Properties

Label 147.6.c.d.146.36
Level $147$
Weight $6$
Character 147.146
Analytic conductor $23.576$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(146,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.146");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 146.36
Character \(\chi\) \(=\) 147.146
Dual form 147.6.c.d.146.35

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.35335i q^{2} +(-15.5875 - 0.174581i) q^{3} -22.0717 q^{4} -89.2354 q^{5} +(1.28375 - 114.620i) q^{6} +73.0063i q^{8} +(242.939 + 5.44254i) q^{9} -656.179i q^{10} -623.266i q^{11} +(344.042 + 3.85329i) q^{12} -535.808i q^{13} +(1390.96 + 15.5788i) q^{15} -1243.13 q^{16} -1065.74 q^{17} +(-40.0209 + 1786.41i) q^{18} +1092.24i q^{19} +1969.58 q^{20} +4583.09 q^{22} +812.382i q^{23} +(12.7455 - 1137.98i) q^{24} +4837.96 q^{25} +3939.98 q^{26} +(-3785.86 - 127.248i) q^{27} +6065.90i q^{29} +(-114.556 + 10228.2i) q^{30} +3242.58i q^{31} -6805.00i q^{32} +(-108.810 + 9715.14i) q^{33} -7836.77i q^{34} +(-5362.08 - 120.126i) q^{36} +5076.62 q^{37} -8031.61 q^{38} +(-93.5417 + 8351.90i) q^{39} -6514.75i q^{40} +6218.38 q^{41} -16533.7 q^{43} +13756.5i q^{44} +(-21678.8 - 485.668i) q^{45} -5973.73 q^{46} +27489.9 q^{47} +(19377.3 + 217.027i) q^{48} +35575.2i q^{50} +(16612.2 + 186.058i) q^{51} +11826.2i q^{52} -16694.7i q^{53} +(935.698 - 27838.7i) q^{54} +55617.4i q^{55} +(190.684 - 17025.2i) q^{57} -44604.7 q^{58} +28687.9 q^{59} +(-30700.7 - 343.850i) q^{60} -20080.9i q^{61} -23843.8 q^{62} +10259.2 q^{64} +47813.1i q^{65} +(-71438.8 - 800.118i) q^{66} -24962.8 q^{67} +23522.7 q^{68} +(141.826 - 12663.0i) q^{69} +12012.4i q^{71} +(-397.340 + 17736.1i) q^{72} -40436.7i q^{73} +37330.1i q^{74} +(-75411.7 - 844.614i) q^{75} -24107.6i q^{76} +(-61414.4 - 687.844i) q^{78} +70993.8 q^{79} +110932. q^{80} +(58989.8 + 2644.41i) q^{81} +45725.9i q^{82} -3633.62 q^{83} +95101.9 q^{85} -121578. i q^{86} +(1058.99 - 94552.1i) q^{87} +45502.3 q^{88} +82294.5 q^{89} +(3571.28 - 159412. i) q^{90} -17930.6i q^{92} +(566.091 - 50543.6i) q^{93} +202143. i q^{94} -97466.4i q^{95} +(-1188.02 + 106073. i) q^{96} +54668.6i q^{97} +(3392.15 - 151416. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 640 q^{4} + 440 q^{9} - 3176 q^{15} + 3552 q^{16} - 4544 q^{18} + 21088 q^{22} + 30104 q^{25} + 44664 q^{30} - 59320 q^{36} - 26224 q^{37} - 16216 q^{39} + 21584 q^{43} - 27680 q^{46} + 95784 q^{51}+ \cdots - 258480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.35335i 1.29990i 0.759977 + 0.649950i \(0.225210\pi\)
−0.759977 + 0.649950i \(0.774790\pi\)
\(3\) −15.5875 0.174581i −0.999937 0.0111993i
\(4\) −22.0717 −0.689740
\(5\) −89.2354 −1.59629 −0.798146 0.602464i \(-0.794186\pi\)
−0.798146 + 0.602464i \(0.794186\pi\)
\(6\) 1.28375 114.620i 0.0145580 1.29982i
\(7\) 0 0
\(8\) 73.0063i 0.403306i
\(9\) 242.939 + 5.44254i 0.999749 + 0.0223973i
\(10\) 656.179i 2.07502i
\(11\) 623.266i 1.55307i −0.630073 0.776536i \(-0.716975\pi\)
0.630073 0.776536i \(-0.283025\pi\)
\(12\) 344.042 + 3.85329i 0.689697 + 0.00772464i
\(13\) 535.808i 0.879328i −0.898162 0.439664i \(-0.855098\pi\)
0.898162 0.439664i \(-0.144902\pi\)
\(14\) 0 0
\(15\) 1390.96 + 15.5788i 1.59619 + 0.0178774i
\(16\) −1243.13 −1.21400
\(17\) −1065.74 −0.894395 −0.447198 0.894435i \(-0.647578\pi\)
−0.447198 + 0.894435i \(0.647578\pi\)
\(18\) −40.0209 + 1786.41i −0.0291142 + 1.29957i
\(19\) 1092.24i 0.694118i 0.937843 + 0.347059i \(0.112820\pi\)
−0.937843 + 0.347059i \(0.887180\pi\)
\(20\) 1969.58 1.10103
\(21\) 0 0
\(22\) 4583.09 2.01884
\(23\) 812.382i 0.320214i 0.987100 + 0.160107i \(0.0511840\pi\)
−0.987100 + 0.160107i \(0.948816\pi\)
\(24\) 12.7455 1137.98i 0.00451677 0.403281i
\(25\) 4837.96 1.54815
\(26\) 3939.98 1.14304
\(27\) −3785.86 127.248i −0.999436 0.0335924i
\(28\) 0 0
\(29\) 6065.90i 1.33937i 0.742646 + 0.669685i \(0.233571\pi\)
−0.742646 + 0.669685i \(0.766429\pi\)
\(30\) −114.556 + 10228.2i −0.0232389 + 2.07489i
\(31\) 3242.58i 0.606019i 0.952988 + 0.303009i \(0.0979914\pi\)
−0.952988 + 0.303009i \(0.902009\pi\)
\(32\) 6805.00i 1.17477i
\(33\) −108.810 + 9715.14i −0.0173934 + 1.55297i
\(34\) 7836.77i 1.16262i
\(35\) 0 0
\(36\) −5362.08 120.126i −0.689567 0.0154483i
\(37\) 5076.62 0.609635 0.304818 0.952411i \(-0.401405\pi\)
0.304818 + 0.952411i \(0.401405\pi\)
\(38\) −8031.61 −0.902285
\(39\) −93.5417 + 8351.90i −0.00984790 + 0.879273i
\(40\) 6514.75i 0.643795i
\(41\) 6218.38 0.577720 0.288860 0.957371i \(-0.406724\pi\)
0.288860 + 0.957371i \(0.406724\pi\)
\(42\) 0 0
\(43\) −16533.7 −1.36364 −0.681818 0.731522i \(-0.738811\pi\)
−0.681818 + 0.731522i \(0.738811\pi\)
\(44\) 13756.5i 1.07122i
\(45\) −21678.8 485.668i −1.59589 0.0357526i
\(46\) −5973.73 −0.416247
\(47\) 27489.9 1.81522 0.907610 0.419814i \(-0.137905\pi\)
0.907610 + 0.419814i \(0.137905\pi\)
\(48\) 19377.3 + 217.027i 1.21392 + 0.0135960i
\(49\) 0 0
\(50\) 35575.2i 2.01244i
\(51\) 16612.2 + 186.058i 0.894339 + 0.0100166i
\(52\) 11826.2i 0.606508i
\(53\) 16694.7i 0.816373i −0.912899 0.408187i \(-0.866161\pi\)
0.912899 0.408187i \(-0.133839\pi\)
\(54\) 935.698 27838.7i 0.0436668 1.29917i
\(55\) 55617.4i 2.47916i
\(56\) 0 0
\(57\) 190.684 17025.2i 0.00777367 0.694075i
\(58\) −44604.7 −1.74105
\(59\) 28687.9 1.07292 0.536462 0.843925i \(-0.319760\pi\)
0.536462 + 0.843925i \(0.319760\pi\)
\(60\) −30700.7 343.850i −1.10096 0.0123308i
\(61\) 20080.9i 0.690968i −0.938425 0.345484i \(-0.887715\pi\)
0.938425 0.345484i \(-0.112285\pi\)
\(62\) −23843.8 −0.787764
\(63\) 0 0
\(64\) 10259.2 0.313086
\(65\) 47813.1i 1.40366i
\(66\) −71438.8 800.118i −2.01871 0.0226097i
\(67\) −24962.8 −0.679370 −0.339685 0.940539i \(-0.610320\pi\)
−0.339685 + 0.940539i \(0.610320\pi\)
\(68\) 23522.7 0.616901
\(69\) 141.826 12663.0i 0.00358619 0.320194i
\(70\) 0 0
\(71\) 12012.4i 0.282802i 0.989952 + 0.141401i \(0.0451607\pi\)
−0.989952 + 0.141401i \(0.954839\pi\)
