Properties

Label 147.6.c.d.146.7
Level $147$
Weight $6$
Character 147.146
Analytic conductor $23.576$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(146,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.146");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 146.7
Character \(\chi\) \(=\) 147.146
Dual form 147.6.c.d.146.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.29037i q^{2} +(-1.28755 - 15.5352i) q^{3} +13.5927 q^{4} -75.7260 q^{5} +(-66.6517 + 5.52407i) q^{6} -195.610i q^{8} +(-239.684 + 40.0047i) q^{9} +324.892i q^{10} -683.827i q^{11} +(-17.5013 - 211.166i) q^{12} +904.705i q^{13} +(97.5011 + 1176.42i) q^{15} -404.270 q^{16} -831.582 q^{17} +(171.635 + 1028.33i) q^{18} +46.6911i q^{19} -1029.32 q^{20} -2933.87 q^{22} +3225.98i q^{23} +(-3038.83 + 251.857i) q^{24} +2609.42 q^{25} +3881.52 q^{26} +(930.087 + 3672.04i) q^{27} -644.085i q^{29} +(5047.27 - 418.316i) q^{30} -818.506i q^{31} -4525.04i q^{32} +(-10623.4 + 880.462i) q^{33} +3567.79i q^{34} +(-3257.97 + 543.773i) q^{36} +12520.8 q^{37} +200.322 q^{38} +(14054.8 - 1164.85i) q^{39} +14812.7i q^{40} -3585.21 q^{41} -12749.4 q^{43} -9295.07i q^{44} +(18150.3 - 3029.40i) q^{45} +13840.7 q^{46} +5088.30 q^{47} +(520.519 + 6280.42i) q^{48} -11195.4i q^{50} +(1070.70 + 12918.8i) q^{51} +12297.4i q^{52} +29225.7i q^{53} +(15754.4 - 3990.42i) q^{54} +51783.4i q^{55} +(725.355 - 60.1172i) q^{57} -2763.36 q^{58} -14257.9 q^{59} +(1325.31 + 15990.7i) q^{60} -1026.97i q^{61} -3511.69 q^{62} -32350.7 q^{64} -68509.7i q^{65} +(3777.51 + 45578.2i) q^{66} -6569.50 q^{67} -11303.5 q^{68} +(50116.3 - 4153.62i) q^{69} +21670.0i q^{71} +(7825.31 + 46884.6i) q^{72} -56169.9i q^{73} -53719.0i q^{74} +(-3359.77 - 40537.9i) q^{75} +634.660i q^{76} +(-4997.66 - 60300.1i) q^{78} -24516.2 q^{79} +30613.8 q^{80} +(55848.2 - 19177.0i) q^{81} +15381.9i q^{82} -113500. q^{83} +62972.3 q^{85} +54699.8i q^{86} +(-10006.0 + 829.293i) q^{87} -133763. q^{88} -12023.0 q^{89} +(-12997.2 - 77871.7i) q^{90} +43849.9i q^{92} +(-12715.6 + 1053.87i) q^{93} -21830.7i q^{94} -3535.73i q^{95} +(-70297.4 + 5826.22i) q^{96} -131890. i q^{97} +(27356.3 + 163903. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 640 q^{4} + 440 q^{9} - 3176 q^{15} + 3552 q^{16} - 4544 q^{18} + 21088 q^{22} + 30104 q^{25} + 44664 q^{30} - 59320 q^{36} - 26224 q^{37} - 16216 q^{39} + 21584 q^{43} - 27680 q^{46} + 95784 q^{51}+ \cdots - 258480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.29037i 0.758437i −0.925307 0.379219i \(-0.876193\pi\)
0.925307 0.379219i \(-0.123807\pi\)
\(3\) −1.28755 15.5352i −0.0825965 0.996583i
\(4\) 13.5927 0.424773
\(5\) −75.7260 −1.35463 −0.677314 0.735694i \(-0.736856\pi\)
−0.677314 + 0.735694i \(0.736856\pi\)
\(6\) −66.6517 + 5.52407i −0.755846 + 0.0626442i
\(7\) 0 0
\(8\) 195.610i 1.08060i
\(9\) −239.684 + 40.0047i −0.986356 + 0.164628i
\(10\) 324.892i 1.02740i
\(11\) 683.827i 1.70398i −0.523559 0.851989i \(-0.675396\pi\)
0.523559 0.851989i \(-0.324604\pi\)
\(12\) −17.5013 211.166i −0.0350847 0.423321i
\(13\) 904.705i 1.48473i 0.669993 + 0.742367i \(0.266297\pi\)
