2} + 7x + 294 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(10.1812\) of defining polynomial
Character \(\chi\) \(=\) 147.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.18123 q^{2} +9.00000 q^{3} +52.2950 q^{4} +22.0716 q^{5} -82.6311 q^{6} -186.333 q^{8} +81.0000 q^{9} -202.644 q^{10} +416.710 q^{11} +470.655 q^{12} +797.918 q^{13} +198.644 q^{15} +37.3245 q^{16} -1375.55 q^{17} -743.680 q^{18} +2313.03 q^{19} +1154.23 q^{20} -3825.91 q^{22} -955.402 q^{23} -1676.99 q^{24} -2637.84 q^{25} -7325.87 q^{26} +729.000 q^{27} -7035.29 q^{29} -1823.80 q^{30} +1261.19 q^{31} +5619.96 q^{32} +3750.39 q^{33} +12629.2 q^{34} +4235.89 q^{36} +9776.44 q^{37} -21236.4 q^{38} +7181.26 q^{39} -4112.66 q^{40} -5400.95 q^{41} +19686.6 q^{43} +21791.8 q^{44} +1787.80 q^{45} +8771.76 q^{46} +2056.56 q^{47} +335.921 q^{48} +24218.7 q^{50} -12380.0 q^{51} +41727.1 q^{52} +18022.7 q^{53} -6693.12 q^{54} +9197.45 q^{55} +20817.2 q^{57} +64592.6 q^{58} +7435.68 q^{59} +10388.1 q^{60} +3495.38 q^{61} -11579.3 q^{62} -52792.5 q^{64} +17611.3 q^{65} -34433.2 q^{66} +15856.4 q^{67} -71934.4 q^{68} -8598.62 q^{69} +58133.5 q^{71} -15093.0 q^{72} +39110.7 q^{73} -89759.8 q^{74} -23740.6 q^{75} +120960. q^{76} -65932.8 q^{78} +9760.69 q^{79} +823.812 q^{80} +6561.00 q^{81} +49587.4 q^{82} -70395.7 q^{83} -30360.6 q^{85} -180747. q^{86} -63317.6 q^{87} -77646.6 q^{88} +144306. q^{89} -16414.2 q^{90} -49962.7 q^{92} +11350.7 q^{93} -18881.8 q^{94} +51052.2 q^{95} +50579.7 q^{96} -79328.7 q^{97} +33753.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + 36 q^{3} + 69 q^{4} + 27 q^{6} + 123 q^{8} + 324 q^{9} + 283 q^{10} + 402 q^{11} + 621 q^{12} + 462 q^{13} + 3273 q^{16} + 276 q^{17} + 243 q^{18} + 510 q^{19} + 4719 q^{20} + 1375 q^{22}+ \cdots + 32562 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.18123 −1.62303 −0.811514 0.584333i \(-0.801356\pi\)
−0.811514 + 0.584333i \(0.801356\pi\)
\(3\) 9.00000 0.577350
\(4\) 52.2950 1.63422
\(5\) 22.0716 0.394829 0.197414 0.980320i \(-0.436746\pi\)
0.197414 + 0.980320i \(0.436746\pi\)
\(6\) −82.6311 −0.937055
\(7\) 0 0
\(8\) −186.333 −1.02935
\(9\) 81.0000 0.333333
\(10\) −202.644 −0.640818
\(11\) 416.710 1.03837 0.519184 0.854662i \(-0.326236\pi\)
0.519184 + 0.854662i \(0.326236\pi\)
\(12\) 470.655 0.943516
\(13\) 797.918 1.30948 0.654742 0.755853i \(-0.272777\pi\)
0.654742 + 0.755853i \(0.272777\pi\)
\(14\) 0 0
\(15\) 198.644 0.227955
\(16\) 37.3245 0.0364497
\(17\) −1375.55 −1.15439 −0.577197 0.816605i \(-0.695854\pi\)
−0.577197 + 0.816605i \(0.695854\pi\)
\(18\) −743.680 −0.541009
\(19\) 2313.03 1.46993 0.734965 0.678105i \(-0.237199\pi\)
0.734965 + 0.678105i \(0.237199\pi\)
\(20\) 1154.23 0.645236
\(21\) 0 0
\(22\) −3825.91 −1.68530
\(23\) −955.402 −0.376588 −0.188294 0.982113i \(-0.560296\pi\)
−0.188294 + 0.982113i \(0.560296\pi\)
\(24\) −1676.99 −0.594297
\(25\) −2637.84 −0.844110
\(26\) −7325.87 −2.12533
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −7035.29 −1.55341 −0.776707 0.629862i \(-0.783111\pi\)
−0.776707 + 0.629862i \(0.783111\pi\)
\(30\) −1823.80 −0.369976
\(31\) 1261.19 0.235709 0.117855 0.993031i \(-0.462398\pi\)
0.117855 + 0.993031i \(0.462398\pi\)
\(32\) 5619.96 0.970194
\(33\) 3750.39 0.599503
\(34\) 12629.2 1.87361
\(35\) 0 0
\(36\) 4235.89 0.544739
\(37\) 9776.44 1.17402 0.587012 0.809579i \(-0.300304\pi\)
0.587012 + 0.809579i \(0.300304\pi\)
\(38\) −21236.4 −2.38574
\(39\) 7181.26 0.756030
\(40\) −4112.66 −0.406418
\(41\) −5400.95 −0.501777 −0.250888 0.968016i \(-0.580723\pi\)
−0.250888 + 0.968016i \(0.580723\pi\)
\(42\) 0 0
\(43\) 19686.6 1.62367 0.811837 0.583885i \(-0.198468\pi\)
0.811837 + 0.583885i \(0.198468\pi\)
\(44\) 21791.8 1.69692
\(45\) 1787.80 0.131610
\(46\) 8771.76 0.611213
\(47\) 2056.56 0.135799 0.0678997 0.997692i \(-0.478370\pi\)
0.0678997 + 0.997692i \(0.478370\pi\)
\(48\) 335.921 0.0210443
\(49\) 0 0
\(50\) 24218.7 1.37001
\(51\) −12380.0 −0.666490
\(52\) 41727.1 2.13998
\(53\) 18022.7 0.881315 0.440658 0.897675i \(-0.354745\pi\)
0.440658 + 0.897675i \(0.354745\pi\)
\(54\) −6693.12 −0.312352
\(55\) 9197.45 0.409978
\(56\) 0 0
\(57\) 20817.2 0.848664
\(58\) 64592.6 2.52123
\(59\) 7435.68 0.278093 0.139047 0.990286i \(-0.455596\pi\)
0.139047 + 0.990286i \(0.455596\pi\)
\(60\) 10388.1 0.372527
\(61\) 3495.38 0.120274 0.0601368 0.998190i \(-0.480846\pi\)
0.0601368 + 0.998190i \(0.480846\pi\)
\(62\) −11579.3 −0.382563
\(63\) 0 0
\(64\) −52792.5 −1.61110
\(65\) 17611.3 0.517022
\(66\) −34433.2 −0.973009
\(67\) 15856.4 0.431537 0.215769 0.976445i \(-0.430774\pi\)
0.215769 + 0.976445i \(0.430774\pi\)
\(68\) −71934.4 −1.88653
\(69\) −8598.62 −0.217423
\(70\) 0 0
\(71\) 58133.5 1.36861 0.684306 0.729195i \(-0.260105\pi\)
0.684306 + 0.729195i \(0.260105\pi\)
\(72\) −15093.0 −0.343118
\(73\) 39110.7 0.858990 0.429495 0.903069i \(-0.358692\pi\)
0.429495 + 0.903069i \(0.358692\pi\)
\(74\) −89759.8 −1.90547
\(75\) −23740.6 −0.487347
\(76\) 120960. 2.40218
\(77\) 0 0
\(78\) −65932.8 −1.22706