\(72\) −397.340 + 17736.1i −0.00903297 + 0.403205i
\(73\) 40436.7i 0.888114i −0.895999 0.444057i \(-0.853539\pi\)
0.895999 0.444057i \(-0.146461\pi\)
\(74\) 37330.1i 0.792465i
\(75\) −75411.7 844.614i −1.54805 0.0173383i
\(76\) 24107.6i 0.478762i
\(77\) 0 0
\(78\) −61414.4 687.844i −1.14297 0.0128013i
\(79\) 70993.8 1.27983 0.639916 0.768445i \(-0.278969\pi\)
0.639916 + 0.768445i \(0.278969\pi\)
\(80\) 110932. 1.93790
\(81\) 58989.8 + 2644.41i 0.998997 + 0.0447834i
\(82\) 45725.9i 0.750978i
\(83\) −3633.62 −0.0578954 −0.0289477 0.999581i \(-0.509216\pi\)
−0.0289477 + 0.999581i \(0.509216\pi\)
\(84\) 0 0
\(85\) 95101.9 1.42772
\(86\) 121578.i 1.77259i
\(87\) 1058.99 94552.1i 0.0150001 1.33929i
\(88\) 45502.3 0.626364
\(89\) 82294.5 1.10128 0.550638 0.834744i \(-0.314385\pi\)
0.550638 + 0.834744i \(0.314385\pi\)
\(90\) 3571.28 159412.i 0.0464748 2.07450i
\(91\) 0 0
\(92\) 17930.6i 0.220865i
\(93\) 566.091 50543.6i 0.00678702 0.605981i
\(94\) 202143.i 2.35960i
\(95\) 97466.4i 1.10802i
\(96\) −1188.02 + 106073.i −0.0131567 + 1.17470i
\(97\) 54668.6i 0.589941i 0.955506 + 0.294970i \(0.0953097\pi\)
−0.955506 + 0.294970i \(0.904690\pi\)
\(98\) 0 0
\(99\) 3392.15 151416.i 0.0347846 1.55268i
\(100\) −106782. −1.06782
\(101\) −51188.1 −0.499305 −0.249652 0.968336i \(-0.580316\pi\)
−0.249652 + 0.968336i \(0.580316\pi\)
\(102\) −1368.15 + 122155.i −0.0130206 + 1.16255i
\(103\) 105967.i 0.984190i 0.870541 + 0.492095i \(0.163769\pi\)
−0.870541 + 0.492095i \(0.836231\pi\)
\(104\) 39117.3 0.354639
\(105\) 0 0
\(106\) 122762. 1.06120
\(107\) 139609.i 1.17883i −0.807829 0.589417i \(-0.799357\pi\)
0.807829 0.589417i \(-0.200643\pi\)
\(108\) 83560.3 + 2808.58i 0.689351 + 0.0231701i
\(109\) 227786. 1.83637 0.918185 0.396152i \(-0.129655\pi\)
0.918185 + 0.396152i \(0.129655\pi\)
\(110\) −408974. −3.22265
\(111\) −79131.6 886.278i −0.609597 0.00682752i
\(112\) 0 0
\(113\) 57249.9i 0.421773i −0.977511 0.210886i \(-0.932365\pi\)
0.977511 0.210886i \(-0.0676350\pi\)
\(114\) 125193. + 1402.16i 0.902228 + 0.0101050i
\(115\) 72493.3i 0.511155i
\(116\) 133885.i 0.923817i
\(117\) 2916.16 130169.i 0.0196946 0.879107i
\(118\) 210952.i 1.39469i
\(119\) 0 0
\(120\) −1137.35 + 101548.i −0.00721008 + 0.643754i
\(121\) −227409. −1.41203
\(122\) 147662. 0.898189
\(123\) −96928.8 1085.61i −0.577684 0.00647009i
\(124\) 71569.2i 0.417996i
\(125\) −152857. −0.875005
\(126\) 0 0
\(127\) −13454.4 −0.0740208 −0.0370104 0.999315i \(-0.511783\pi\)
−0.0370104 + 0.999315i \(0.511783\pi\)
\(128\) 142321.i 0.767790i
\(129\) 257719. + 2886.46i 1.36355 + 0.0152718i
\(130\) −351586. −1.82462
\(131\) 166402. 0.847188 0.423594 0.905852i \(-0.360768\pi\)
0.423594 + 0.905852i \(0.360768\pi\)
\(132\) 2401.62 214430.i 0.0119969 1.07115i
\(133\) 0 0
\(134\) 183560.i 0.883113i
\(135\) 337833. + 11355.0i 1.59539 + 0.0536233i
\(136\) 77805.8i 0.360715i
\(137\) 255922.i 1.16495i 0.812849 + 0.582474i \(0.197915\pi\)
−0.812849 + 0.582474i \(0.802085\pi\)
\(138\) 93115.3 + 1042.90i 0.416220 + 0.00466169i
\(139\) 27558.0i 0.120979i 0.998169 + 0.0604895i \(0.0192662\pi\)
−0.998169 + 0.0604895i \(0.980734\pi\)
\(140\) 0 0
\(141\) −428499. 4799.21i −1.81511 0.0203293i
\(142\) −88331.0 −0.367614
\(143\) −333951. −1.36566
\(144\) −302006. 6765.81i −1.21369 0.0271903i
\(145\) 541293.i 2.13802i
\(146\) 297345. 1.15446
\(147\) 0 0
\(148\) −112050. −0.420490
\(149\) 133697.i 0.493352i 0.969098 + 0.246676i \(0.0793383\pi\)
−0.969098 + 0.246676i \(0.920662\pi\)
\(150\) 6210.74 554528.i 0.0225380 2.01231i
\(151\) 74200.2 0.264827 0.132414 0.991195i \(-0.457727\pi\)
0.132414 + 0.991195i \(0.457727\pi\)
\(152\) −79740.3 −0.279942
\(153\) −258910. 5800.34i −0.894171 0.0200320i
\(154\) 0 0
\(155\) 289353.i 0.967383i
\(156\) 2064.62 184341.i 0.00679250 0.606470i
\(157\) 520723.i 1.68600i 0.537914 + 0.843000i \(0.319212\pi\)
−0.537914 + 0.843000i \(0.680788\pi\)
\(158\) 522042.i 1.66365i
\(159\) −2914.57 + 260228.i −0.00914285 + 0.816322i
\(160\) 607247.i 1.87528i
\(161\) 0 0
\(162\) −19445.3 + 433772.i −0.0582139 + 1.29860i
\(163\) 15304.1 0.0451169 0.0225585 0.999746i \(-0.492819\pi\)
0.0225585 + 0.999746i \(0.492819\pi\)
\(164\) −137250. −0.398477
\(165\) 9709.71 866935.i 0.0277649 2.47900i
\(166\) 26719.2i 0.0752582i
\(167\) −40217.2 −0.111589 −0.0557943 0.998442i \(-0.517769\pi\)
−0.0557943 + 0.998442i \(0.517769\pi\)
\(168\) 0 0
\(169\) 84202.7 0.226782
\(170\) 699317.i 1.85589i
\(171\) −5944.55 + 265347.i −0.0155464 + 0.693944i
\(172\) 364927. 0.940555
\(173\) 102252. 0.259750 0.129875 0.991530i \(-0.458542\pi\)
0.129875 + 0.991530i \(0.458542\pi\)
\(174\) 695274. + 7787.11i 1.74094 + 0.0194986i
\(175\) 0 0
\(176\) 774803.i 1.88543i
\(177\) −447172. 5008.35i −1.07286 0.0120160i
\(178\) 605140.i 1.43155i
\(179\) 334805.i 0.781015i −0.920600 0.390507i \(-0.872300\pi\)
0.920600 0.390507i \(-0.127700\pi\)
\(180\) 478487. + 10719.5i 1.10075 + 0.0246600i
\(181\) 87252.4i 0.197962i −0.995089 0.0989808i \(-0.968442\pi\)
0.995089 0.0989808i \(-0.0315583\pi\)
\(182\) 0 0
\(183\) −3505.73 + 313010.i −0.00773839 + 0.690925i
\(184\) −59309.0 −0.129144
\(185\) −453014. −0.973156
\(186\) 371665. + 4162.66i 0.787715 + 0.00882244i
\(187\) 664240.i 1.38906i
\(188\) −606750. −1.25203
\(189\) 0 0
\(190\) 716704. 1.44031
\(191\) 573929.i 1.13835i 0.822217 + 0.569174i \(0.192737\pi\)
−0.822217 + 0.569174i \(0.807263\pi\)
\(192\) −159915. 1791.06i −0.313066 0.00350636i
\(193\) −32676.0 −0.0631445 −0.0315722 0.999501i \(-0.510051\pi\)
−0.0315722 + 0.999501i \(0.510051\pi\)
\(194\) −401997. −0.766864
\(195\) 8347.23 745285.i 0.0157201 1.40358i
\(196\) 0 0
\(197\) 1.03884e6i 1.90714i −0.301179 0.953568i \(-0.597380\pi\)
0.301179 0.953568i \(-0.402620\pi\)
\(198\) 1.11341e6 + 24943.6i 2.01833 + 0.0452165i
\(199\) 613372.i 1.09797i −0.835832 0.548986i \(-0.815014\pi\)
0.835832 0.548986i \(-0.184986\pi\)
\(200\) 353202.i 0.624378i