−0.669993 + 0.742367i \(0.733703\pi\)
\(14\) 0 0
\(15\) 97.5011 + 1176.42i 0.111887 + 1.35000i
\(16\) −404.270 −0.394795
\(17\) −831.582 −0.697883 −0.348941 0.937145i \(-0.613459\pi\)
−0.348941 + 0.937145i \(0.613459\pi\)
\(18\) 171.635 + 1028.33i 0.124860 + 0.748089i
\(19\) 46.6911i 0.0296722i 0.999890 + 0.0148361i \(0.00472266\pi\)
−0.999890 + 0.0148361i \(0.995277\pi\)
\(20\) −1029.32 −0.575409
\(21\) 0 0
\(22\) −2933.87 −1.29236
\(23\) 3225.98i 1.27158i 0.771863 + 0.635788i \(0.219325\pi\)
−0.771863 + 0.635788i \(0.780675\pi\)
\(24\) −3038.83 + 251.857i −1.07691 + 0.0892538i
\(25\) 2609.42 0.835016
\(26\) 3881.52 1.12608
\(27\) 930.087 + 3672.04i 0.245535 + 0.969388i
\(28\) 0 0
\(29\) 644.085i 0.142216i −0.997469 0.0711080i \(-0.977347\pi\)
0.997469 0.0711080i \(-0.0226535\pi\)
\(30\) 5047.27 418.316i 1.02389 0.0848596i
\(31\) 818.506i 0.152974i −0.997071 0.0764870i \(-0.975630\pi\)
0.997071 0.0764870i \(-0.0243704\pi\)
\(32\) 4525.04i 0.781173i
\(33\) −10623.4 + 880.462i −1.69816 + 0.140743i
\(34\) 3567.79i 0.529300i
\(35\) 0 0
\(36\) −3257.97 + 543.773i −0.418977 + 0.0699297i
\(37\) 12520.8 1.50359 0.751794 0.659398i \(-0.229189\pi\)
0.751794 + 0.659398i \(0.229189\pi\)
\(38\) 200.322 0.0225045
\(39\) 14054.8 1164.85i 1.47966 0.122634i
\(40\) 14812.7i 1.46381i
\(41\) −3585.21 −0.333085 −0.166543 0.986034i \(-0.553260\pi\)
−0.166543 + 0.986034i \(0.553260\pi\)
\(42\) 0 0
\(43\) −12749.4 −1.05153 −0.525763 0.850631i \(-0.676220\pi\)
−0.525763 + 0.850631i \(0.676220\pi\)
\(44\) 9295.07i 0.723804i
\(45\) 18150.3 3029.40i 1.33614 0.223010i
\(46\) 13840.7 0.964411
\(47\) 5088.30 0.335991 0.167996 0.985788i \(-0.446271\pi\)
0.167996 + 0.985788i \(0.446271\pi\)
\(48\) 520.519 + 6280.42i 0.0326087 + 0.393446i
\(49\) 0 0
\(50\) 11195.4i 0.633307i
\(51\) 1070.70 + 12918.8i 0.0576427 + 0.695498i
\(52\) 12297.4i 0.630675i
\(53\) 29225.7i 1.42914i 0.699562 + 0.714572i \(0.253378\pi\)
−0.699562 + 0.714572i \(0.746622\pi\)
\(54\) 15754.4 3990.42i 0.735220 0.186223i
\(55\) 51783.4i 2.30826i
\(56\) 0 0
\(57\) 725.355 60.1172i 0.0295708 0.00245082i
\(58\) −2763.36 −0.107862
\(59\) −14257.9 −0.533242 −0.266621 0.963801i \(-0.585907\pi\)
−0.266621 + 0.963801i \(0.585907\pi\)
\(60\) 1325.31 + 15990.7i 0.0475267 + 0.573443i
\(61\) 1026.97i 0.0353374i −0.999844 0.0176687i \(-0.994376\pi\)
0.999844 0.0176687i \(-0.00562442\pi\)
\(62\) −3511.69 −0.116021
\(63\) 0 0
\(64\) −32350.7 −0.987266
\(65\) 68509.7i 2.01126i
\(66\) 3777.51 + 45578.2i 0.106744 + 1.28795i
\(67\) −6569.50 −0.178791 −0.0893954 0.995996i \(-0.528493\pi\)
−0.0893954 + 0.995996i \(0.528493\pi\)
\(68\) −11303.5 −0.296442
\(69\) 50116.3 4153.62i 1.26723 0.105028i
\(70\) 0 0
\(71\) 21670.0i 0.510169i 0.966919 + 0.255084i \(0.0821032\pi\)
−0.966919 + 0.255084i \(0.917897\pi\)
\(72\) 7825.31 + 46884.6i 0.177898 + 1.06586i
\(73\) 56169.9i 1.23366i −0.787096 0.616831i \(-0.788416\pi\)
0.787096 0.616831i \(-0.211584\pi\)
\(74\) 53719.0i 1.14038i
\(75\) −3359.77 40537.9i −0.0689693 0.832162i
\(76\) 634.660i 0.0126040i
\(77\) 0 0
\(78\) −4997.66 60300.1i −0.0930100 1.12223i