\(79\) 9760.69 0.175960 0.0879798 0.996122i \(-0.471959\pi\)
0.0879798 + 0.996122i \(0.471959\pi\)
\(80\) 823.812 0.0143914
\(81\) 6561.00 0.111111
\(82\) 49587.4 0.814397
\(83\) −70395.7 −1.12163 −0.560816 0.827940i \(-0.689513\pi\)
−0.560816 + 0.827940i \(0.689513\pi\)
\(84\) 0 0
\(85\) −30360.6 −0.455788
\(86\) −180747. −2.63527
\(87\) −63317.6 −0.896864
\(88\) −77646.6 −1.06885
\(89\) 144306. 1.93112 0.965562 0.260173i \(-0.0837796\pi\)
0.965562 + 0.260173i \(0.0837796\pi\)
\(90\) −16414.2 −0.213606
\(91\) 0 0
\(92\) −49962.7 −0.615427
\(93\) 11350.7 0.136087
\(94\) −18881.8 −0.220406
\(95\) 51052.2 0.580371
\(96\) 50579.7 0.560142
\(97\) −79328.7 −0.856053 −0.428027 0.903766i \(-0.640791\pi\)
−0.428027 + 0.903766i \(0.640791\pi\)
\(98\) 0 0
\(99\) 33753.5 0.346123
\(100\) −137946. −1.37946
\(101\) −84833.7 −0.827495 −0.413747 0.910392i \(-0.635780\pi\)
−0.413747 + 0.910392i \(0.635780\pi\)
\(102\) 113663. 1.08173
\(103\) 20332.3 0.188839 0.0944197 0.995532i \(-0.469900\pi\)
0.0944197 + 0.995532i \(0.469900\pi\)
\(104\) −148678. −1.34792
\(105\) 0 0
\(106\) −165471. −1.43040
\(107\) 6962.19 0.0587877 0.0293938 0.999568i \(-0.490642\pi\)
0.0293938 + 0.999568i \(0.490642\pi\)
\(108\) 38123.0 0.314505
\(109\) 112651. 0.908177 0.454088 0.890957i \(-0.349965\pi\)
0.454088 + 0.890957i \(0.349965\pi\)
\(110\) −84443.9 −0.665406
\(111\) 87988.0 0.677823
\(112\) 0 0
\(113\) 112005. 0.825167 0.412583 0.910920i \(-0.364627\pi\)
0.412583 + 0.910920i \(0.364627\pi\)
\(114\) −191128. −1.37741
\(115\) −21087.3 −0.148688
\(116\) −367910. −2.53862
\(117\) 64631.4 0.436494
\(118\) −68268.7 −0.451353
\(119\) 0 0
\(120\) −37014.0 −0.234646
\(121\) 12595.8 0.0782102
\(122\) −32091.9 −0.195207
\(123\) −48608.5 −0.289701
\(124\) 65954.0 0.385200
\(125\) −127195. −0.728108
\(126\) 0 0
\(127\) 82224.5 0.452368 0.226184 0.974085i \(-0.427375\pi\)
0.226184 + 0.974085i \(0.427375\pi\)
\(128\) 304862. 1.64467
\(129\) 177179. 0.937428
\(130\) −161694. −0.839140
\(131\) −175812. −0.895097 −0.447548 0.894260i \(-0.647703\pi\)
−0.447548 + 0.894260i \(0.647703\pi\)
\(132\) 196126. 0.979718
\(133\) 0 0
\(134\) −145581. −0.700397
\(135\) 16090.2 0.0759849
\(136\) 256310. 1.18828
\(137\) 31330.3 0.142614 0.0713072 0.997454i \(-0.477283\pi\)
0.0713072 + 0.997454i \(0.477283\pi\)
\(138\) 78945.9 0.352884
\(139\) 152234. 0.668305 0.334152 0.942519i \(-0.391550\pi\)
0.334152 + 0.942519i \(0.391550\pi\)
\(140\) 0 0
\(141\) 18509.1 0.0784038
\(142\) −533737. −2.22129
\(143\) 332500. 1.35973
\(144\) 3023.29 0.0121499
\(145\) −155280. −0.613332
\(146\) −359084. −1.39416
\(147\) 0 0
\(148\) 511259. 1.91861
\(149\) 362860. 1.33898 0.669489 0.742822i \(-0.266513\pi\)
0.669489 + 0.742822i \(0.266513\pi\)
\(150\) 217968. 0.790978
\(151\) 205126. 0.732112 0.366056 0.930593i \(-0.380708\pi\)
0.366056 + 0.930593i \(0.380708\pi\)
\(152\) −430992. −1.51308
\(153\) −111420. −0.384798
\(154\) 0 0
\(155\) 27836.5 0.0930648
\(156\) 375544. 1.23552
\(157\) −77272.0 −0.250192 −0.125096 0.992145i \(-0.539924\pi\)
−0.125096 + 0.992145i \(0.539924\pi\)
\(158\) −89615.1 −0.285587
\(159\) 162205. 0.508828
\(160\) 124042. 0.383060
\(161\) 0 0
\(162\) −60238.0 −0.180336
\(163\) 184931. 0.545182 0.272591 0.962130i \(-0.412119\pi\)
0.272591 + 0.962130i \(0.412119\pi\)
\(164\) −282442. −0.820012
\(165\) 82777.0 0.236701
\(166\) 646319. 1.82044
\(167\) 129262. 0.358657 0.179329 0.983789i \(-0.442607\pi\)
0.179329 + 0.983789i \(0.442607\pi\)
\(168\) 0 0
\(169\) 265380. 0.714746
\(170\) 278748. 0.739757
\(171\) 187355. 0.489977
\(172\) 1.02951e6 2.65344
\(173\) −507867. −1.29013 −0.645067 0.764126i \(-0.723171\pi\)
−0.645067 + 0.764126i \(0.723171\pi\)
\(174\) 581334. 1.45563
\(175\) 0 0
\(176\) 15553.5 0.0378483
\(177\) 66921.1 0.160557
\(178\) −1.32491e6 −3.13427
\(179\) −132589. −0.309296 −0.154648 0.987970i \(-0.549424\pi\)
−0.154648 + 0.987970i \(0.549424\pi\)
\(180\) 93492.9 0.215079
\(181\) −740060. −1.67908 −0.839538 0.543301i \(-0.817174\pi\)
−0.839538 + 0.543301i \(0.817174\pi\)
\(182\) 0 0
\(183\) 31458.5 0.0694400
\(184\) 178023. 0.387642
\(185\) 215782. 0.463538
\(186\) −104214. −0.220873
\(187\) −573205. −1.19869
\(188\) 107548. 0.221926
\(189\) 0 0
\(190\) −468722. −0.941957
\(191\) −582732. −1.15581 −0.577904 0.816105i \(-0.696129\pi\)
−0.577904 + 0.816105i \(0.696129\pi\)
\(192\) −475133. −0.930169
\(193\) −400904. −0.774725 −0.387362 0.921928i \(-0.626614\pi\)
−0.387362 + 0.921928i \(0.626614\pi\)
\(194\) 728335. 1.38940
\(195\) 158502. 0.298503
\(196\) 0 0
\(197\) 671589. 1.23293 0.616464 0.787383i \(-0.288564\pi\)
0.616464 + 0.787383i \(0.288564\pi\)
\(198\) −309898. −0.561767
\(199\) −455022. −0.814515 −0.407258 0.913313i \(-0.633515\pi\)
−0.407258 + 0.913313i \(0.633515\pi\)
\(200\) 491517. 0.868887
\(201\) 142708. 0.249148
\(202\) 778878. 1.34305
\(203\) 0 0
\(204\) −647409. −1.08919
\(205\) −119208. −0.198116
\(206\) −186675. −0.306492
\(207\) −77387.5 −0.125529
\(208\) 29781.9 0.0477303
\(209\) 963860. 1.52633