\(201\) 389107. + 4358.02i 0.679327 + 0.00760850i
\(202\) 376404.i 0.649046i
\(203\) 0 0
\(204\) −366660. 4106.61i −0.616862 0.00690889i
\(205\) −554900. −0.922210
\(206\) −779215. −1.27935
\(207\) −4421.42 + 197359.i −0.00717193 + 0.320134i
\(208\) 666081.i 1.06750i
\(209\) 680755. 1.07802
\(210\) 0 0
\(211\) 271530. 0.419867 0.209934 0.977716i \(-0.432675\pi\)
0.209934 + 0.977716i \(0.432675\pi\)
\(212\) 368480.i 0.563086i
\(213\) 2097.12 187242.i 0.00316720 0.282784i
\(214\) 1.02659e6 1.53237
\(215\) 1.47539e6 2.17676
\(216\) 9289.90 276391.i 0.0135480 0.403079i
\(217\) 0 0
\(218\) 1.67499e6i 2.38710i
\(219\) −7059.46 + 630306.i −0.00994629 + 0.888058i
\(220\) 1.22757e6i 1.70997i
\(221\) 571033.i 0.786467i
\(222\) 6517.11 581882.i 0.00887509 0.792415i
\(223\) 284455.i 0.383046i −0.981488 0.191523i \(-0.938657\pi\)
0.981488 0.191523i \(-0.0613427\pi\)
\(224\) 0 0
\(225\) 1.17533e6 + 26330.8i 1.54776 + 0.0346743i
\(226\) 420978. 0.548263
\(227\) 682203. 0.878716 0.439358 0.898312i \(-0.355206\pi\)
0.439358 + 0.898312i \(0.355206\pi\)
\(228\) −4208.71 + 375776.i −0.00536182 + 0.478731i
\(229\) 83147.7i 0.104776i 0.998627 + 0.0523879i \(0.0166832\pi\)
−0.998627 + 0.0523879i \(0.983317\pi\)
\(230\) 533068. 0.664451
\(231\) 0 0
\(232\) −442849. −0.540176
\(233\) 1.05091e6i 1.26816i −0.773266 0.634081i \(-0.781378\pi\)
0.773266 0.634081i \(-0.218622\pi\)
\(234\) 957175. + 21443.5i 1.14275 + 0.0256010i
\(235\) −2.45308e6 −2.89762
\(236\) −633191. −0.740039
\(237\) −1.10661e6 12394.1i −1.27975 0.0143333i
\(238\) 0 0
\(239\) 457976.i 0.518618i −0.965794 0.259309i \(-0.916505\pi\)
0.965794 0.259309i \(-0.0834948\pi\)
\(240\) −1.72914e6 19366.5i −1.93777 0.0217032i
\(241\) 636671.i 0.706110i 0.935603 + 0.353055i \(0.114857\pi\)
−0.935603 + 0.353055i \(0.885143\pi\)
\(242\) 1.67222e6i 1.83550i
\(243\) −919040. 51518.2i −0.998433 0.0559687i
\(244\) 443219.i 0.476589i
\(245\) 0 0
\(246\) 7982.85 712751.i 0.00841047 0.750931i
\(247\) 585230. 0.610358
\(248\) −236728. −0.244411
\(249\) 56638.9 + 634.359i 0.0578917 + 0.000648390i
\(250\) 1.12401e6i 1.13742i
\(251\) −703922. −0.705245 −0.352623 0.935766i \(-0.614710\pi\)
−0.352623 + 0.935766i \(0.614710\pi\)
\(252\) 0 0
\(253\) 506330. 0.497316
\(254\) 98934.6i 0.0962197i
\(255\) −1.48240e6 16602.9i −1.42763 0.0159895i
\(256\) 1.37483e6 1.31114
\(257\) −560078. −0.528951 −0.264475 0.964392i \(-0.585199\pi\)
−0.264475 + 0.964392i \(0.585199\pi\)
\(258\) −21225.1 + 1.89509e6i −0.0198519 + 1.77248i
\(259\) 0 0
\(260\) 1.05532e6i 0.968164i
\(261\) −33013.9 + 1.47364e6i −0.0299982 + 1.33903i
\(262\) 1.22361e6i 1.10126i
\(263\) 1.32317e6i 1.17958i −0.807558 0.589788i \(-0.799211\pi\)
0.807558 0.589788i \(-0.200789\pi\)
\(264\) −709266. 7943.82i −0.626324 0.00701487i
\(265\) 1.48976e6i 1.30317i
\(266\) 0 0
\(267\) −1.28276e6 14367.0i −1.10121 0.0123336i
\(268\) 550971. 0.468589
\(269\) 803833. 0.677306 0.338653 0.940911i \(-0.390029\pi\)
0.338653 + 0.940911i \(0.390029\pi\)
\(270\) −83497.4 + 2.48420e6i −0.0697050 + 2.07385i
\(271\) 1.59491e6i 1.31921i −0.751613 0.659604i \(-0.770724\pi\)
0.751613 0.659604i \(-0.229276\pi\)
\(272\) 1.32486e6 1.08579
\(273\) 0 0
\(274\) −1.88188e6 −1.51432
\(275\) 3.01534e6i 2.40438i
\(276\) −3130.34 + 279494.i −0.00247354 + 0.220851i
\(277\) −1.16511e6 −0.912366 −0.456183 0.889886i \(-0.650784\pi\)
−0.456183 + 0.889886i \(0.650784\pi\)
\(278\) −202643. −0.157261
\(279\) −17647.9 + 787749.i −0.0135732 + 0.605867i
\(280\) 0 0
\(281\) 976585.i 0.737810i 0.929467 + 0.368905i \(0.120267\pi\)
−0.929467 + 0.368905i \(0.879733\pi\)
\(282\) 35290.3 3.15090e6i 0.0264260 2.35946i
\(283\) 423342.i 0.314214i −0.987582 0.157107i \(-0.949783\pi\)
0.987582 0.157107i \(-0.0502167\pi\)
\(284\) 265133.i 0.195060i
\(285\) −17015.7 + 1.51926e6i −0.0124091 + 1.10795i
\(286\) 2.45565e6i 1.77522i
\(287\) 0 0
\(288\) 37036.5 1.65320e6i 0.0263117 1.17448i
\(289\) −284052. −0.200057
\(290\) 3.98032e6 2.77922
\(291\) 9544.07 852145.i 0.00660695 0.589904i
\(292\) 892506.i 0.612568i
\(293\) −1.12726e6 −0.767108 −0.383554 0.923518i \(-0.625300\pi\)
−0.383554 + 0.923518i \(0.625300\pi\)
\(294\) 0 0
\(295\) −2.55998e6 −1.71270
\(296\) 370625.i 0.245870i
\(297\) −79309.3 + 2.35959e6i −0.0521714 + 1.55219i
\(298\) −983121. −0.641308
\(299\) 435281. 0.281573
\(300\) 1.66446e6 + 18642.1i 1.06775 + 0.0119589i
\(301\) 0 0
\(302\) 545620.i 0.344249i
\(303\) 797894. + 8936.45i 0.499273 + 0.00559189i
\(304\) 1.35780e6i 0.842659i
\(305\) 1.79193e6i 1.10299i
\(306\) 42651.9 1.90386e6i 0.0260396 1.16233i
\(307\) 3.05776e6i 1.85165i −0.377957 0.925823i \(-0.623373\pi\)
0.377957 0.925823i \(-0.376627\pi\)
\(308\) 0 0
\(309\) 18499.8 1.65176e6i 0.0110223 0.984128i
\(310\) 2.12771e6 1.25750
\(311\) 726942. 0.426186 0.213093 0.977032i \(-0.431646\pi\)
0.213093 + 0.977032i \(0.431646\pi\)
\(312\) −609741. 6829.13i −0.354616 0.00397172i
\(313\) 1.96896e6i 1.13600i 0.823030 + 0.567998i \(0.192282\pi\)
−0.823030 + 0.567998i \(0.807718\pi\)
\(314\) −3.82905e6 −2.19163
\(315\) 0 0
\(316\) −1.56695e6 −0.882752
\(317\) 332011.i 0.185568i 0.995686 + 0.0927841i \(0.0295766\pi\)
−0.995686 + 0.0927841i \(0.970423\pi\)
\(318\) −1.91355e6 21431.8i −1.06114 0.0118848i
\(319\) 3.78067e6 2.08014
\(320\) −915484. −0.499776
\(321\) −24373.0 + 2.17615e6i −0.0132022 + 1.17876i
\(322\) 0 0
\(323\) 1.16404e6i 0.620816i
\(324\) −1.30200e6 58366.7i −0.689048 0.0308889i
\(325\) 2.59222e6i 1.36133i
\(326\) 112536.i 0.0586475i
\(327\) −3.55060e6 39767.0i −1.83625 0.0205661i
\(328\) 453980.i 0.232998i
\(329\) 0 0
\(330\) 6.37487e6 + 71398.9i 3.22245 + 0.0360916i
\(331\) −465032. −0.233299 −0.116650 0.993173i \(-0.537215\pi\)
−0.116650 + 0.993173i \(0.537215\pi\)
\(332\) 80200.1 0.0399328
\(333\) 1.23331e6 + 27629.7i 0.609482 + 0.0136542i
\(334\) 295731.i 0.145054i
\(335\) 2.22757e6 1.08447
\(336\) 0 0