\(79\) −24516.2 −0.441962 −0.220981 0.975278i \(-0.570926\pi\)
−0.220981 + 0.975278i \(0.570926\pi\)
\(80\) 30613.8 0.534801
\(81\) 55848.2 19177.0i 0.945795 0.324764i
\(82\) 15381.9i 0.252624i
\(83\) −113500. −1.80843 −0.904213 0.427083i \(-0.859541\pi\)
−0.904213 + 0.427083i \(0.859541\pi\)
\(84\) 0 0
\(85\) 62972.3 0.945371
\(86\) 54699.8i 0.797517i
\(87\) −10006.0 + 829.293i −0.141730 + 0.0117465i
\(88\) −133763. −1.84132
\(89\) −12023.0 −0.160893 −0.0804465 0.996759i \(-0.525635\pi\)
−0.0804465 + 0.996759i \(0.525635\pi\)
\(90\) −12997.2 77871.7i −0.169139 1.01338i
\(91\) 0 0
\(92\) 43849.9i 0.540131i
\(93\) −12715.6 + 1053.87i −0.152451 + 0.0126351i
\(94\) 21830.7i 0.254828i
\(95\) 3535.73i 0.0401948i
\(96\) −70297.4 + 5826.22i −0.778504 + 0.0645222i
\(97\) 131890.i 1.42326i −0.702555 0.711630i \(-0.747957\pi\)
0.702555 0.711630i \(-0.252043\pi\)
\(98\) 0 0
\(99\) 27356.3 + 163903.i 0.280523 + 1.68073i
\(100\) 35469.2 0.354692
\(101\) −155285. −1.51470 −0.757349 0.653010i \(-0.773506\pi\)
−0.757349 + 0.653010i \(0.773506\pi\)
\(102\) 55426.3 4593.72i 0.527492 0.0437183i
\(103\) 117670.i 1.09288i 0.837497 + 0.546442i \(0.184018\pi\)
−0.837497 + 0.546442i \(0.815982\pi\)
\(104\) 176969. 1.60440
\(105\) 0 0
\(106\) 125389. 1.08392
\(107\) 43888.8i 0.370591i 0.982683 + 0.185295i \(0.0593242\pi\)
−0.982683 + 0.185295i \(0.940676\pi\)
\(108\) 12642.4 + 49913.0i 0.104297 + 0.411769i
\(109\) −141463. −1.14045 −0.570223 0.821490i \(-0.693143\pi\)
−0.570223 + 0.821490i \(0.693143\pi\)
\(110\) 222170. 1.75067
\(111\) −16121.2 194514.i −0.124191 1.49845i
\(112\) 0 0
\(113\) 150708.i 1.11030i −0.831750 0.555151i \(-0.812661\pi\)
0.831750 0.555151i \(-0.187339\pi\)
\(114\) −257.925 3112.04i −0.00185879 0.0224276i
\(115\) 244291.i 1.72251i
\(116\) 8754.87i 0.0604095i
\(117\) −36192.5 216844.i −0.244429 1.46448i
\(118\) 61171.5i 0.404431i
\(119\) 0 0
\(120\) 230119. 19072.2i 1.45881 0.120906i
\(121\) −306568. −1.90354
\(122\) −4406.10 −0.0268012
\(123\) 4616.14 + 55697.0i 0.0275117 + 0.331947i
\(124\) 11125.7i 0.0649792i
\(125\) 39042.5 0.223492
\(126\) 0 0
\(127\) −260441. −1.43285 −0.716423 0.697667i \(-0.754222\pi\)
−0.716423 + 0.697667i \(0.754222\pi\)
\(128\) 6004.61i 0.0323937i
\(129\) 16415.6 + 198065.i 0.0868523 + 1.04793i
\(130\) −293932. −1.52542
\(131\) −214227. −1.09067 −0.545337 0.838217i \(-0.683598\pi\)
−0.545337 + 0.838217i \(0.683598\pi\)
\(132\) −144401. + 11967.9i −0.721331 + 0.0597836i
\(133\) 0 0
\(134\) 28185.6i 0.135602i
\(135\) −70431.7 278068.i −0.332609 1.31316i
\(136\) 162665.i 0.754133i
\(137\) 28294.0i 0.128793i −0.997924 0.0643966i \(-0.979488\pi\)
0.997924 0.0643966i \(-0.0205123\pi\)
\(138\) −17820.6 215017.i −0.0796570 0.961116i
\(139\) 10688.5i 0.0469223i 0.999725 + 0.0234612i \(0.00746861\pi\)
−0.999725 + 0.0234612i \(0.992531\pi\)
\(140\) 0 0
\(141\) −6551.44 79047.7i −0.0277517 0.334843i
\(142\) 92972.5 0.386931
\(143\) 618661. 2.52996
\(144\) 96897.3 16172.7i 0.389409 0.0649946i
\(145\) 48774.0i 0.192650i
\(146\) −240990. −0.935656
\(147\) 0 0
\(148\) 170192. 0.638684