\(210\) 0 0
\(211\) −1.19545e6 −1.84852 −0.924260 0.381764i \(-0.875317\pi\)
−0.924260 + 0.381764i \(0.875317\pi\)
\(212\) 942499. 1.44026
\(213\) 523201. 0.790168
\(214\) −63921.4 −0.0954140
\(215\) 434514. 0.641073
\(216\) −135837. −0.198099
\(217\) 0 0
\(218\) −1.03428e6 −1.47400
\(219\) 351996. 0.495938
\(220\) 480980. 0.669993
\(221\) −1.09758e6 −1.51166
\(222\) −807838. −1.10012
\(223\) 296529. 0.399305 0.199653 0.979867i \(-0.436019\pi\)
0.199653 + 0.979867i \(0.436019\pi\)
\(224\) 0 0
\(225\) −213665. −0.281370
\(226\) −1.02834e6 −1.33927
\(227\) 218146. 0.280985 0.140492 0.990082i \(-0.455131\pi\)
0.140492 + 0.990082i \(0.455131\pi\)
\(228\) 1.08864e6 1.38690
\(229\) −1.22920e6 −1.54894 −0.774471 0.632609i \(-0.781984\pi\)
−0.774471 + 0.632609i \(0.781984\pi\)
\(230\) 193607. 0.241324
\(231\) 0 0
\(232\) 1.31090e6 1.59901
\(233\) −62944.2 −0.0759567 −0.0379784 0.999279i \(-0.512092\pi\)
−0.0379784 + 0.999279i \(0.512092\pi\)
\(234\) −593395. −0.708442
\(235\) 45391.7 0.0536175
\(236\) 388849. 0.454465
\(237\) 87846.2 0.101590
\(238\) 0 0
\(239\) 219330. 0.248372 0.124186 0.992259i \(-0.460368\pi\)
0.124186 + 0.992259i \(0.460368\pi\)
\(240\) 7414.31 0.00830888
\(241\) 433864. 0.481183 0.240592 0.970626i \(-0.422659\pi\)
0.240592 + 0.970626i \(0.422659\pi\)
\(242\) −115645. −0.126937
\(243\) 59049.0 0.0641500
\(244\) 182791. 0.196553
\(245\) 0 0
\(246\) 446286. 0.470193
\(247\) 1.84561e6 1.92485
\(248\) −235001. −0.242628
\(249\) −633561. −0.647575
\(250\) 1.16781e6 1.18174
\(251\) −1.71109e6 −1.71431 −0.857155 0.515059i \(-0.827770\pi\)
−0.857155 + 0.515059i \(0.827770\pi\)
\(252\) 0 0
\(253\) −398125. −0.391037
\(254\) −754922. −0.734206
\(255\) −273246. −0.263150
\(256\) −1.10964e6 −1.05824
\(257\) 984057. 0.929368 0.464684 0.885477i \(-0.346168\pi\)
0.464684 + 0.885477i \(0.346168\pi\)
\(258\) −1.62672e6 −1.52147
\(259\) 0 0
\(260\) 920984. 0.844926
\(261\) −569859. −0.517804
\(262\) 1.61417e6 1.45277
\(263\) 547095. 0.487724 0.243862 0.969810i \(-0.421586\pi\)
0.243862 + 0.969810i \(0.421586\pi\)
\(264\) −698820. −0.617100
\(265\) 397791. 0.347969
\(266\) 0 0
\(267\) 1.29876e6 1.11493
\(268\) 829211. 0.705226
\(269\) −641112. −0.540198 −0.270099 0.962833i \(-0.587056\pi\)
−0.270099 + 0.962833i \(0.587056\pi\)
\(270\) −147728. −0.123325
\(271\) −548012. −0.453280 −0.226640 0.973979i \(-0.572774\pi\)
−0.226640 + 0.973979i \(0.572774\pi\)
\(272\) −51341.8 −0.0420774
\(273\) 0 0
\(274\) −287651. −0.231467
\(275\) −1.09921e6 −0.876498
\(276\) −449664. −0.355317
\(277\) 1.67414e6 1.31097 0.655485 0.755208i \(-0.272464\pi\)
0.655485 + 0.755208i \(0.272464\pi\)
\(278\) −1.39769e6 −1.08468
\(279\) 102157. 0.0785698
\(280\) 0 0
\(281\) 1.81078e6 1.36804 0.684021 0.729462i \(-0.260230\pi\)
0.684021 + 0.729462i \(0.260230\pi\)
\(282\) −169936. −0.127252
\(283\) 2.51315e6 1.86531 0.932657 0.360764i \(-0.117484\pi\)
0.932657 + 0.360764i \(0.117484\pi\)
\(284\) 3.04009e6 2.23661
\(285\) 459470. 0.335077
\(286\) −3.05276e6 −2.20687
\(287\) 0 0
\(288\) 455217. 0.323398
\(289\) 472283. 0.332627
\(290\) 1.42566e6 0.995455
\(291\) −713958. −0.494243
\(292\) 2.04529e6 1.40378
\(293\) 107228. 0.0729691 0.0364845 0.999334i \(-0.488384\pi\)
0.0364845 + 0.999334i \(0.488384\pi\)
\(294\) 0 0
\(295\) 164117. 0.109799
\(296\) −1.82167e6 −1.20848
\(297\) 303781. 0.199834
\(298\) −3.33150e6 −2.17320
\(299\) −762332. −0.493136
\(300\) −1.24151e6 −0.796431
\(301\) 0 0
\(302\) −1.88330e6 −1.18824
\(303\) −763504. −0.477754
\(304\) 86332.6 0.0535785
\(305\) 77148.7 0.0474875
\(306\) 1.02297e6 0.624538
\(307\) 1.49622e6 0.906042 0.453021 0.891500i \(-0.350346\pi\)
0.453021 + 0.891500i \(0.350346\pi\)
\(308\) 0 0
\(309\) 182990. 0.109027
\(310\) −255573. −0.151047
\(311\) 861202. 0.504899 0.252449 0.967610i \(-0.418764\pi\)
0.252449 + 0.967610i \(0.418764\pi\)
\(312\) −1.33810e6 −0.778222
\(313\) −503937. −0.290747 −0.145374 0.989377i \(-0.546438\pi\)
−0.145374 + 0.989377i \(0.546438\pi\)
\(314\) 709452. 0.406068
\(315\) 0 0
\(316\) 510435. 0.287556
\(317\) −480009. −0.268288 −0.134144 0.990962i \(-0.542828\pi\)
−0.134144 + 0.990962i \(0.542828\pi\)
\(318\) −1.48924e6 −0.825841
\(319\) −2.93167e6 −1.61302
\(320\) −1.16522e6 −0.636109
\(321\) 62659.7 0.0339411
\(322\) 0 0
\(323\) −3.18168e6 −1.69688
\(324\) 343107. 0.181580
\(325\) −2.10478e6 −1.10535
\(326\) −1.69790e6 −0.884845
\(327\) 1.01386e6 0.524336
\(328\) 1.00637e6 0.516505
\(329\) 0 0
\(330\) −759995. −0.384172
\(331\) −2.19922e6 −1.10331 −0.551656 0.834072i \(-0.686004\pi\)
−0.551656 + 0.834072i \(0.686004\pi\)
\(332\) −3.68134e6 −1.83299
\(333\) 791892. 0.391341
\(334\) −1.18678e6 −0.582110
\(335\) 349977. 0.170383
\(336\) 0 0
\(337\) −1.35725e6 −0.651008 −0.325504 0.945541i \(-0.605534\pi\)
−0.325504 + 0.945541i \(0.605534\pi\)
\(338\) −2.43652e6 −1.16005
\(339\) 1.00805e6 0.476410
\(340\) −1.58771e6 −0.744857
\(341\) 525550. 0.244753
\(342\) −1.72015e6 −0.795245
\(343\) 0 0
\(344\) −3.66825e6 −1.67133
\(345\) −189785. −0.0858449