\(337\) 3.03028e6 1.45348 0.726739 0.686913i \(-0.241035\pi\)
0.726739 + 0.686913i \(0.241035\pi\)
\(338\) 619172.i 0.294795i
\(339\) −9994.72 + 892382.i −0.00472358 + 0.421747i
\(340\) −2.09906e6 −0.984754
\(341\) 2.02099e6 0.941191
\(342\) −1.95119e6 43712.4i −0.902058 0.0202087i
\(343\) 0 0
\(344\) 1.20706e6i 0.549963i
\(345\) −12655.9 + 1.12999e6i −0.00572461 + 0.511123i
\(346\) 751892.i 0.337649i
\(347\) 891627.i 0.397521i 0.980048 + 0.198760i \(0.0636915\pi\)
−0.980048 + 0.198760i \(0.936308\pi\)
\(348\) −23373.7 + 2.08693e6i −0.0103462 + 0.923759i
\(349\) 484753.i 0.213038i −0.994311 0.106519i \(-0.966030\pi\)
0.994311 0.106519i \(-0.0339705\pi\)
\(350\) 0 0
\(351\) −68180.5 + 2.02849e6i −0.0295388 + 0.878832i
\(352\) −4.24132e6 −1.82450
\(353\) 2.40732e6 1.02825 0.514123 0.857717i \(-0.328118\pi\)
0.514123 + 0.857717i \(0.328118\pi\)
\(354\) 36828.1 3.28821e6i 0.0156197 1.39461i
\(355\) 1.07193e6i 0.451434i
\(356\) −1.81638e6 −0.759594
\(357\) 0 0
\(358\) 2.46194e6 1.01524
\(359\) 1.39291e6i 0.570409i −0.958467 0.285205i \(-0.907938\pi\)
0.958467 0.285205i \(-0.0920616\pi\)
\(360\) 35456.8 1.58269e6i 0.0144193 0.643633i
\(361\) 1.28311e6 0.518200
\(362\) 641597. 0.257330
\(363\) 3.54473e6 + 39701.2i 1.41194 + 0.0158138i
\(364\) 0 0
\(365\) 3.60839e6i 1.41769i
\(366\) −2.30167e6 25778.8i −0.898133 0.0100591i
\(367\) 1.58108e6i 0.612757i −0.951910 0.306378i \(-0.900883\pi\)
0.951910 0.306378i \(-0.0991173\pi\)
\(368\) 1.00990e6i 0.388740i
\(369\) 1.51069e6 + 33843.8i 0.577575 + 0.0129394i
\(370\) 3.33117e6i 1.26501i
\(371\) 0 0
\(372\) −12494.6 + 1.11558e6i −0.00468128 + 0.417970i
\(373\) 4.32869e6 1.61096 0.805480 0.592623i \(-0.201908\pi\)
0.805480 + 0.592623i \(0.201908\pi\)
\(374\) −4.88439e6 −1.80564
\(375\) 2.38266e6 + 26685.9i 0.874950 + 0.00979948i
\(376\) 2.00694e6i 0.732090i
\(377\) 3.25016e6 1.17774
\(378\) 0 0
\(379\) 2.71542e6 0.971045 0.485523 0.874224i \(-0.338629\pi\)
0.485523 + 0.874224i \(0.338629\pi\)
\(380\) 2.15125e6i 0.764243i
\(381\) 209720. + 2348.87i 0.0740162 + 0.000828985i
\(382\) −4.22030e6 −1.47974
\(383\) −211659. −0.0737291 −0.0368646 0.999320i \(-0.511737\pi\)
−0.0368646 + 0.999320i \(0.511737\pi\)
\(384\) −24846.4 + 2.21842e6i −0.00859875 + 0.767742i
\(385\) 0 0
\(386\) 240278.i 0.0820815i
\(387\) −4.01668e6 89985.3i −1.36329 0.0305418i
\(388\) 1.20663e6i 0.406906i
\(389\) 1.97112e6i 0.660449i 0.943902 + 0.330224i \(0.107124\pi\)
−0.943902 + 0.330224i \(0.892876\pi\)
\(390\) 5.48034e6 + 61380.1i 1.82451 + 0.0204346i
\(391\) 865789.i 0.286398i
\(392\) 0 0
\(393\) −2.59378e6 29050.5i −0.847135 0.00948795i
\(394\) 7.63892e6 2.47909
\(395\) −6.33516e6 −2.04298
\(396\) −74870.5 + 3.34200e6i −0.0239923 + 1.07095i
\(397\) 2.40025e6i 0.764328i −0.924095 0.382164i \(-0.875179\pi\)
0.924095 0.382164i \(-0.124821\pi\)
\(398\) 4.51034e6 1.42725
\(399\) 0 0
\(400\) −6.01424e6 −1.87945
\(401\) 4.20251e6i 1.30511i 0.757740 + 0.652556i \(0.226303\pi\)
−0.757740 + 0.652556i \(0.773697\pi\)
\(402\) −32046.0 + 2.86124e6i −0.00989029 + 0.883058i
\(403\) 1.73740e6 0.532889
\(404\) 1.12981e6 0.344391
\(405\) −5.26398e6 235975.i −1.59469 0.0714873i
\(406\) 0 0
\(407\) 3.16408e6i 0.946807i
\(408\) −13583.4 + 1.21280e6i −0.00403978 + 0.360693i
\(409\) 2.47881e6i 0.732715i −0.930474 0.366358i \(-0.880605\pi\)
0.930474 0.366358i \(-0.119395\pi\)
\(410\) 4.08037e6i 1.19878i
\(411\) 44679.1 3.98918e6i 0.0130467 1.16488i
\(412\) 2.33888e6i 0.678836i
\(413\) 0 0
\(414\) −1.45125e6 32512.3i −0.416142 0.00932280i
\(415\) 324247. 0.0924179
\(416\) −3.64617e6 −1.03301
\(417\) 4811.08 429559.i 0.00135489 0.120971i
\(418\) 5.00582e6i 1.40131i
\(419\) −1.55283e6 −0.432104 −0.216052 0.976382i \(-0.569318\pi\)
−0.216052 + 0.976382i \(0.569318\pi\)
\(420\) 0 0
\(421\) −5.16901e6 −1.42135 −0.710677 0.703519i \(-0.751611\pi\)
−0.710677 + 0.703519i \(0.751611\pi\)
\(422\) 1.99666e6i 0.545785i
\(423\) 6.67838e6 + 149615.i 1.81476 + 0.0406560i
\(424\) 1.21882e6 0.329248
\(425\) −5.15602e6 −1.38466
\(426\) 1.37686e6 + 15420.9i 0.367591 + 0.00411704i
\(427\) 0 0
\(428\) 3.08140e6i 0.813090i
\(429\) 5.20545e6 + 58301.3i 1.36557 + 0.0152945i
\(430\) 1.08491e7i 2.82957i
\(431\) 1.27104e6i 0.329584i −0.986328 0.164792i \(-0.947305\pi\)
0.986328 0.164792i \(-0.0526952\pi\)
\(432\) 4.70633e6 + 158186.i 1.21331 + 0.0407812i
\(433\) 7.34053e6i 1.88151i 0.339082 + 0.940757i \(0.389884\pi\)
−0.339082 + 0.940757i \(0.610116\pi\)
\(434\) 0 0
\(435\) −94499.3 + 8.43740e6i −0.0239445 + 2.13789i
\(436\) −5.02762e6 −1.26662
\(437\) −887315. −0.222267
\(438\) −4.63486e6 51910.7i −1.15439 0.0129292i
\(439\) 3.93669e6i 0.974923i −0.873145 0.487461i \(-0.837923\pi\)
0.873145 0.487461i \(-0.162077\pi\)
\(440\) −4.06042e6 −0.999859
\(441\) 0 0
\(442\) −4.19900e6 −1.02233
\(443\) 6.00643e6i 1.45414i 0.686562 + 0.727071i \(0.259119\pi\)
−0.686562 + 0.727071i \(0.740881\pi\)
\(444\) 1.74657e6 + 19561.7i 0.420464 + 0.00470921i
\(445\) −7.34359e6 −1.75796
\(446\) 2.09169e6 0.497922
\(447\) 23340.9 2.08400e6i 0.00552522 0.493321i
\(448\) 0 0
\(449\) 7.26371e6i 1.70037i 0.526487 + 0.850183i \(0.323509\pi\)
−0.526487 + 0.850183i \(0.676491\pi\)
\(450\) −193620. + 8.64261e6i −0.0450732 + 2.01193i
\(451\) 3.87570e6i 0.897240i
\(452\) 1.26360e6i 0.290914i
\(453\) −1.15659e6 12953.9i −0.264811 0.00296589i
\(454\) 5.01647e6i 1.14224i
\(455\) 0 0
\(456\) 1.24295e6 + 13921.1i 0.279925 + 0.00313517i
\(457\) −7.48597e6 −1.67671 −0.838354 0.545126i \(-0.816482\pi\)
−0.838354 + 0.545126i \(0.816482\pi\)
\(458\) −611414. −0.136198
\(459\) 4.03474e6 + 135613.i 0.893891 + 0.0300449i
\(460\) 1.60005e6i 0.352565i
\(461\) 7.34169e6 1.60895 0.804477 0.593984i \(-0.202446\pi\)
0.804477 + 0.593984i \(0.202446\pi\)
\(462\) 0 0
\(463\) 2.80093e6 0.607225 0.303613 0.952796i \(-0.401807\pi\)
0.303613 + 0.952796i \(0.401807\pi\)
\(464\) 7.54073e6i 1.62599i
\(465\) −50515.4 + 4.51028e6i −0.0108341 + 0.967322i