\(149\) 69026.4i 0.254712i 0.991857 + 0.127356i \(0.0406491\pi\)
−0.991857 + 0.127356i \(0.959351\pi\)
\(150\) −173923. + 14414.6i −0.631143 + 0.0523089i
\(151\) −124103. −0.442933 −0.221467 0.975168i \(-0.571084\pi\)
−0.221467 + 0.975168i \(0.571084\pi\)
\(152\) 9133.23 0.0320638
\(153\) 199317. 33267.2i 0.688361 0.114891i
\(154\) 0 0
\(155\) 61982.2i 0.207223i
\(156\) 191043. 15833.5i 0.628520 0.0520915i
\(157\) 231373.i 0.749142i −0.927198 0.374571i \(-0.877790\pi\)
0.927198 0.374571i \(-0.122210\pi\)
\(158\) 105183.i 0.335200i
\(159\) 454027. 37629.6i 1.42426 0.118042i
\(160\) 342663.i 1.05820i
\(161\) 0 0
\(162\) −82276.5 239610.i −0.246313 0.717326i
\(163\) −65525.1 −0.193170 −0.0965848 0.995325i \(-0.530792\pi\)
−0.0965848 + 0.995325i \(0.530792\pi\)
\(164\) −48732.8 −0.141485
\(165\) 804466. 66673.8i 2.30037 0.190654i
\(166\) 486957.i 1.37158i
\(167\) 454877. 1.26213 0.631063 0.775731i \(-0.282619\pi\)
0.631063 + 0.775731i \(0.282619\pi\)
\(168\) 0 0
\(169\) −447198. −1.20443
\(170\) 270175.i 0.717005i
\(171\) −1867.86 11191.1i −0.00488489 0.0292674i
\(172\) −173300. −0.446660
\(173\) −399209. −1.01411 −0.507055 0.861914i \(-0.669266\pi\)
−0.507055 + 0.861914i \(0.669266\pi\)
\(174\) 3557.97 + 42929.4i 0.00890901 + 0.107493i
\(175\) 0 0
\(176\) 276451.i 0.672723i
\(177\) 18357.7 + 221499.i 0.0440439 + 0.531420i
\(178\) 51583.0i 0.122027i
\(179\) 600133.i 1.39996i 0.714163 + 0.699979i \(0.246807\pi\)
−0.714163 + 0.699979i \(0.753193\pi\)
\(180\) 246713. 41177.8i 0.567558 0.0947287i
\(181\) 167807.i 0.380726i 0.981714 + 0.190363i \(0.0609665\pi\)
−0.981714 + 0.190363i \(0.939034\pi\)
\(182\) 0 0
\(183\) −15954.3 + 1322.28i −0.0352167 + 0.00291875i
\(184\) 631034. 1.37407
\(185\) −948153. −2.03680
\(186\) 4521.49 + 54554.8i 0.00958294 + 0.115625i
\(187\) 568658.i 1.18918i
\(188\) 69163.8 0.142720
\(189\) 0 0
\(190\) −15169.6 −0.0304853
\(191\) 654116.i 1.29739i 0.761048 + 0.648696i \(0.224685\pi\)
−0.761048 + 0.648696i \(0.775315\pi\)
\(192\) 41653.2 + 502575.i 0.0815447 + 0.983893i
\(193\) 929162. 1.79555 0.897776 0.440452i \(-0.145182\pi\)
0.897776 + 0.440452i \(0.145182\pi\)
\(194\) −565859. −1.07945
\(195\) −1.06431e6 + 88209.7i −2.00439 + 0.166123i
\(196\) 0 0
\(197\) 265187.i 0.486840i −0.969921 0.243420i \(-0.921731\pi\)
0.969921 0.243420i \(-0.0782693\pi\)
\(198\) 703203. 117369.i 1.27473 0.212759i
\(199\) 739548.i 1.32383i −0.749577 0.661917i \(-0.769743\pi\)
0.749577 0.661917i \(-0.230257\pi\)
\(200\) 510429.i 0.902319i
\(201\) 8458.56 + 102058.i 0.0147675 + 0.178180i
\(202\) 666230.i 1.14880i
\(203\) 0 0
\(204\) 14553.8 + 175601.i 0.0244850 + 0.295429i
\(205\) 271494. 0.451206
\(206\) 504849. 0.828884
\(207\) −129055. 773218.i −0.209338 1.25423i
\(208\) 365745.i 0.586166i
\(209\) 31928.6 0.0505609
\(210\) 0 0
\(211\) −782235. −1.20957 −0.604785 0.796389i \(-0.706741\pi\)
−0.604785 + 0.796389i \(0.706741\pi\)
\(212\) 397257.i 0.607061i
\(213\) 336648. 27901.3i 0.508426 0.0421381i
\(214\) 188299. 0.281070
\(215\) 965464. 1.42443
\(216\) 718286. 181934.i 1.04752 0.265326i
\(217\) 0 0
\(218\) 606926.i 0.864958i