\(346\) 4.66285e6 2.09392
\(347\) 3.79941e6 1.69392 0.846959 0.531659i \(-0.178431\pi\)
0.846959 + 0.531659i \(0.178431\pi\)
\(348\) −3.31119e6 −1.46567
\(349\) −1.31753e6 −0.579024 −0.289512 0.957174i \(-0.593493\pi\)
−0.289512 + 0.957174i \(0.593493\pi\)
\(350\) 0 0
\(351\) 581682. 0.252010
\(352\) 2.34189e6 1.00742
\(353\) −3.42505e6 −1.46295 −0.731477 0.681866i \(-0.761168\pi\)
−0.731477 + 0.681866i \(0.761168\pi\)
\(354\) −614418. −0.260589
\(355\) 1.28310e6 0.540367
\(356\) 7.54649e6 3.15588
\(357\) 0 0
\(358\) 1.21733e6 0.501997
\(359\) 1.47084e6 0.602322 0.301161 0.953573i \(-0.402626\pi\)
0.301161 + 0.953573i \(0.402626\pi\)
\(360\) −333126. −0.135473
\(361\) 2.87399e6 1.16069
\(362\) 6.79466e6 2.72519
\(363\) 113362. 0.0451547
\(364\) 0 0
\(365\) 863235. 0.339154
\(366\) −288827. −0.112703
\(367\) −4.98079e6 −1.93034 −0.965168 0.261630i \(-0.915740\pi\)
−0.965168 + 0.261630i \(0.915740\pi\)
\(368\) −35659.9 −0.0137265
\(369\) −437477. −0.167259
\(370\) −1.98114e6 −0.752335
\(371\) 0 0
\(372\) 593586. 0.222396
\(373\) 3.96047e6 1.47392 0.736962 0.675934i \(-0.236260\pi\)
0.736962 + 0.675934i \(0.236260\pi\)
\(374\) 5.26273e6 1.94550
\(375\) −1.14476e6 −0.420373
\(376\) −383205. −0.139785
\(377\) −5.61359e6 −2.03417
\(378\) 0 0
\(379\) −1.75155e6 −0.626359 −0.313179 0.949694i \(-0.601394\pi\)
−0.313179 + 0.949694i \(0.601394\pi\)
\(380\) 2.66977e6 0.948452
\(381\) 740020. 0.261175
\(382\) 5.35020e6 1.87591
\(383\) 3.13834e6 1.09321 0.546604 0.837391i \(-0.315920\pi\)
0.546604 + 0.837391i \(0.315920\pi\)
\(384\) 2.74375e6 0.949549
\(385\) 0 0
\(386\) 3.68079e6 1.25740
\(387\) 1.59461e6 0.541224
\(388\) −4.14849e6 −1.39898
\(389\) −1.05252e6 −0.352661 −0.176331 0.984331i \(-0.556423\pi\)
−0.176331 + 0.984331i \(0.556423\pi\)
\(390\) −1.45524e6 −0.484478
\(391\) 1.31420e6 0.434731
\(392\) 0 0
\(393\) −1.58231e6 −0.516784
\(394\) −6.16601e6 −2.00108
\(395\) 215434. 0.0694739
\(396\) 1.76514e6 0.565640
\(397\) 454724. 0.144801 0.0724005 0.997376i \(-0.476934\pi\)
0.0724005 + 0.997376i \(0.476934\pi\)
\(398\) 4.17766e6 1.32198
\(399\) 0 0
\(400\) −98456.3 −0.0307676
\(401\) −2.88431e6 −0.895739 −0.447870 0.894099i \(-0.647817\pi\)
−0.447870 + 0.894099i \(0.647817\pi\)
\(402\) −1.31023e6 −0.404374
\(403\) 1.00633e6 0.308657
\(404\) −4.43638e6 −1.35231
\(405\) 144812. 0.0438699
\(406\) 0 0
\(407\) 4.07394e6 1.21907
\(408\) 2.30679e6 0.686053
\(409\) −225914. −0.0667782 −0.0333891 0.999442i \(-0.510630\pi\)
−0.0333891 + 0.999442i \(0.510630\pi\)
\(410\) 1.09447e6 0.321548
\(411\) 281973. 0.0823385
\(412\) 1.06328e6 0.308605
\(413\) 0 0
\(414\) 710513. 0.203738
\(415\) −1.55375e6 −0.442853
\(416\) 4.48427e6 1.27045
\(417\) 1.37011e6 0.385846
\(418\) −8.84942e6 −2.47727
\(419\) 4.31027e6 1.19941 0.599707 0.800220i \(-0.295284\pi\)
0.599707 + 0.800220i \(0.295284\pi\)
\(420\) 0 0
\(421\) 1.25088e6 0.343962 0.171981 0.985100i \(-0.444983\pi\)
0.171981 + 0.985100i \(0.444983\pi\)
\(422\) 1.09757e7 3.00020
\(423\) 166582. 0.0452665
\(424\) −3.35823e6 −0.907184
\(425\) 3.62849e6 0.974436
\(426\) −4.80363e6 −1.28246
\(427\) 0 0
\(428\) 364087. 0.0960719
\(429\) 2.99250e6 0.785039
\(430\) −3.98937e6 −1.04048
\(431\) −4.40793e6 −1.14299 −0.571494 0.820606i \(-0.693636\pi\)
−0.571494 + 0.820606i \(0.693636\pi\)
\(432\) 27209.6 0.00701475
\(433\) −1.60951e6 −0.412549 −0.206274 0.978494i \(-0.566134\pi\)
−0.206274 + 0.978494i \(0.566134\pi\)
\(434\) 0 0
\(435\) −1.39752e6 −0.354108
\(436\) 5.89110e6 1.48416
\(437\) −2.20987e6 −0.553558
\(438\) −3.23176e6 −0.804921
\(439\) −4.42452e6 −1.09573 −0.547867 0.836566i \(-0.684560\pi\)
−0.547867 + 0.836566i \(0.684560\pi\)
\(440\) −1.71379e6 −0.422012
\(441\) 0 0
\(442\) 1.00771e7 2.45347
\(443\) −3.61438e6 −0.875034 −0.437517 0.899210i \(-0.644142\pi\)
−0.437517 + 0.899210i \(0.644142\pi\)
\(444\) 4.60133e6 1.10771
\(445\) 3.18507e6 0.762464
\(446\) −2.72250e6 −0.648084
\(447\) 3.26574e6 0.773060
\(448\) 0 0
\(449\) −467024. −0.109326 −0.0546630 0.998505i \(-0.517408\pi\)
−0.0546630 + 0.998505i \(0.517408\pi\)
\(450\) 1.96171e6 0.456671
\(451\) −2.25063e6 −0.521029
\(452\) 5.85730e6 1.34850
\(453\) 1.84613e6 0.422685
\(454\) −2.00285e6 −0.456046
\(455\) 0 0
\(456\) −3.87893e6 −0.873575
\(457\) −601252. −0.134668 −0.0673342 0.997730i \(-0.521449\pi\)
−0.0673342 + 0.997730i \(0.521449\pi\)
\(458\) 1.12856e7 2.51398
\(459\) −1.00278e6 −0.222163
\(460\) −1.10276e6 −0.242988
\(461\) 2.87193e6 0.629392 0.314696 0.949192i \(-0.398097\pi\)
0.314696 + 0.949192i \(0.398097\pi\)
\(462\) 0 0
\(463\) −2.91502e6 −0.631959 −0.315979 0.948766i \(-0.602333\pi\)
−0.315979 + 0.948766i \(0.602333\pi\)
\(464\) −262589. −0.0566215
\(465\) 250529. 0.0537310
\(466\) 577906. 0.123280
\(467\) −7.19376e6 −1.52638 −0.763192 0.646172i \(-0.776369\pi\)
−0.763192 + 0.646172i \(0.776369\pi\)
\(468\) 3.37989e6 0.713327
\(469\) 0 0
\(470\) −416751. −0.0870227
\(471\) −695448. −0.144448
\(472\) −1.38551e6 −0.286256
\(473\) 8.20358e6 1.68597