\(466\) 7.72769e6 1.64848
\(467\) −739519. −0.156912 −0.0784562 0.996918i \(-0.524999\pi\)
−0.0784562 + 0.996918i \(0.524999\pi\)
\(468\) −64364.5 + 2.87304e6i −0.0135841 + 0.606356i
\(469\) 0 0
\(470\) 1.80383e7i 3.76662i
\(471\) 90908.1 8.11675e6i 0.0188821 1.68589i
\(472\) 2.09440e6i 0.432717i
\(473\) 1.03049e7i 2.11783i
\(474\) 91138.4 8.13732e6i 0.0186318 1.66355i
\(475\) 5.28421e6i 1.07460i
\(476\) 0 0
\(477\) 90861.6 4.05579e6i 0.0182845 0.816168i
\(478\) 3.36765e6 0.674151
\(479\) −6.54705e6 −1.30379 −0.651894 0.758310i \(-0.726025\pi\)
−0.651894 + 0.758310i \(0.726025\pi\)
\(480\) 106014. 9.46545e6i 0.0210019 1.87516i
\(481\) 2.72009e6i 0.536069i
\(482\) −4.68166e6 −0.917872
\(483\) 0 0
\(484\) 5.01930e6 0.973935
\(485\) 4.87837e6i 0.941717i
\(486\) 378831. 6.75802e6i 0.0727537 1.29786i
\(487\) −6.11473e6 −1.16830 −0.584151 0.811645i \(-0.698572\pi\)
−0.584151 + 0.811645i \(0.698572\pi\)
\(488\) 1.46603e6 0.278672
\(489\) −238553. 2671.80i −0.0451141 0.000505280i
\(490\) 0 0
\(491\) 2.69410e6i 0.504324i 0.967685 + 0.252162i \(0.0811416\pi\)
−0.967685 + 0.252162i \(0.918858\pi\)
\(492\) 2.13938e6 + 23961.2i 0.398452 + 0.00446268i
\(493\) 6.46468e6i 1.19793i
\(494\) 4.30340e6i 0.793404i
\(495\) −302700. + 1.35116e7i −0.0555264 + 2.47853i
\(496\) 4.03096e6i 0.735706i
\(497\) 0 0
\(498\) −4664.66 + 416486.i −0.000842843 + 0.0752535i
\(499\) 1.04559e6 0.187978 0.0939892 0.995573i \(-0.470038\pi\)
0.0939892 + 0.995573i \(0.470038\pi\)
\(500\) 3.37381e6 0.603526
\(501\) 626884. + 7021.13i 0.111582 + 0.00124972i
\(502\) 5.17618e6i 0.916748i
\(503\) 4.84541e6 0.853908 0.426954 0.904273i \(-0.359587\pi\)
0.426954 + 0.904273i \(0.359587\pi\)
\(504\) 0 0
\(505\) 4.56779e6 0.797036
\(506\) 3.72322e6i 0.646461i
\(507\) −1.31251e6 14700.2i −0.226768 0.00253982i
\(508\) 296961. 0.0510552
\(509\) 1.90068e6 0.325172 0.162586 0.986694i \(-0.448016\pi\)
0.162586 + 0.986694i \(0.448016\pi\)
\(510\) 122087. 1.09006e7i 0.0207847 1.85577i
\(511\) 0 0
\(512\) 5.55532e6i 0.936556i
\(513\) 138985. 4.13506e6i 0.0233171 0.693727i
\(514\) 4.11844e6i 0.687583i
\(515\) 9.45604e6i 1.57105i
\(516\) −5.68829e6 63709.1i −0.940496 0.0105336i
\(517\) 1.71335e7i 2.81917i
\(518\) 0 0
\(519\) −1.59385e6 17851.1i −0.259733 0.00290903i
\(520\) −3.49065e6 −0.566107
\(521\) 1.10379e7 1.78153 0.890766 0.454461i \(-0.150168\pi\)
0.890766 + 0.454461i \(0.150168\pi\)
\(522\) −1.08362e7 242763.i −1.74061 0.0389947i
\(523\) 199228.i 0.0318490i 0.999873 + 0.0159245i \(0.00506914\pi\)
−0.999873 + 0.0159245i \(0.994931\pi\)
\(524\) −3.67277e6 −0.584340
\(525\) 0 0
\(526\) 9.72972e6 1.53333
\(527\) 3.45575e6i 0.542020i
\(528\) 135266. 1.20772e7i 0.0211155 1.88531i
\(529\) 5.77638e6 0.897463
\(530\) −1.09547e7 −1.69399
\(531\) 6.96941e6 + 156135.i 1.07265 + 0.0240306i
\(532\) 0 0
\(533\) 3.33186e6i 0.508005i
\(534\) 105646. 9.43261e6i 0.0160324 1.43146i
\(535\) 1.24580e7i 1.88176i
\(536\) 1.82244e6i 0.273994i
\(537\) −58450.4 + 5.21876e6i −0.00874686 + 0.780966i
\(538\) 5.91086e6i 0.880431i
\(539\) 0 0
\(540\) −7.45654e6 250625.i −1.10041 0.0369862i
\(541\) 2.29138e6 0.336593 0.168296 0.985736i \(-0.446173\pi\)
0.168296 + 0.985736i \(0.446173\pi\)
\(542\) 1.17279e7 1.71484
\(543\) −15232.6 + 1.36005e6i −0.00221704 + 0.197949i
\(544\) 7.25237e6i 1.05071i
\(545\) −2.03266e7 −2.93138
\(546\) 0 0
\(547\) 7.36525e6 1.05249 0.526247 0.850332i \(-0.323599\pi\)
0.526247 + 0.850332i \(0.323599\pi\)
\(548\) 5.64864e6i 0.803512i
\(549\) 109291. 4.87843e6i 0.0154758 0.690795i
\(550\) 2.21728e7 3.12546
\(551\) −6.62541e6 −0.929681
\(552\) 924477. + 10354.2i 0.129136 + 0.00144633i
\(553\) 0 0
\(554\) 8.56749e6i 1.18598i
\(555\) 7.06135e6 + 79087.4i 0.973095 + 0.0108987i
\(556\) 608251.i 0.0834441i
\(557\) 1.00895e7i 1.37794i 0.724788 + 0.688971i \(0.241937\pi\)
−0.724788 + 0.688971i \(0.758063\pi\)
\(558\) −5.79259e6 129771.i −0.787566 0.0176438i
\(559\) 8.85888e6i 1.19908i
\(560\) 0 0
\(561\) 115963. 1.03538e7i 0.0155566 1.38897i
\(562\) −7.18117e6 −0.959079
\(563\) −15191.7 −0.00201993 −0.00100996 0.999999i \(-0.500321\pi\)
−0.00100996 + 0.999999i \(0.500321\pi\)
\(564\) 9.45770e6 + 105927.i 1.25195 + 0.0140219i
\(565\) 5.10872e6i 0.673273i
\(566\) 3.11298e6 0.408446
\(567\) 0 0
\(568\) −876977. −0.114056
\(569\) 1.34025e7i 1.73542i 0.497072 + 0.867709i \(0.334409\pi\)
−0.497072 + 0.867709i \(0.665591\pi\)
\(570\) −1.11716e7 125123.i −1.44022 0.0161305i
\(571\) −1.05882e7 −1.35904 −0.679522 0.733655i \(-0.737813\pi\)
−0.679522 + 0.733655i \(0.737813\pi\)
\(572\) 7.37086e6 0.941950
\(573\) 100197. 8.94611e6i 0.0127488 1.13828i
\(574\) 0 0
\(575\) 3.93027e6i 0.495739i
\(576\) 2.49236e6 + 55836.1i 0.313007 + 0.00701228i
\(577\) 1.38406e7i 1.73068i 0.501185 + 0.865340i \(0.332897\pi\)
−0.501185 + 0.865340i \(0.667103\pi\)
\(578\) 2.08873e6i 0.260054i
\(579\) 509336. + 5704.59i 0.0631405 + 0.000707177i
\(580\) 1.19473e7i 1.47468i
\(581\) 0 0
\(582\) 6.26612e6 + 70180.8i 0.766816 + 0.00858838i
\(583\) −1.04052e7 −1.26789
\(584\) 2.95213e6 0.358182
\(585\) −260225. + 1.16157e7i −0.0314383 + 1.40331i
\(586\) 8.28916e6i 0.997164i
\(587\) 9.67019e6 1.15835 0.579175 0.815203i \(-0.303375\pi\)
0.579175 + 0.815203i \(0.303375\pi\)
\(588\) 0 0
\(589\) −3.54167e6 −0.420649
\(590\) 1.88244e7i 2.22634i
\(591\) −181361. + 1.61928e7i −0.0213587 + 1.90702i
\(592\) −6.31092e6 −0.740096
\(593\) −4.23541e6 −0.494605 −0.247302 0.968938i \(-0.579544\pi\)
−0.247302 + 0.968938i \(0.579544\pi\)
\(594\) −1.73509e7 583188.i −2.01770 0.0678177i
\(595\) 0 0
\(596\) 2.95092e6i 0.340285i
\(597\) −107083. + 9.56092e6i −0.0122966 + 1.09790i
\(598\) 3.20077e6i 0.366017i
\(599\) 1.58076e7i 1.80011i −0.435773 0.900057i \(-0.643525\pi\)
0.435773 0.900057i \(-0.356475\pi\)
\(600\) 61662.1 5.50552e6i 0.00699263 0.624339i
\(601\) 1.65411e6i 0.186800i 0.995629 + 0.0934001i \(0.0297736\pi\)
−0.995629 + 0.0934001i \(0.970226\pi\)