\(219\) −872610. + 72321.6i −1.22945 + 0.101896i
\(220\) 703878.i 0.980485i
\(221\) 752336.i 1.03617i
\(222\) −834535. + 69166.0i −1.13648 + 0.0941912i
\(223\) 683761.i 0.920750i 0.887724 + 0.460375i \(0.152285\pi\)
−0.887724 + 0.460375i \(0.847715\pi\)
\(224\) 0 0
\(225\) −625438. + 104389.i −0.823622 + 0.137467i
\(226\) −646594. −0.842094
\(227\) 6601.90 0.00850363 0.00425182 0.999991i \(-0.498647\pi\)
0.00425182 + 0.999991i \(0.498647\pi\)
\(228\) 9859.56 817.157i 0.0125609 0.00104104i
\(229\) 525219.i 0.661838i −0.943659 0.330919i \(-0.892641\pi\)
0.943659 0.330919i \(-0.107359\pi\)
\(230\) −1.04810e6 −1.30642
\(231\) 0 0
\(232\) −125989. −0.153679
\(233\) 856277.i 1.03330i −0.856198 0.516648i \(-0.827180\pi\)
0.856198 0.516648i \(-0.172820\pi\)
\(234\) −930340. + 155279.i −1.11071 + 0.185384i
\(235\) −385316. −0.455143
\(236\) −193803. −0.226507
\(237\) 31565.8 + 380863.i 0.0365045 + 0.440452i
\(238\) 0 0
\(239\) 601720.i 0.681396i −0.940173 0.340698i \(-0.889337\pi\)
0.940173 0.340698i \(-0.110663\pi\)
\(240\) −39416.8 475591.i −0.0441726 0.532973i
\(241\) 91693.7i 0.101694i 0.998706 + 0.0508472i \(0.0161921\pi\)
−0.998706 + 0.0508472i \(0.983808\pi\)
\(242\) 1.31529e6i 1.44372i
\(243\) −369826. 842922.i −0.401774 0.915739i
\(244\) 13959.4i 0.0150104i
\(245\) 0 0
\(246\) 238961. 19805.0i 0.251761 0.0208659i
\(247\) −42241.7 −0.0440554
\(248\) −160108. −0.165304
\(249\) 146137. + 1.76324e6i 0.149370 + 1.80225i
\(250\) 167507.i 0.169505i
\(251\) 673295. 0.674560 0.337280 0.941404i \(-0.390493\pi\)
0.337280 + 0.941404i \(0.390493\pi\)
\(252\) 0 0
\(253\) 2.20601e6 2.16674
\(254\) 1.11739e6i 1.08672i
\(255\) −81080.1 978287.i −0.0780843 0.942141i
\(256\) −1.06099e6 −1.01183
\(257\) 1.68970e6 1.59579 0.797895 0.602796i \(-0.205947\pi\)
0.797895 + 0.602796i \(0.205947\pi\)
\(258\) 849772. 70428.8i 0.794791 0.0658720i
\(259\) 0 0
\(260\) 931233.i 0.854329i
\(261\) 25766.4 + 154377.i 0.0234128 + 0.140275i
\(262\) 919111.i 0.827208i
\(263\) 1.46502e6i 1.30603i −0.757345 0.653015i \(-0.773504\pi\)
0.757345 0.653015i \(-0.226496\pi\)
\(264\) 172227. + 2.07804e6i 0.152087 + 1.83503i
\(265\) 2.21315e6i 1.93596i
\(266\) 0 0
\(267\) 15480.2 + 186779.i 0.0132892 + 0.160343i
\(268\) −89297.4 −0.0759454
\(269\) 967037. 0.814821 0.407411 0.913245i \(-0.366432\pi\)
0.407411 + 0.913245i \(0.366432\pi\)
\(270\) −1.19302e6 + 302178.i −0.995949 + 0.252263i
\(271\) 396860.i 0.328257i −0.986439 0.164129i \(-0.947519\pi\)
0.986439 0.164129i \(-0.0524812\pi\)
\(272\) 336184. 0.275521
\(273\) 0 0
\(274\) −121392. −0.0976816
\(275\) 1.78439e6i 1.42285i
\(276\) 681217. 56459.0i 0.538286 0.0446129i
\(277\) 1.27624e6 0.999385 0.499693 0.866203i \(-0.333446\pi\)
0.499693 + 0.866203i \(0.333446\pi\)
\(278\) 45857.6 0.0355876
\(279\) 32744.1 + 196183.i 0.0251839 + 0.150887i
\(280\) 0 0
\(281\) 223049.i 0.168514i −0.996444 0.0842568i \(-0.973148\pi\)
0.996444 0.0842568i \(-0.0268516\pi\)
\(282\) −339144. + 28108.1i −0.253957 + 0.0210479i
\(283\) 1.02061e6i 0.757522i −0.925494 0.378761i \(-0.876350\pi\)
0.925494 0.378761i \(-0.123650\pi\)