\(474\) −806536. −0.164884
\(475\) −6.10140e6 −1.24078
\(476\) 0 0
\(477\) 1.45984e6 0.293772
\(478\) −2.01372e6 −0.403115
\(479\) −2.79649e6 −0.556896 −0.278448 0.960451i \(-0.589820\pi\)
−0.278448 + 0.960451i \(0.589820\pi\)
\(480\) 1.11637e6 0.221160
\(481\) 7.80080e6 1.53736
\(482\) −3.98340e6 −0.780974
\(483\) 0 0
\(484\) 658698. 0.127812
\(485\) −1.75091e6 −0.337995
\(486\) −542142. −0.104117
\(487\) −2.93247e6 −0.560289 −0.280144 0.959958i \(-0.590382\pi\)
−0.280144 + 0.959958i \(0.590382\pi\)
\(488\) −651305. −0.123804
\(489\) 1.66438e6 0.314761
\(490\) 0 0
\(491\) −3.06121e6 −0.573046 −0.286523 0.958073i \(-0.592499\pi\)
−0.286523 + 0.958073i \(0.592499\pi\)
\(492\) −2.54198e6 −0.473434
\(493\) 9.67740e6 1.79325
\(494\) −1.69449e7 −3.12408
\(495\) 744993. 0.136659
\(496\) 47073.4 0.00859154
\(497\) 0 0
\(498\) 5.81687e6 1.05103
\(499\) −6.55154e6 −1.17786 −0.588928 0.808186i \(-0.700450\pi\)
−0.588928 + 0.808186i \(0.700450\pi\)
\(500\) −6.65167e6 −1.18989
\(501\) 1.16336e6 0.207071
\(502\) 1.57099e7 2.78237
\(503\) −1.58524e6 −0.279367 −0.139684 0.990196i \(-0.544609\pi\)
−0.139684 + 0.990196i \(0.544609\pi\)
\(504\) 0 0
\(505\) −1.87242e6 −0.326719
\(506\) 3.65528e6 0.634664
\(507\) 2.38842e6 0.412659
\(508\) 4.29993e6 0.739268
\(509\) 6.77981e6 1.15991 0.579953 0.814650i \(-0.303071\pi\)
0.579953 + 0.814650i \(0.303071\pi\)
\(510\) 2.50873e6 0.427099
\(511\) 0 0
\(512\) 432315. 0.0728829
\(513\) 1.68620e6 0.282888
\(514\) −9.03486e6 −1.50839
\(515\) 448766. 0.0745593
\(516\) 9.26557e6 1.53196
\(517\) 856990. 0.141010
\(518\) 0 0
\(519\) −4.57081e6 −0.744859
\(520\) −3.28157e6 −0.532198
\(521\) −1.01384e7 −1.63634 −0.818170 0.574977i \(-0.805011\pi\)
−0.818170 + 0.574977i \(0.805011\pi\)
\(522\) 5.23200e6 0.840411
\(523\) 99997.3 0.0159858 0.00799289 0.999968i \(-0.497456\pi\)
0.00799289 + 0.999968i \(0.497456\pi\)
\(524\) −9.19408e6 −1.46278
\(525\) 0 0
\(526\) −5.02301e6 −0.791589
\(527\) −1.73483e6 −0.272102
\(528\) 139981. 0.0218517
\(529\) −5.52355e6 −0.858181
\(530\) −3.65221e6 −0.564763
\(531\) 602290. 0.0926978
\(532\) 0 0
\(533\) −4.30952e6 −0.657068
\(534\) −1.19242e7 −1.80957
\(535\) 153667. 0.0232111
\(536\) −2.95457e6 −0.444204
\(537\) −1.19330e6 −0.178572
\(538\) 5.88620e6 0.876756
\(539\) 0 0
\(540\) 841436. 0.124176
\(541\) −119743. −0.0175896 −0.00879481 0.999961i \(-0.502800\pi\)
−0.00879481 + 0.999961i \(0.502800\pi\)
\(542\) 5.03143e6 0.735687
\(543\) −6.66054e6 −0.969415
\(544\) −7.73054e6 −1.11999
\(545\) 2.48640e6 0.358574
\(546\) 0 0
\(547\) 236568. 0.0338056 0.0169028 0.999857i \(-0.494619\pi\)
0.0169028 + 0.999857i \(0.494619\pi\)
\(548\) 1.63842e6 0.233063
\(549\) 283126. 0.0400912
\(550\) 1.00921e7 1.42258
\(551\) −1.62728e7 −2.28341
\(552\) 1.60220e6 0.223805
\(553\) 0 0
\(554\) −1.53707e7 −2.12774
\(555\) 1.94204e6 0.267624
\(556\) 7.96107e6 1.09216
\(557\) −4.83666e6 −0.660553 −0.330277 0.943884i \(-0.607142\pi\)
−0.330277 + 0.943884i \(0.607142\pi\)
\(558\) −937922. −0.127521
\(559\) 1.57083e7 2.12617
\(560\) 0 0
\(561\) −5.15885e6 −0.692063
\(562\) −1.66252e7 −2.22037
\(563\) −5.48295e6 −0.729026 −0.364513 0.931198i \(-0.618765\pi\)
−0.364513 + 0.931198i \(0.618765\pi\)
\(564\) 967932. 0.128129
\(565\) 2.47213e6 0.325800
\(566\) −2.30738e7 −3.02746
\(567\) 0 0
\(568\) −1.08322e7 −1.40878
\(569\) −6.97660e6 −0.903364 −0.451682 0.892179i \(-0.649176\pi\)
−0.451682 + 0.892179i \(0.649176\pi\)
\(570\) −4.21850e6 −0.543839
\(571\) −1.17715e7 −1.51092 −0.755458 0.655197i \(-0.772585\pi\)
−0.755458 + 0.655197i \(0.772585\pi\)
\(572\) 1.73881e7 2.22209
\(573\) −5.24459e6 −0.667306
\(574\) 0 0
\(575\) 2.52020e6 0.317882
\(576\) −4.27620e6 −0.537034
\(577\) 6.77292e6 0.846909 0.423454 0.905917i \(-0.360817\pi\)
0.423454 + 0.905917i \(0.360817\pi\)
\(578\) −4.33614e6 −0.539863
\(579\) −3.60814e6 −0.447288
\(580\) −8.12037e6 −1.00232
\(581\) 0 0
\(582\) 6.55501e6 0.802169
\(583\) 7.51025e6 0.915130
\(584\) −7.28760e6 −0.884203
\(585\) 1.42652e6 0.172341
\(586\) −984484. −0.118431
\(587\) −1.05020e7 −1.25799 −0.628996 0.777408i \(-0.716534\pi\)
−0.628996 + 0.777408i \(0.716534\pi\)
\(588\) 0 0
\(589\) 2.91717e6 0.346476
\(590\) −1.50680e6 −0.178207
\(591\) 6.04430e6 0.711832
\(592\) 364901. 0.0427928
\(593\) −7.59074e6 −0.886436 −0.443218 0.896414i \(-0.646163\pi\)
−0.443218 + 0.896414i \(0.646163\pi\)
\(594\) −2.78909e6 −0.324336
\(595\) 0 0
\(596\) 1.89758e7 2.18818
\(597\) −4.09519e6 −0.470261
\(598\) 6.99915e6 0.800373
\(599\) −1.30198e7 −1.48265 −0.741325 0.671146i \(-0.765802\pi\)
−0.741325 + 0.671146i \(0.765802\pi\)
\(600\) 4.42365e6 0.501652
\(601\) 1.41821e7 1.60160 0.800801 0.598931i \(-0.204408\pi\)
0.800801 + 0.598931i \(0.204408\pi\)
\(602\) 0 0
\(603\) 1.28437e6 0.143846
\(604\) 1.07270e7 1.19643
\(605\) 278010. 0.0308796
\(606\) 7.00990e6 0.775408
\(607\) 1.20772e7 1.33044 0.665221 0.746646i \(-0.268337\pi\)
0.665221 + 0.746646i \(0.268337\pi\)
\(608\) 1.29991e7 1.42612
\(609\) 0 0
\(610\) −708320. −0.0770735
\(611\) 1.64097e6 0.177827