\(602\) 0 0
\(603\) −6.06444e6 135861.i −0.679200 0.0152160i
\(604\) −1.63773e6 −0.182662
\(605\) 2.02929e7 2.25401
\(606\) −65712.8 + 5.86719e6i −0.00726890 + 0.649006i
\(607\) 1.15604e7i 1.27351i 0.771067 + 0.636755i \(0.219724\pi\)
−0.771067 + 0.636755i \(0.780276\pi\)
\(608\) 7.43268e6 0.815430
\(609\) 0 0
\(610\) −1.31766e7 −1.43377
\(611\) 1.47293e7i 1.59617i
\(612\) 5.71459e6 + 128023.i 0.616746 + 0.0138169i
\(613\) 2.51731e6 0.270574 0.135287 0.990806i \(-0.456804\pi\)
0.135287 + 0.990806i \(0.456804\pi\)
\(614\) 2.24848e7 2.40696
\(615\) 8.64949e6 + 96874.7i 0.922152 + 0.0103282i
\(616\) 0 0
\(617\) 8.37776e6i 0.885962i 0.896531 + 0.442981i \(0.146079\pi\)
−0.896531 + 0.442981i \(0.853921\pi\)
\(618\) 1.21460e7 + 136036.i 1.27927 + 0.0143279i
\(619\) 1.32169e7i 1.38645i −0.720721 0.693225i \(-0.756189\pi\)
0.720721 0.693225i \(-0.243811\pi\)
\(620\) 6.38651e6i 0.667243i
\(621\) 103374. 3.07556e6i 0.0107568 0.320034i
\(622\) 5.34546e6i 0.553999i
\(623\) 0 0
\(624\) 116285. 1.03825e7i 0.0119553 1.06744i
\(625\) −1.47837e6 −0.151385
\(626\) −1.44785e7 −1.47668
\(627\) −1.06112e7 118847.i −1.07795 0.0120731i
\(628\) 1.14932e7i 1.16290i
\(629\) −5.41036e6 −0.545255
\(630\) 0 0
\(631\) −515624. −0.0515536 −0.0257768 0.999668i \(-0.508206\pi\)
−0.0257768 + 0.999668i \(0.508206\pi\)
\(632\) 5.18299e6i 0.516164i
\(633\) −4.23247e6 47403.9i −0.419841 0.00470224i
\(634\) −2.44139e6 −0.241220
\(635\) 1.20061e6 0.118159
\(636\) 64329.5 5.74368e6i 0.00630619 0.563050i
\(637\) 0 0
\(638\) 2.78006e7i 2.70397i
\(639\) −65377.7 + 2.91827e6i −0.00633400 + 0.282731i
\(640\) 1.27000e7i 1.22562i
\(641\) 1.63765e7i 1.57426i −0.616789 0.787128i \(-0.711567\pi\)
0.616789 0.787128i \(-0.288433\pi\)
\(642\) −1.60020e7 179223.i −1.53227 0.0171615i
\(643\) 1.82259e7i 1.73845i 0.494417 + 0.869225i \(0.335381\pi\)
−0.494417 + 0.869225i \(0.664619\pi\)
\(644\) 0 0
\(645\) −2.29976e7 257575.i −2.17663 0.0243783i
\(646\) 8.55962e6 0.806999
\(647\) −1.76450e7 −1.65715 −0.828575 0.559878i \(-0.810848\pi\)
−0.828575 + 0.559878i \(0.810848\pi\)
\(648\) −193059. + 4.30662e6i −0.0180614 + 0.402902i
\(649\) 1.78802e7i 1.66633i
\(650\) 1.90615e7 1.76959
\(651\) 0 0
\(652\) −337788. −0.0311190
\(653\) 2.63042e6i 0.241403i 0.992689 + 0.120701i \(0.0385143\pi\)
−0.992689 + 0.120701i \(0.961486\pi\)
\(654\) 292420. 2.61088e7i 0.0267339 2.38695i
\(655\) −1.48489e7 −1.35236
\(656\) −7.73028e6 −0.701351
\(657\) 220078. 9.82365e6i 0.0198913 0.887891i
\(658\) 0 0
\(659\) 1.85224e7i 1.66144i −0.556693 0.830718i \(-0.687930\pi\)
0.556693 0.830718i \(-0.312070\pi\)
\(660\) −214310. + 1.91347e7i −0.0191506 + 1.70987i
\(661\) 1.90277e7i 1.69388i −0.531692 0.846938i \(-0.678444\pi\)
0.531692 0.846938i \(-0.321556\pi\)
\(662\) 3.41954e6i 0.303266i
\(663\) 99691.2 8.90096e6i 0.00880792 0.786417i
\(664\) 265277.i 0.0233496i
\(665\) 0 0
\(666\) −203171. + 9.06894e6i −0.0177491 + 0.792266i
\(667\) −4.92783e6 −0.428885
\(668\) 887661. 0.0769672
\(669\) −49660.3 + 4.43393e6i −0.00428987 + 0.383022i
\(670\) 1.63801e7i 1.40971i
\(671\) −1.25157e7 −1.07312
\(672\) 0 0
\(673\) 1.26436e7 1.07605 0.538024 0.842929i \(-0.319171\pi\)
0.538024 + 0.842929i \(0.319171\pi\)
\(674\) 2.22827e7i 1.88938i
\(675\) −1.83158e7 615621.i −1.54727 0.0520061i
\(676\) −1.85850e6 −0.156421
\(677\) 7.13591e6 0.598381 0.299190 0.954193i \(-0.403283\pi\)
0.299190 + 0.954193i \(0.403283\pi\)
\(678\) −6.56199e6 73494.7i −0.548228 0.00614019i
\(679\) 0 0
\(680\) 6.94303e6i 0.575807i
\(681\) −1.06338e7 119099.i −0.878661 0.00984105i
\(682\) 1.48610e7i 1.22345i
\(683\) 1.21231e7i 0.994400i −0.867636 0.497200i \(-0.834362\pi\)
0.867636 0.497200i \(-0.165638\pi\)
\(684\) 131206. 5.85667e6i 0.0107230 0.478641i
\(685\) 2.28373e7i 1.85960i
\(686\) 0 0
\(687\) 14516.0 1.29606e6i 0.00117342 0.104769i
\(688\) 2.05536e7 1.65545
\(689\) −8.94515e6 −0.717860
\(690\) −8.30919e6 93063.3i −0.664409 0.00744142i
\(691\) 4.52687e6i 0.360664i −0.983606 0.180332i \(-0.942283\pi\)
0.983606 0.180332i \(-0.0577172\pi\)
\(692\) −2.25687e6 −0.179160
\(693\) 0 0
\(694\) −6.55644e6 −0.516737
\(695\) 2.45915e6i 0.193118i
\(696\) 6.90290e6 + 77312.8i 0.540142 + 0.00604962i
\(697\) −6.62718e6 −0.516710
\(698\) 3.56456e6 0.276928
\(699\) −183468. + 1.63810e7i −0.0142026 + 1.26808i
\(700\) 0 0
\(701\) 1.01222e7i 0.778001i 0.921237 + 0.389001i \(0.127180\pi\)
−0.921237 + 0.389001i \(0.872820\pi\)
\(702\) −1.49162e7 501355.i −1.14239 0.0383974i
\(703\) 5.54488e6i 0.423159i
\(704\) 6.39420e6i 0.486245i
\(705\) 3.82373e7 + 428260.i 2.89744 + 0.0324515i
\(706\) 1.77018e7i 1.33662i
\(707\) 0 0
\(708\) 9.86985e6 + 110543.i 0.739993 + 0.00828796i
\(709\) −1.56987e6 −0.117286 −0.0586431 0.998279i \(-0.518677\pi\)
−0.0586431 + 0.998279i \(0.518677\pi\)
\(710\) 7.88225e6 0.586820
\(711\) 1.72472e7 + 386387.i 1.27951 + 0.0286648i
\(712\) 6.00801e6i 0.444151i
\(713\) −2.63421e6 −0.194056
\(714\) 0 0
\(715\) 2.98002e7 2.17999
\(716\) 7.38971e6i 0.538697i
\(717\) −79953.6 + 7.13868e6i −0.00580818 + 0.518585i
\(718\) 1.02425e7 0.741475
\(719\) 3.81731e6 0.275382 0.137691 0.990475i \(-0.456032\pi\)
0.137691 + 0.990475i \(0.456032\pi\)
\(720\) 2.69496e7 + 603750.i 1.93741 + 0.0434036i
\(721\) 0 0
\(722\) 9.43518e6i 0.673608i
\(723\) 111150. 9.92409e6i 0.00790797 0.706066i
\(724\) 1.92581e6i 0.136542i
\(725\) 2.93466e7i 2.07354i
\(726\) −291937. + 2.60656e7i −0.0205564 + 1.83538i
\(727\) 1.11485e7i 0.782310i −0.920325 0.391155i \(-0.872076\pi\)
0.920325 0.391155i \(-0.127924\pi\)
\(728\) 0 0
\(729\) 1.43165e7 + 963485.i 0.997743 + 0.0671469i
\(730\) −2.65337e7 −1.84285
\(731\) 1.76206e7 1.21963
\(732\) 77377.4 6.90866e6i 0.00533748 0.476559i
\(733\) 1.41807e7i 0.974850i −0.873165 0.487425i \(-0.837936\pi\)
0.873165 0.487425i \(-0.162064\pi\)
\(734\) 1.16262e7 0.796523
\(735\) 0 0
\(736\) 5.52826e6 0.376178
\(737\) 1.55585e7i 1.05511i