\(284\) 294555.i 0.216706i
\(285\) −54928.2 + 4552.43i −0.0400575 + 0.00331995i
\(286\) 2.65429e6i 1.91881i
\(287\) 0 0
\(288\) 181023. + 1.08458e6i 0.128603 + 0.770515i
\(289\) −728329. −0.512959
\(290\) 209258. 0.146113
\(291\) −2.04894e6 + 169816.i −1.41840 + 0.117556i
\(292\) 763502.i 0.524026i
\(293\) −749824. −0.510259 −0.255129 0.966907i \(-0.582118\pi\)
−0.255129 + 0.966907i \(0.582118\pi\)
\(294\) 0 0
\(295\) 1.07969e6 0.722345
\(296\) 2.44920e6i 1.62478i
\(297\) 2.51104e6 636018.i 1.65182 0.418387i
\(298\) 296149. 0.193183
\(299\) −2.91856e6 −1.88795
\(300\) −45668.4 551021.i −0.0292963 0.353480i
\(301\) 0 0
\(302\) 532446.i 0.335937i
\(303\) 199937. + 2.41238e6i 0.125109 + 1.50952i
\(304\) 18875.8i 0.0117145i
\(305\) 77768.7i 0.0478691i
\(306\) −142729. 855144.i −0.0871379 0.522078i
\(307\) 1.51886e6i 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(308\) 0 0
\(309\) 1.82803e6 151507.i 1.08915 0.0902683i
\(310\) 265926. 0.157166
\(311\) −1.30530e6 −0.765263 −0.382632 0.923901i \(-0.624982\pi\)
−0.382632 + 0.923901i \(0.624982\pi\)
\(312\) −227857. 2.74925e6i −0.132518 1.59892i
\(313\) 374621.i 0.216138i −0.994143 0.108069i \(-0.965533\pi\)
0.994143 0.108069i \(-0.0344667\pi\)
\(314\) −992677. −0.568177
\(315\) 0 0
\(316\) −333242. −0.187733
\(317\) 951664.i 0.531907i 0.963986 + 0.265953i \(0.0856867\pi\)
−0.963986 + 0.265953i \(0.914313\pi\)
\(318\) −161445. 1.94795e6i −0.0895276 1.08021i
\(319\) −440442. −0.242333
\(320\) 2.44979e6 1.33738
\(321\) 681821. 56509.1i 0.369324 0.0306095i
\(322\) 0 0
\(323\) 38827.5i 0.0207077i
\(324\) 759130. 260668.i 0.401748 0.137951i
\(325\) 2.36076e6i 1.23978i
\(326\) 281127.i 0.146507i
\(327\) 182140. + 2.19765e6i 0.0941969 + 1.13655i
\(328\) 701302.i 0.359932i
\(329\) 0 0
\(330\) −286055. 3.45145e6i −0.144599 1.74469i
\(331\) 1.38940e6 0.697037 0.348519 0.937302i \(-0.386685\pi\)
0.348519 + 0.937302i \(0.386685\pi\)
\(332\) −1.54277e6 −0.768170
\(333\) −3.00105e6 + 500893.i −1.48307 + 0.247534i
\(334\) 1.95159e6i 0.957244i
\(335\) 497481. 0.242195
\(336\) 0 0
\(337\) −354210. −0.169897 −0.0849486 0.996385i \(-0.527073\pi\)
−0.0849486 + 0.996385i \(0.527073\pi\)
\(338\) 1.91865e6i 0.913488i
\(339\) −2.34128e6 + 194045.i −1.10651 + 0.0917070i
\(340\) 855966. 0.401568
\(341\) −559716. −0.260664
\(342\) −48014.1 + 8013.83i −0.0221975 + 0.00370489i
\(343\) 0 0
\(344\) 2.49391e6i 1.13628i
\(345\) −3.79510e6 + 314537.i −1.71663 + 0.142273i
\(346\) 1.71275e6i 0.769138i
\(347\) 1.82666e6i 0.814391i 0.913341 + 0.407196i \(0.133493\pi\)
−0.913341 + 0.407196i \(0.866507\pi\)
\(348\) −136009. + 11272.4i −0.0602030 + 0.00498961i
\(349\) 403109.i 0.177157i −0.996069 0.0885786i \(-0.971768\pi\)
0.996069 0.0885786i \(-0.0282324\pi\)
\(350\) 0 0
\(351\) −3.32211e6 + 841454.i −1.43928 + 0.364555i
\(352\) −3.09434e6 −1.33110
\(353\) −2.51507e6 −1.07427 −0.537135 0.843496i \(-0.680493\pi\)
−0.537135 + 0.843496i \(0.680493\pi\)
\(354\) 950311. 78761.5i 0.403049 0.0334046i
\(355\) 1.64099e6i 0.691089i
\(356\) −163425. −0.0683430
\(357\) 0 0
\(358\) 2.57479e6 1.06178