\(612\) −5.82668e6 −0.628844
\(613\) −2.72530e6 −0.292929 −0.146465 0.989216i \(-0.546789\pi\)
−0.146465 + 0.989216i \(0.546789\pi\)
\(614\) −1.37371e7 −1.47053
\(615\) −1.07287e6 −0.114382
\(616\) 0 0
\(617\) 8.47094e6 0.895816 0.447908 0.894080i \(-0.352169\pi\)
0.447908 + 0.894080i \(0.352169\pi\)
\(618\) −1.68008e6 −0.176953
\(619\) 1.73835e7 1.82352 0.911759 0.410726i \(-0.134725\pi\)
0.911759 + 0.410726i \(0.134725\pi\)
\(620\) 1.45571e6 0.152088
\(621\) −696488. −0.0724744
\(622\) −7.90690e6 −0.819464
\(623\) 0 0
\(624\) 268037. 0.0275571
\(625\) 5.43586e6 0.556632
\(626\) 4.62676e6 0.471891
\(627\) 8.67474e6 0.881227
\(628\) −4.04093e6 −0.408868
\(629\) −1.34480e7 −1.35529
\(630\) 0 0
\(631\) −6.45149e6 −0.645040 −0.322520 0.946563i \(-0.604530\pi\)
−0.322520 + 0.946563i \(0.604530\pi\)
\(632\) −1.81874e6 −0.181124
\(633\) −1.07590e7 −1.06724
\(634\) 4.40707e6 0.435438
\(635\) 1.81483e6 0.178608
\(636\) 8.48249e6 0.831535
\(637\) 0 0
\(638\) 2.69164e7 2.61797
\(639\) 4.70881e6 0.456204
\(640\) 6.72879e6 0.649362
\(641\) 1.77716e7 1.70837 0.854185 0.519969i \(-0.174057\pi\)
0.854185 + 0.519969i \(0.174057\pi\)
\(642\) −575293. −0.0550873
\(643\) −9.34806e6 −0.891649 −0.445825 0.895120i \(-0.647090\pi\)
−0.445825 + 0.895120i \(0.647090\pi\)
\(644\) 0 0
\(645\) 3.91063e6 0.370124
\(646\) 2.92118e7 2.75408
\(647\) 5.34386e6 0.501874 0.250937 0.968003i \(-0.419261\pi\)
0.250937 + 0.968003i \(0.419261\pi\)
\(648\) −1.22253e6 −0.114373
\(649\) 3.09852e6 0.288764
\(650\) 1.93245e7 1.79401
\(651\) 0 0
\(652\) 9.67098e6 0.890946
\(653\) −1.19701e6 −0.109854 −0.0549270 0.998490i \(-0.517493\pi\)
−0.0549270 + 0.998490i \(0.517493\pi\)
\(654\) −9.30851e6 −0.851012
\(655\) −3.88045e6 −0.353410
\(656\) −201588. −0.0182896
\(657\) 3.16796e6 0.286330
\(658\) 0 0
\(659\) −1.17541e7 −1.05433 −0.527163 0.849764i \(-0.676744\pi\)
−0.527163 + 0.849764i \(0.676744\pi\)
\(660\) 4.32882e6 0.386821
\(661\) −1.80115e7 −1.60341 −0.801706 0.597719i \(-0.796074\pi\)
−0.801706 + 0.597719i \(0.796074\pi\)
\(662\) 2.01915e7 1.79071
\(663\) −9.87819e6 −0.872758
\(664\) 1.31170e7 1.15456
\(665\) 0 0
\(666\) −7.27054e6 −0.635157
\(667\) 6.72153e6 0.584997
\(668\) 6.75975e6 0.586124
\(669\) 2.66876e6 0.230539
\(670\) −3.21322e6 −0.276537
\(671\) 1.45656e6 0.124888
\(672\) 0 0
\(673\) 1.40977e7 1.19981 0.599904 0.800072i \(-0.295206\pi\)
0.599904 + 0.800072i \(0.295206\pi\)
\(674\) 1.24613e7 1.05660
\(675\) −1.92299e6 −0.162449
\(676\) 1.38780e7 1.16805
\(677\) 7.65587e6 0.641982 0.320991 0.947082i \(-0.395984\pi\)
0.320991 + 0.947082i \(0.395984\pi\)
\(678\) −9.25510e6 −0.773227
\(679\) 0 0
\(680\) 5.65718e6 0.469167
\(681\) 1.96331e6 0.162227
\(682\) −4.82520e6 −0.397241
\(683\) −1.08676e7 −0.891415 −0.445708 0.895179i \(-0.647048\pi\)
−0.445708 + 0.895179i \(0.647048\pi\)
\(684\) 9.79773e6 0.800728
\(685\) 691510. 0.0563083
\(686\) 0 0
\(687\) −1.10628e7 −0.894283
\(688\) 734791. 0.0591825
\(689\) 1.43807e7 1.15407
\(690\) 1.74246e6 0.139329
\(691\) −1.46118e7 −1.16415 −0.582073 0.813136i \(-0.697758\pi\)
−0.582073 + 0.813136i \(0.697758\pi\)
\(692\) −2.65589e7 −2.10836
\(693\) 0 0
\(694\) −3.48832e7 −2.74927
\(695\) 3.36005e6 0.263866
\(696\) 1.17981e7 0.923189
\(697\) 7.42928e6 0.579248
\(698\) 1.20965e7 0.939772
\(699\) −566498. −0.0438536
\(700\) 0 0
\(701\) 1.90104e7 1.46115 0.730577 0.682830i \(-0.239251\pi\)
0.730577 + 0.682830i \(0.239251\pi\)
\(702\) −5.34056e6 −0.409019
\(703\) 2.26132e7 1.72573
\(704\) −2.19992e7 −1.67292
\(705\) 408525. 0.0309561
\(706\) 3.14462e7 2.37441
\(707\) 0 0
\(708\) 3.49964e6 0.262386
\(709\) −1.15929e7 −0.866116 −0.433058 0.901366i \(-0.642565\pi\)
−0.433058 + 0.901366i \(0.642565\pi\)
\(710\) −1.17804e7 −0.877031
\(711\) 790616. 0.0586532
\(712\) −2.68890e7 −1.98781
\(713\) −1.20494e6 −0.0887653
\(714\) 0 0
\(715\) 7.33881e6 0.536859
\(716\) −6.93374e6 −0.505458
\(717\) 1.97397e6 0.143398
\(718\) −1.35041e7 −0.977585
\(719\) −1.02861e7 −0.742040 −0.371020 0.928625i \(-0.620992\pi\)
−0.371020 + 0.928625i \(0.620992\pi\)
\(720\) 66728.8 0.00479713
\(721\) 0 0
\(722\) −2.63868e7 −1.88384
\(723\) 3.90477e6 0.277811
\(724\) −3.87014e7 −2.74398
\(725\) 1.85580e7 1.31125
\(726\) −1.04081e6 −0.0732873
\(727\) 1.00970e7 0.708526 0.354263 0.935146i \(-0.384732\pi\)
0.354263 + 0.935146i \(0.384732\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −7.92556e6 −0.550456
\(731\) −2.70799e7 −1.87436
\(732\) 1.64512e6 0.113480
\(733\) 1.92402e6 0.132266 0.0661332 0.997811i \(-0.478934\pi\)
0.0661332 + 0.997811i \(0.478934\pi\)
\(734\) 4.57298e7 3.13299
\(735\) 0 0
\(736\) −5.36932e6 −0.365363
\(737\) 6.60752e6 0.448095
\(738\) 4.01658e6 0.271466
\(739\) 4.20273e6 0.283087 0.141543 0.989932i \(-0.454793\pi\)
0.141543 + 0.989932i \(0.454793\pi\)
\(740\) 1.12843e7 0.757522
\(741\) 1.66104e7 1.11131
\(742\) 0 0
\(743\) −1.99659e7 −1.32684 −0.663418 0.748249i \(-0.730895\pi\)
−0.663418 + 0.748249i \(0.730895\pi\)
\(744\) −2.11501e6 −0.140081
\(745\) 8.00891e6 0.528667