\(738\) −248865. + 1.11086e7i −0.0168199 + 0.750790i
\(739\) 2.63965e7 1.77801 0.889006 0.457896i \(-0.151397\pi\)
0.889006 + 0.457896i \(0.151397\pi\)
\(740\) 9.99879e6 0.671225
\(741\) −9.12226e6 102170.i −0.610319 0.00683561i
\(742\) 0 0
\(743\) 3.04678e6i 0.202474i 0.994862 + 0.101237i \(0.0322800\pi\)
−0.994862 + 0.101237i \(0.967720\pi\)
\(744\) 3.69000e6 + 41328.2i 0.244396 + 0.00273725i
\(745\) 1.19305e7i 0.787533i
\(746\) 3.18304e7i 2.09409i
\(747\) −882747. 19776.1i −0.0578808 0.00129670i
\(748\) 1.46609e7i 0.958091i
\(749\) 0 0
\(750\) −196230. + 1.75205e7i −0.0127383 + 1.13735i
\(751\) 1.26517e7 0.818559 0.409279 0.912409i \(-0.365780\pi\)
0.409279 + 0.912409i \(0.365780\pi\)
\(752\) −3.41737e7 −2.20367
\(753\) 1.09724e7 + 122891.i 0.705201 + 0.00789829i
\(754\) 2.38995e7i 1.53095i
\(755\) −6.62129e6 −0.422742
\(756\) 0 0
\(757\) −1.58198e7 −1.00337 −0.501686 0.865050i \(-0.667287\pi\)
−0.501686 + 0.865050i \(0.667287\pi\)
\(758\) 1.99674e7i 1.26226i
\(759\) −7.89240e6 88395.3i −0.497284 0.00556961i
\(760\) 7.11566e6 0.446870
\(761\) −6.50793e6 −0.407363 −0.203681 0.979037i \(-0.565291\pi\)
−0.203681 + 0.979037i \(0.565291\pi\)
\(762\) −17272.1 + 1.54214e6i −0.00107760 + 0.0962136i
\(763\) 0 0
\(764\) 1.26676e7i 0.785165i
\(765\) 2.31040e7 + 517596.i 1.42736 + 0.0319770i
\(766\) 1.55640e6i 0.0958405i
\(767\) 1.53712e7i 0.943452i
\(768\) −2.14301e7 240018.i −1.31105 0.0146839i
\(769\) 1.80464e7i 1.10046i 0.835012 + 0.550231i \(0.185460\pi\)
−0.835012 + 0.550231i \(0.814540\pi\)
\(770\) 0 0
\(771\) 8.73020e6 + 97778.7i 0.528918 + 0.00592391i
\(772\) 721214. 0.0435533
\(773\) −8.59104e6 −0.517127 −0.258563 0.965994i \(-0.583249\pi\)
−0.258563 + 0.965994i \(0.583249\pi\)
\(774\) 661693. 2.95360e7i 0.0397013 1.77215i
\(775\) 1.56875e7i 0.938207i
\(776\) −3.99115e6 −0.237927
\(777\) 0 0
\(778\) −1.44943e7 −0.858518
\(779\) 6.79195e6i 0.401006i
\(780\) −184238. + 1.64497e7i −0.0108428 + 0.968103i
\(781\) 7.48689e6 0.439211
\(782\) 6.36645e6 0.372289
\(783\) 771873. 2.29646e7i 0.0449927 1.33861i
\(784\) 0 0
\(785\) 4.64669e7i 2.69135i
\(786\) 213619. 1.90730e7i 0.0123334 1.10119i
\(787\) 1.75995e7i 1.01289i −0.862271 0.506447i \(-0.830959\pi\)
0.862271 0.506447i \(-0.169041\pi\)
\(788\) 2.29289e7i 1.31543i
\(789\) −231000. + 2.06249e7i −0.0132105 + 1.17950i
\(790\) 4.65846e7i 2.65568i
\(791\) 0 0
\(792\) 1.10543e7 + 247648.i 0.626207 + 0.0140289i
\(793\) −1.07595e7 −0.607587
\(794\) 1.76498e7 0.993550
\(795\) 260083. 2.32216e7i 0.0145947 1.30309i
\(796\) 1.35382e7i 0.757316i
\(797\) −2.22022e7 −1.23808 −0.619042 0.785358i \(-0.712479\pi\)
−0.619042 + 0.785358i \(0.712479\pi\)
\(798\) 0 0
\(799\) −2.92972e7 −1.62352
\(800\) 3.29223e7i 1.81872i
\(801\) 1.99926e7 + 447891.i 1.10100 + 0.0246656i
\(802\) −3.09025e7 −1.69652
\(803\) −2.52028e7 −1.37930
\(804\) −8.58826e6 96188.9i −0.468560 0.00524789i
\(805\) 0 0
\(806\) 1.27757e7i 0.692703i
\(807\) −1.25297e7 140334.i −0.677264 0.00758539i
\(808\) 3.73705e6i 0.201373i
\(809\) 1.62985e7i 0.875541i −0.899087 0.437770i \(-0.855768\pi\)
0.899087 0.437770i \(-0.144232\pi\)
\(810\) 1.73521e6 3.87078e7i 0.0929264 2.07294i
\(811\) 2.19393e7i 1.17131i −0.810562 0.585653i \(-0.800838\pi\)
0.810562 0.585653i \(-0.199162\pi\)
\(812\) 0 0
\(813\) −278441. + 2.48606e7i −0.0147743 + 1.31913i
\(814\) 2.32666e7 1.23075
\(815\) −1.36567e6 −0.0720198
\(816\) −2.06512e7 231295.i −1.08573 0.0121602i
\(817\) 1.80587e7i 0.946525i
\(818\) 1.82276e7 0.952457
\(819\) 0 0
\(820\) 1.22476e7 0.636085
\(821\) 1.30873e7i 0.677632i 0.940853 + 0.338816i \(0.110026\pi\)
−0.940853 + 0.338816i \(0.889974\pi\)
\(822\) 2.93338e7 + 328541.i 1.51422 + 0.0169594i
\(823\) 1.41992e7 0.730741 0.365371 0.930862i \(-0.380942\pi\)
0.365371 + 0.930862i \(0.380942\pi\)
\(824\) −7.73628e6 −0.396930
\(825\) −526419. + 4.70015e7i −0.0269275 + 2.40423i
\(826\) 0 0
\(827\) 5.24134e6i 0.266489i −0.991083 0.133244i \(-0.957460\pi\)
0.991083 0.133244i \(-0.0425395\pi\)
\(828\) 97588.3 4.35605e6i 0.00494677 0.220809i
\(829\) 1.62990e7i 0.823712i 0.911249 + 0.411856i \(0.135119\pi\)
−0.911249 + 0.411856i \(0.864881\pi\)
\(830\) 2.38430e6i 0.120134i
\(831\) 1.81612e7 + 203406.i 0.912309 + 0.0102179i
\(832\) 5.49696e6i 0.275305i
\(833\) 0 0
\(834\) 3.15870e6 + 35377.6i 0.157251 + 0.00176122i
\(835\) 3.58880e6 0.178128
\(836\) −1.50254e7 −0.743551
\(837\) 412611. 1.22759e7i 0.0203576 0.605677i
\(838\) 1.14185e7i 0.561692i
\(839\) 3.24297e7 1.59051 0.795257 0.606273i \(-0.207336\pi\)
0.795257 + 0.606273i \(0.207336\pi\)
\(840\) 0 0
\(841\) −1.62840e7 −0.793910
\(842\) 3.80095e7i 1.84762i
\(843\) 170493. 1.52225e7i 0.00826299 0.737763i
\(844\) −5.99313e6 −0.289599
\(845\) −7.51387e6 −0.362011
\(846\) −1.10017e6 + 4.91084e7i −0.0528488 + 2.35901i
\(847\) 0 0
\(848\) 2.07537e7i 0.991076i
\(849\) −73907.2 + 6.59883e6i −0.00351899 + 0.314194i
\(850\) 3.79140e7i 1.79992i
\(851\) 4.12415e6i 0.195214i
\(852\) −46287.1 + 4.13276e6i −0.00218454 + 0.195048i
\(853\) 2.65171e7i 1.24783i 0.781494 + 0.623913i \(0.214458\pi\)
−0.781494 + 0.623913i \(0.785542\pi\)
\(854\) 0 0
\(855\) 530465. 2.36784e7i 0.0248165 1.10774i
\(856\) 1.01923e7 0.475432
\(857\) −1.14566e7 −0.532848 −0.266424 0.963856i \(-0.585842\pi\)
−0.266424 + 0.963856i \(0.585842\pi\)
\(858\) −428710. + 3.82775e7i −0.0198813 + 1.77511i
\(859\) 1.85675e7i 0.858560i −0.903171 0.429280i \(-0.858767\pi\)
0.903171 0.429280i \(-0.141233\pi\)
\(860\) −3.25644e7 −1.50140
\(861\) 0 0
\(862\) 9.34639e6 0.428426
\(863\) 2.57457e7i 1.17673i −0.808595 0.588366i \(-0.799772\pi\)
0.808595 0.588366i \(-0.200228\pi\)
\(864\) −865922. + 2.57627e7i −0.0394634 + 1.17411i
\(865\) −9.12447e6 −0.414636
\(866\) −5.39774e7 −2.44578
\(867\) 4.42766e6 + 49590.0i 0.200044 + 0.00224051i
\(868\) 0 0
\(869\) 4.42480e7i 1.98767i
\(870\) −6.20431e7 694886.i −2.77904 0.0311254i
\(871\) 1.33753e7i 0.597389i
\(872\) 1.66298e7i 0.740620i