\(359\) 1.32306e6i 0.541805i −0.962607 0.270903i \(-0.912678\pi\)
0.962607 0.270903i \(-0.0873222\pi\)
\(360\) −592579. 3.55038e6i −0.240985 1.44384i
\(361\) 2.47392e6 0.999120
\(362\) 719952. 0.288757
\(363\) 394722. + 4.76259e6i 0.157226 + 1.89704i
\(364\) 0 0
\(365\) 4.25352e6i 1.67115i
\(366\) 5673.08 + 68449.6i 0.00221369 + 0.0267097i
\(367\) 1.51900e6i 0.588697i 0.955698 + 0.294348i \(0.0951026\pi\)
−0.955698 + 0.294348i \(0.904897\pi\)
\(368\) 1.30417e6i 0.502013i
\(369\) 859320. 143425.i 0.328540 0.0548353i
\(370\) 4.06793e6i 1.54479i
\(371\) 0 0
\(372\) −172840. + 14324.9i −0.0647572 + 0.00536705i
\(373\) 1.94644e6 0.724385 0.362192 0.932103i \(-0.382028\pi\)
0.362192 + 0.932103i \(0.382028\pi\)
\(374\) 2.43975e6 0.901917
\(375\) −50269.2 606533.i −0.0184597 0.222729i
\(376\) 995320.i 0.363072i
\(377\) 582707. 0.211153
\(378\) 0 0
\(379\) −2.70649e6 −0.967851 −0.483925 0.875109i \(-0.660789\pi\)
−0.483925 + 0.875109i \(0.660789\pi\)
\(380\) 48060.2i 0.0170737i
\(381\) 335331. + 4.04599e6i 0.118348 + 1.42795i
\(382\) 2.80640e6 0.983990
\(383\) −954838. −0.332608 −0.166304 0.986075i \(-0.553183\pi\)
−0.166304 + 0.986075i \(0.553183\pi\)
\(384\) −93282.8 + 7731.24i −0.0322830 + 0.00267560i
\(385\) 0 0
\(386\) 3.98645e6i 1.36181i
\(387\) 3.05584e6 510038.i 1.03718 0.173111i
\(388\) 1.79275e6i 0.604562i
\(389\) 2.90671e6i 0.973928i −0.873422 0.486964i \(-0.838104\pi\)
0.873422 0.486964i \(-0.161896\pi\)
\(390\) 378452. + 4.56629e6i 0.125994 + 1.52020i
\(391\) 2.68267e6i 0.887412i
\(392\) 0 0
\(393\) 275828. + 3.32805e6i 0.0900859 + 1.08695i
\(394\) −1.13775e6 −0.369237
\(395\) 1.85651e6 0.598694
\(396\) 371847. + 2.22788e6i 0.119159 + 0.713928i
\(397\) 3.44376e6i 1.09662i 0.836275 + 0.548310i \(0.184729\pi\)
−0.836275 + 0.548310i \(0.815271\pi\)
\(398\) −3.17294e6 −1.00405
\(399\) 0 0
\(400\) −1.05491e6 −0.329660
\(401\) 3.46397e6i 1.07575i 0.843023 + 0.537877i \(0.180774\pi\)
−0.843023 + 0.537877i \(0.819226\pi\)
\(402\) 437868. 36290.4i 0.135138 0.0112002i
\(403\) 740507. 0.227126
\(404\) −2.11075e6 −0.643403
\(405\) −4.22916e6 + 1.45220e6i −1.28120 + 0.439935i
\(406\) 0 0
\(407\) 8.56208e6i 2.56208i
\(408\) 2.52704e6 209440.i 0.751556 0.0622887i
\(409\) 1.17031e6i 0.345934i 0.984928 + 0.172967i \(0.0553354\pi\)
−0.984928 + 0.172967i \(0.944665\pi\)
\(410\) 1.16481e6i 0.342212i
\(411\) −439553. + 36430.0i −0.128353 + 0.0106379i
\(412\) 1.59946e6i 0.464227i
\(413\) 0 0
\(414\) −3.31739e6 + 553692.i −0.951253 + 0.158770i
\(415\) 8.59490e6 2.44974
\(416\) 4.09383e6 1.15983
\(417\) 166048. 13762.0i 0.0467620 0.00387562i
\(418\) 136986.i 0.0383472i
\(419\) 2.44900e6 0.681481 0.340740 0.940157i \(-0.389322\pi\)
0.340740 + 0.940157i \(0.389322\pi\)
\(420\) 0 0
\(421\) 188332. 0.0517869 0.0258934 0.999665i \(-0.491757\pi\)
0.0258934 + 0.999665i \(0.491757\pi\)
\(422\) 3.35608e6i 0.917383i
\(423\) −1.21959e6 + 203556.i −0.331407 + 0.0553137i
\(424\) 5.71684e6 1.54433
\(425\) −2.16995e6 −0.582743
\(426\) −119707. 1.44435e6i −0.0319591 0.385609i
\(427\) 0 0
\(428\) 596569.i 0.157417i
\(429\) −796558. 9.61102e6i −0.208965 2.52131i
\(430\) 4.14220e6i 1.08034i