\(746\) −3.63620e7 −2.39222
\(747\) −5.70205e6 −0.373878
\(748\) −2.99757e7 −1.95892
\(749\) 0 0
\(750\) 1.05103e7 0.682277
\(751\) −3.63975e6 −0.235490 −0.117745 0.993044i \(-0.537567\pi\)
−0.117745 + 0.993044i \(0.537567\pi\)
\(752\) 76760.3 0.00494985
\(753\) −1.53998e7 −0.989757
\(754\) 5.15396e7 3.30151
\(755\) 4.52745e6 0.289059
\(756\) 0 0
\(757\) 1.73429e7 1.09997 0.549986 0.835174i \(-0.314633\pi\)
0.549986 + 0.835174i \(0.314633\pi\)
\(758\) 1.60813e7 1.01660
\(759\) −3.58313e6 −0.225765
\(760\) −9.51270e6 −0.597406
\(761\) −1.03568e7 −0.648284 −0.324142 0.946009i \(-0.605076\pi\)
−0.324142 + 0.946009i \(0.605076\pi\)
\(762\) −6.79430e6 −0.423894
\(763\) 0 0
\(764\) −3.04740e7 −1.88884
\(765\) −2.45921e6 −0.151929
\(766\) −2.88138e7 −1.77431
\(767\) 5.93306e6 0.364159
\(768\) −9.98679e6 −0.610974
\(769\) −1.81548e7 −1.10707 −0.553534 0.832826i \(-0.686721\pi\)
−0.553534 + 0.832826i \(0.686721\pi\)
\(770\) 0 0
\(771\) 8.85652e6 0.536571
\(772\) −2.09653e7 −1.26607
\(773\) −1.63566e7 −0.984565 −0.492282 0.870435i \(-0.663837\pi\)
−0.492282 + 0.870435i \(0.663837\pi\)
\(774\) −1.46405e7 −0.878422
\(775\) −3.32683e6 −0.198965
\(776\) 1.47815e7 0.881181
\(777\) 0 0
\(778\) 9.66346e6 0.572379
\(779\) −1.24925e7 −0.737576
\(780\) 8.28886e6 0.487818
\(781\) 2.42248e7 1.42112
\(782\) −1.20660e7 −0.705581
\(783\) −5.12873e6 −0.298955
\(784\) 0 0
\(785\) −1.70552e6 −0.0987829
\(786\) 1.45275e7 0.838755
\(787\) −4.44728e6 −0.255952 −0.127976 0.991777i \(-0.540848\pi\)
−0.127976 + 0.991777i \(0.540848\pi\)
\(788\) 3.51207e7 2.01487
\(789\) 4.92386e6 0.281587
\(790\) −1.97795e6 −0.112758
\(791\) 0 0
\(792\) −6.28938e6 −0.356283
\(793\) 2.78903e6 0.157496
\(794\) −4.17493e6 −0.235016
\(795\) 3.58012e6 0.200900
\(796\) −2.37953e7 −1.33110
\(797\) −9.15303e6 −0.510410 −0.255205 0.966887i \(-0.582143\pi\)
−0.255205 + 0.966887i \(0.582143\pi\)
\(798\) 0 0
\(799\) −2.82891e6 −0.156766
\(800\) −1.48246e7 −0.818950
\(801\) 1.16888e7 0.643708
\(802\) 2.64815e7 1.45381
\(803\) 1.62978e7 0.891948
\(804\) 7.46290e6 0.407162
\(805\) 0 0
\(806\) −9.23932e6 −0.500959
\(807\) −5.77001e6 −0.311884
\(808\) 1.58073e7 0.851784
\(809\) 2.51923e7 1.35331 0.676654 0.736301i \(-0.263429\pi\)
0.676654 + 0.736301i \(0.263429\pi\)
\(810\) −1.32955e6 −0.0712020
\(811\) −8.90585e6 −0.475470 −0.237735 0.971330i \(-0.576405\pi\)
−0.237735 + 0.971330i \(0.576405\pi\)
\(812\) 0 0
\(813\) −4.93211e6 −0.261702
\(814\) −3.74038e7 −1.97858
\(815\) 4.08173e6 0.215254
\(816\) −462076. −0.0242934
\(817\) 4.55355e7 2.38669
\(818\) 2.07417e6 0.108383
\(819\) 0 0
\(820\) −6.23396e6 −0.323765
\(821\) 3.35490e7 1.73709 0.868543 0.495613i \(-0.165057\pi\)
0.868543 + 0.495613i \(0.165057\pi\)
\(822\) −2.58886e6 −0.133638
\(823\) −1.46001e7 −0.751376 −0.375688 0.926746i \(-0.622593\pi\)
−0.375688 + 0.926746i \(0.622593\pi\)
\(824\) −3.78857e6 −0.194382
\(825\) −9.89293e6 −0.506046
\(826\) 0 0
\(827\) 1.97530e7 1.00431 0.502156 0.864777i \(-0.332540\pi\)
0.502156 + 0.864777i \(0.332540\pi\)
\(828\) −4.04698e6 −0.205142
\(829\) −4.06255e6 −0.205311 −0.102655 0.994717i \(-0.532734\pi\)
−0.102655 + 0.994717i \(0.532734\pi\)
\(830\) 1.42653e7 0.718762
\(831\) 1.50673e7 0.756889
\(832\) −4.21241e7 −2.10971
\(833\) 0 0
\(834\) −1.25793e7 −0.626239
\(835\) 2.85302e6 0.141608
\(836\) 5.04050e7 2.49435
\(837\) 919409. 0.0453623
\(838\) −3.95735e7 −1.94668
\(839\) −1.60509e7 −0.787217 −0.393609 0.919278i \(-0.628773\pi\)
−0.393609 + 0.919278i \(0.628773\pi\)
\(840\) 0 0
\(841\) 2.89842e7 1.41309
\(842\) −1.14846e7 −0.558260
\(843\) 1.62970e7 0.789839
\(844\) −6.25159e7 −3.02088
\(845\) 5.85737e6 0.282202
\(846\) −1.52943e6 −0.0734687
\(847\) 0 0
\(848\) 672690. 0.0321237
\(849\) 2.26183e7 1.07694
\(850\) −3.33140e7 −1.58154
\(851\) −9.34043e6 −0.442123
\(852\) 2.73608e7 1.29131
\(853\) −1.23887e7 −0.582979 −0.291489 0.956574i \(-0.594151\pi\)
−0.291489 + 0.956574i \(0.594151\pi\)
\(854\) 0 0
\(855\) 4.13523e6 0.193457
\(856\) −1.29728e6 −0.0605133
\(857\) 2.63519e7 1.22563 0.612816 0.790226i \(-0.290037\pi\)
0.612816 + 0.790226i \(0.290037\pi\)
\(858\) −2.74748e7 −1.27414
\(859\) −1.21249e7 −0.560654 −0.280327 0.959905i \(-0.590443\pi\)
−0.280327 + 0.959905i \(0.590443\pi\)
\(860\) 2.27229e7 1.04765
\(861\) 0 0
\(862\) 4.04702e7 1.85510
\(863\) 2.55952e6 0.116985 0.0584927 0.998288i \(-0.481371\pi\)
0.0584927 + 0.998288i \(0.481371\pi\)
\(864\) 4.09695e6 0.186714
\(865\) −1.12094e7 −0.509382
\(866\) 1.47773e7 0.669578
\(867\) 4.25055e6 0.192042
\(868\) 0 0
\(869\) 4.06737e6 0.182711
\(870\) 1.28310e7 0.574726
\(871\) 1.26521e7 0.565091
\(872\) −2.09906e7 −0.934834
\(873\) −6.42562e6 −0.285351
\(874\) 2.02893e7 0.898439
\(875\) 0 0
\(876\) 1.84076e7 0.810471
\(877\) 2.65820e7 1.16705 0.583523 0.812096i \(-0.301674\pi\)
0.583523 + 0.812096i \(0.301674\pi\)
\(878\) 4.06225e7 1.77841
\(879\) 965051. 0.0421287
\(880\) 343290. 0.0149436
\(881\) −8.32262e6 −0.361260 −0.180630 0.983551i \(-0.557814\pi\)