\(873\) −297536. + 1.32811e7i −0.0132131 + 0.589793i
\(874\) 6.52473e6i 0.288924i
\(875\) 0 0
\(876\) 155814. 1.39119e7i 0.00686036 0.612529i
\(877\) 3.36055e7 1.47540 0.737702 0.675127i \(-0.235911\pi\)
0.737702 + 0.675127i \(0.235911\pi\)
\(878\) 2.89479e7 1.26730
\(879\) 1.75712e7 + 196798.i 0.767060 + 0.00859111i
\(880\) 6.91399e7i 3.00969i
\(881\) −2.02040e7 −0.876995 −0.438497 0.898732i \(-0.644489\pi\)
−0.438497 + 0.898732i \(0.644489\pi\)
\(882\) 0 0
\(883\) −2.26260e7 −0.976575 −0.488287 0.872683i \(-0.662378\pi\)
−0.488287 + 0.872683i \(0.662378\pi\)
\(884\) 1.26037e7i 0.542458i
\(885\) 3.99036e7 + 446922.i 1.71259 + 0.0191811i
\(886\) −4.41673e7 −1.89024
\(887\) 1.19883e7 0.511620 0.255810 0.966727i \(-0.417658\pi\)
0.255810 + 0.966727i \(0.417658\pi\)
\(888\) 64703.9 5.77710e6i 0.00275358 0.245854i
\(889\) 0 0
\(890\) 5.39999e7i 2.28517i
\(891\) 1.64817e6 3.67663e7i 0.0695517 1.55151i
\(892\) 6.27840e6i 0.264202i
\(893\) 3.00256e7i 1.25998i
\(894\) 1.53244e7 + 171634.i 0.641268 + 0.00718223i
\(895\) 2.98765e7i 1.24673i
\(896\) 0 0
\(897\) −6.78493e6 75991.6i −0.281556 0.00315344i
\(898\) −5.34125e7 −2.21031
\(899\) −1.96692e7 −0.811683
\(900\) −2.59415e7 581166.i −1.06755 0.0239163i
\(901\) 1.77922e7i 0.730160i
\(902\) 2.84994e7 1.16632
\(903\) 0 0
\(904\) 4.17960e6 0.170104
\(905\) 7.78601e6i 0.316005i
\(906\) 95254.7 8.50484e6i 0.00385537 0.344228i
\(907\) −2.97148e7 −1.19937 −0.599686 0.800235i \(-0.704708\pi\)
−0.599686 + 0.800235i \(0.704708\pi\)
\(908\) −1.50574e7 −0.606086
\(909\) −1.24356e7 278593.i −0.499179 0.0111831i
\(910\) 0 0
\(911\) 3.65820e7i 1.46040i 0.683234 + 0.730200i \(0.260573\pi\)
−0.683234 + 0.730200i \(0.739427\pi\)
\(912\) −237045. + 2.11647e7i −0.00943723 + 0.842606i
\(913\) 2.26471e6i 0.0899156i
\(914\) 5.50469e7i 2.17955i
\(915\) 312835. 2.79316e7i 0.0123527 1.10292i
\(916\) 1.83521e6i 0.0722682i
\(917\) 0 0
\(918\) −997212. + 2.96689e7i −0.0390554 + 1.16197i
\(919\) 2.19246e7 0.856332 0.428166 0.903700i \(-0.359160\pi\)
0.428166 + 0.903700i \(0.359160\pi\)
\(920\) 5.29246e6 0.206152
\(921\) −533826. + 4.76628e7i −0.0207372 + 1.85153i
\(922\) 5.39860e7i 2.09148i
\(923\) 6.43632e6 0.248676
\(924\) 0 0
\(925\) 2.45605e7 0.943805
\(926\) 2.05962e7i 0.789332i
\(927\) −576732. + 2.57436e7i −0.0220432 + 0.983943i
\(928\) 4.12784e7 1.57345
\(929\) 3.56775e7 1.35630 0.678148 0.734925i \(-0.262783\pi\)
0.678148 + 0.734925i \(0.262783\pi\)
\(930\) −3.31657e7 371457.i −1.25742 0.0140832i
\(931\) 0 0
\(932\) 2.31953e7i 0.874703i
\(933\) −1.13312e7 126910.i −0.426159 0.00477300i
\(934\) 5.43794e6i 0.203970i
\(935\) 5.92737e7i 2.21735i
\(936\) 9.50313e6 + 212898.i 0.354550 + 0.00794294i
\(937\) 8.00107e6i 0.297714i −0.988859 0.148857i \(-0.952441\pi\)
0.988859 0.148857i \(-0.0475594\pi\)
\(938\) 0 0
\(939\) 343743. 3.06912e7i 0.0127224 1.13592i
\(940\) 5.41436e7 1.99861
\(941\) 1.66012e7 0.611175 0.305588 0.952164i \(-0.401147\pi\)
0.305588 + 0.952164i \(0.401147\pi\)
\(942\) 5.96853e7 + 668479.i 2.19149 + 0.0245448i
\(943\) 5.05170e6i 0.184994i
\(944\) −3.56629e7 −1.30253
\(945\) 0 0
\(946\) −7.57753e7 −2.75296
\(947\) 1.68763e7i 0.611510i −0.952110 0.305755i \(-0.901091\pi\)
0.952110 0.305755i \(-0.0989088\pi\)
\(948\) 2.44249e7 + 273560.i 0.882696 + 0.00988624i
\(949\) −2.16663e7 −0.780943
\(950\) −3.88566e7 −1.39687
\(951\) 57962.6 5.17521e6i 0.00207824 0.185557i
\(952\) 0 0
\(953\) 1.90733e7i 0.680288i 0.940373 + 0.340144i \(0.110476\pi\)
−0.940373 + 0.340144i \(0.889524\pi\)
\(954\) 2.98236e7 + 668136.i 1.06094 + 0.0237681i
\(955\) 5.12148e7i 1.81714i
\(956\) 1.01083e7i 0.357712i
\(957\) −5.89311e7 660031.i −2.08001 0.0232962i
\(958\) 4.81428e7i 1.69479i
\(959\) 0 0
\(960\) 1.42701e7 + 159826.i 0.499745 + 0.00559717i
\(961\) 1.81148e7 0.632741
\(962\) 2.00018e7 0.696836
\(963\) 759826. 3.39164e7i 0.0264027 1.17854i
\(964\) 1.40524e7i 0.487033i
\(965\) 2.91585e6 0.100797
\(966\) 0 0
\(967\) −9.76047e6 −0.335664 −0.167832 0.985816i \(-0.553677\pi\)
−0.167832 + 0.985816i \(0.553677\pi\)
\(968\) 1.66023e7i 0.569481i
\(969\) −203219. + 1.81445e7i −0.00695274 + 0.620777i
\(970\) 3.58724e7 1.22414
\(971\) 1.21739e7 0.414363 0.207182 0.978303i \(-0.433571\pi\)
0.207182 + 0.978303i \(0.433571\pi\)
\(972\) 2.02848e7 + 1.13709e6i 0.688659 + 0.0386038i
\(973\) 0 0
\(974\) 4.49637e7i 1.51867i
\(975\) −452551. + 4.04062e7i −0.0152460 + 1.36124i
\(976\) 2.49632e7i 0.838834i
\(977\) 4.00397e7i 1.34201i 0.741454 + 0.671003i \(0.234136\pi\)
−0.741454 + 0.671003i \(0.765864\pi\)
\(978\) 19646.7 1.75416e6i 0.000656814 0.0586438i
\(979\) 5.12913e7i 1.71036i
\(980\) 0 0
\(981\) 5.53380e7 + 1.23973e6i 1.83591 + 0.0411297i
\(982\) −1.98106e7 −0.655571
\(983\) −3.47290e7 −1.14633 −0.573164 0.819441i \(-0.694284\pi\)
−0.573164 + 0.819441i \(0.694284\pi\)
\(984\) 79256.2 7.07641e6i 0.00260943 0.232984i
\(985\) 9.27010e7i 3.04435i
\(986\) 4.75370e7 1.55718
\(987\) 0 0
\(988\) −1.29170e7 −0.420988
\(989\) 1.34317e7i 0.436656i
\(990\) −9.93557e7 2.22586e6i −3.22185 0.0721787i
\(991\) 2.53964e7 0.821463 0.410732 0.911756i \(-0.365273\pi\)
0.410732 + 0.911756i \(0.365273\pi\)
\(992\) 2.20657e7 0.711933
\(993\) 7.24868e6 + 81185.6i 0.233285 + 0.00261280i
\(994\) 0 0
\(995\) 5.47345e7i 1.75268i
\(996\) −1.25012e6 14001.4i −0.0399303 0.000447221i
\(997\) 1.52307e7i 0.485268i −0.970118 0.242634i \(-0.921989\pi\)
0.970118 0.242634i \(-0.0780113\pi\)
\(998\) 7.68855e6i 0.244353i
\(999\) −1.92193e7 645989.i −0.609291 0.0204791i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.6.c.d.146.36 yes 40
3.2 odd 2 inner 147.6.c.d.146.5 40
7.6 odd 2 inner 147.6.c.d.146.6 yes 40
21.20 even 2 inner 147.6.c.d.146.35 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.6.c.d.146.5 40 3.2 odd 2 inner
147.6.c.d.146.6 yes 40 7.6 odd 2 inner
147.6.c.d.146.35 yes 40 21.20 even 2 inner
147.6.c.d.146.36 yes 40 1.1 even 1 trivial