−0.180630 + 0.983551i \(0.557814\pi\)
\(882\) 0 0
\(883\) 1.81133e7 0.781798 0.390899 0.920434i \(-0.372164\pi\)
0.390899 + 0.920434i \(0.372164\pi\)
\(884\) −5.73977e7 −2.47038
\(885\) 1.47706e6 0.0633927
\(886\) 3.31845e7 1.42020
\(887\) −2.04255e7 −0.871694 −0.435847 0.900021i \(-0.643551\pi\)
−0.435847 + 0.900021i \(0.643551\pi\)
\(888\) −1.63950e7 −0.697718
\(889\) 0 0
\(890\) −2.92429e7 −1.23750
\(891\) 2.73403e6 0.115374
\(892\) 1.55070e7 0.652552
\(893\) 4.75689e6 0.199616
\(894\) −2.99835e7 −1.25470
\(895\) −2.92645e6 −0.122119
\(896\) 0 0
\(897\) −6.86099e6 −0.284712
\(898\) 4.28785e6 0.177439
\(899\) −8.87285e6 −0.366154
\(900\) −1.11736e7 −0.459820
\(901\) −2.47912e7 −1.01739
\(902\) 2.06635e7 0.845645
\(903\) 0 0
\(904\) −2.08702e7 −0.849388
\(905\) −1.63343e7 −0.662948
\(906\) −1.69497e7 −0.686029
\(907\) −2.01197e7 −0.812089 −0.406044 0.913853i \(-0.633092\pi\)
−0.406044 + 0.913853i \(0.633092\pi\)
\(908\) 1.14079e7 0.459190
\(909\) −6.87153e6 −0.275832
\(910\) 0 0
\(911\) 3.17075e7 1.26580 0.632902 0.774232i \(-0.281863\pi\)
0.632902 + 0.774232i \(0.281863\pi\)
\(912\) 776993. 0.0309336
\(913\) −2.93345e7 −1.16467
\(914\) 5.52023e6 0.218571
\(915\) 694339. 0.0274169
\(916\) −6.42812e7 −2.53131
\(917\) 0 0
\(918\) 9.20672e6 0.360577
\(919\) −8.70727e6 −0.340090 −0.170045 0.985436i \(-0.554391\pi\)
−0.170045 + 0.985436i \(0.554391\pi\)
\(920\) 3.92924e6 0.153052
\(921\) 1.34659e7 0.523104
\(922\) −2.63678e7 −1.02152
\(923\) 4.63857e7 1.79217
\(924\) 0 0
\(925\) −2.57887e7 −0.991005
\(926\) 2.67634e7 1.02569
\(927\) 1.64691e6 0.0629465
\(928\) −3.95381e7 −1.50711
\(929\) 3.24042e7 1.23186 0.615931 0.787800i \(-0.288780\pi\)
0.615931 + 0.787800i \(0.288780\pi\)
\(930\) −2.30016e6 −0.0872069
\(931\) 0 0
\(932\) −3.29167e6 −0.124130
\(933\) 7.75082e6 0.291503
\(934\) 6.60475e7 2.47736
\(935\) −1.26516e7 −0.473277
\(936\) −1.20429e7 −0.449307
\(937\) −2.19155e7 −0.815458 −0.407729 0.913103i \(-0.633679\pi\)
−0.407729 + 0.913103i \(0.633679\pi\)
\(938\) 0 0
\(939\) −4.53544e6 −0.167863
\(940\) 2.37376e6 0.0876227
\(941\) 1.46019e7 0.537571 0.268785 0.963200i \(-0.413378\pi\)
0.268785 + 0.963200i \(0.413378\pi\)
\(942\) 6.38506e6 0.234443
\(943\) 5.16008e6 0.188963
\(944\) 277533. 0.0101364
\(945\) 0 0
\(946\) −7.53189e7 −2.73638
\(947\) −2.08378e7 −0.755053 −0.377527 0.925999i \(-0.623225\pi\)
−0.377527 + 0.925999i \(0.623225\pi\)
\(948\) 4.59391e6 0.166021
\(949\) 3.12071e7 1.12483
\(950\) 5.60184e7 2.01382
\(951\) −4.32008e6 −0.154896
\(952\) 0 0
\(953\) −942012. −0.0335988 −0.0167994 0.999859i \(-0.505348\pi\)
−0.0167994 + 0.999859i \(0.505348\pi\)
\(954\) −1.34031e7 −0.476800
\(955\) −1.28618e7 −0.456346
\(956\) 1.14698e7 0.405894
\(957\) −2.63851e7 −0.931275
\(958\) 2.56752e7 0.903857
\(959\) 0 0
\(960\) −1.04869e7 −0.367258
\(961\) −2.70385e7 −0.944441
\(962\) −7.16209e7 −2.49518
\(963\) 563937. 0.0195959
\(964\) 2.26889e7 0.786359
\(965\) −8.84860e6 −0.305884
\(966\) 0 0
\(967\) −2.56570e7 −0.882346 −0.441173 0.897422i \(-0.645438\pi\)
−0.441173 + 0.897422i \(0.645438\pi\)
\(968\) −2.34701e6 −0.0805059
\(969\) −2.86352e7 −0.979694
\(970\) 1.60755e7 0.548575
\(971\) −2.14274e7 −0.729324 −0.364662 0.931140i \(-0.618816\pi\)
−0.364662 + 0.931140i \(0.618816\pi\)
\(972\) 3.08797e6 0.104835
\(973\) 0 0
\(974\) 2.69237e7 0.909364
\(975\) −1.89431e7 −0.638173
\(976\) 130464. 0.00438394
\(977\) −2.04841e7 −0.686562 −0.343281 0.939233i \(-0.611538\pi\)
−0.343281 + 0.939233i \(0.611538\pi\)
\(978\) −1.52811e7 −0.510866
\(979\) 6.01338e7 2.00522
\(980\) 0 0
\(981\) 9.12476e6 0.302726
\(982\) 2.81057e7 0.930069
\(983\) 2.77650e7 0.916459 0.458230 0.888834i \(-0.348484\pi\)
0.458230 + 0.888834i \(0.348484\pi\)
\(984\) 9.05736e6 0.298204
\(985\) 1.48230e7 0.486796
\(986\) −8.88504e7 −2.91050
\(987\) 0 0
\(988\) 9.65159e7 3.14562
\(989\) −1.88086e7 −0.611456
\(990\) −6.83995e6 −0.221802
\(991\) 3.46832e7 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(992\) 7.08785e6 0.228684
\(993\) −1.97930e7 −0.636998
\(994\) 0 0
\(995\) −1.00431e7 −0.321594
\(996\) −3.31320e7 −1.05828
\(997\) −1.48572e7 −0.473369 −0.236685 0.971587i \(-0.576061\pi\)
−0.236685 + 0.971587i \(0.576061\pi\)
\(998\) 6.01512e7 1.91169
\(999\) 7.12703e6 0.225941
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.6.a.m.1.1 4
3.2 odd 2 441.6.a.w.1.4 4
7.2 even 3 21.6.e.c.4.4 8
7.3 odd 6 147.6.e.o.79.4 8
7.4 even 3 21.6.e.c.16.4 yes 8
7.5 odd 6 147.6.e.o.67.4 8
7.6 odd 2 147.6.a.l.1.1 4
21.2 odd 6 63.6.e.e.46.1 8
21.11 odd 6 63.6.e.e.37.1 8
21.20 even 2 441.6.a.v.1.4 4
28.11 odd 6 336.6.q.j.289.3 8
28.23 odd 6 336.6.q.j.193.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.6.e.c.4.4 8 7.2 even 3
21.6.e.c.16.4 yes 8 7.4 even 3
63.6.e.e.37.1 8 21.11 odd 6
63.6.e.e.46.1 8 21.2 odd 6
147.6.a.l.1.1 4 7.6 odd 2
147.6.a.m.1.1 4 1.1 even 1 trivial
147.6.e.o.67.4 8 7.5 odd 6
147.6.e.o.79.4 8 7.3 odd 6
336.6.q.j.193.3 8 28.23 odd 6
336.6.q.j.289.3 8 28.11 odd 6
441.6.a.v.1.4 4 21.20 even 2
441.6.a.w.1.4 4 3.2 odd 2