\(431\) 4.99202e6i 1.29444i 0.762302 + 0.647221i \(0.224069\pi\)
−0.762302 + 0.647221i \(0.775931\pi\)
\(432\) −376007. 1.48450e6i −0.0969362 0.382710i
\(433\) 5.33397e6i 1.36720i 0.729859 + 0.683598i \(0.239586\pi\)
−0.729859 + 0.683598i \(0.760414\pi\)
\(434\) 0 0
\(435\) 757713. 62799.0i 0.191991 0.0159122i
\(436\) −1.92286e6 −0.484431
\(437\) −150625. −0.0377305
\(438\) 310286. + 3.74382e6i 0.0772818 + 0.932459i
\(439\) 92981.1i 0.0230268i −0.999934 0.0115134i \(-0.996335\pi\)
0.999934 0.0115134i \(-0.00366491\pi\)
\(440\) 1.01293e7 2.49430
\(441\) 0 0
\(442\) −3.22780e6 −0.785870
\(443\) 4.76496e6i 1.15359i −0.816890 0.576793i \(-0.804304\pi\)
0.816890 0.576793i \(-0.195696\pi\)
\(444\) −219131. 2.64397e6i −0.0527530 0.636501i
\(445\) 910452. 0.217950
\(446\) 2.93359e6 0.698331
\(447\) 1.07234e6 88875.0i 0.253842 0.0210383i
\(448\) 0 0
\(449\) 3.46959e6i 0.812200i 0.913829 + 0.406100i \(0.133112\pi\)
−0.913829 + 0.406100i \(0.866888\pi\)
\(450\) 447869. + 2.68336e6i 0.104260 + 0.624666i
\(451\) 2.45166e6i 0.567570i
\(452\) 2.04854e6i 0.471626i
\(453\) 159788. + 1.92796e6i 0.0365847 + 0.441420i
\(454\) 28324.6i 0.00644947i
\(455\) 0 0
\(456\) −11759.5 141887.i −0.00264836 0.0319543i
\(457\) 4.06259e6 0.909939 0.454969 0.890507i \(-0.349650\pi\)
0.454969 + 0.890507i \(0.349650\pi\)
\(458\) −2.25338e6 −0.501963
\(459\) −773443. 3.05360e6i −0.171355 0.676519i
\(460\) 3.32058e6i 0.731677i
\(461\) −4.24426e6 −0.930143 −0.465072 0.885273i \(-0.653971\pi\)
−0.465072 + 0.885273i \(0.653971\pi\)
\(462\) 0 0
\(463\) 1.11651e6 0.242053 0.121026 0.992649i \(-0.461381\pi\)
0.121026 + 0.992649i \(0.461381\pi\)
\(464\) 260385.i 0.0561462i
\(465\) 962905. 79805.2i 0.206515 0.0171159i
\(466\) −3.67374e6 −0.783690
\(467\) 6.89759e6 1.46354 0.731771 0.681551i \(-0.238694\pi\)
0.731771 + 0.681551i \(0.238694\pi\)
\(468\) −491954. 2.94750e6i −0.103827 0.622069i
\(469\) 0 0
\(470\) 1.65315e6i 0.345197i
\(471\) −3.59443e6 + 297905.i −0.746582 + 0.0618765i
\(472\) 2.78898e6i 0.576222i
\(473\) 8.71841e6i 1.79178i
\(474\) 1.63404e6 135429.i 0.334055 0.0276864i
\(475\) 121837.i 0.0247768i
\(476\) 0 0
\(477\) −1.16917e6 7.00495e6i −0.235278 1.40964i
\(478\) −2.58160e6 −0.516796
\(479\) 4.57012e6 0.910100 0.455050 0.890466i \(-0.349621\pi\)
0.455050 + 0.890466i \(0.349621\pi\)
\(480\) 5.32334e6 441196.i 1.05458 0.0874035i
\(481\) 1.13277e7i 2.23243i
\(482\) 393400. 0.0771288
\(483\) 0 0
\(484\) −4.16709e6 −0.808574
\(485\) 9.98753e6i 1.92799i
\(486\) −3.61645e6 + 1.58669e6i −0.694531 + 0.304720i
\(487\) −8.20765e6 −1.56818 −0.784091 0.620646i \(-0.786870\pi\)
−0.784091 + 0.620646i \(0.786870\pi\)
\(488\) −200886. −0.0381857
\(489\) 84366.9 + 1.01795e6i 0.0159551 + 0.192510i
\(490\) 0 0
\(491\) 3.42933e6i 0.641956i 0.947087 + 0.320978i \(0.104011\pi\)
−0.947087 + 0.320978i \(0.895989\pi\)
\(492\) 62746.0 + 757074.i 0.0116862 + 0.141002i
\(493\) 535609.i 0.0992501i
\(494\) 181232.i 0.0334132i
\(495\) −2.07158e6 1.24117e7i −0.380005 2.27676i
\(496\) 330898.i 0.0603934i
\(497\) 0 0
\(498\) 7.56497e6 626982.i 1.36689 0.113287i
\(499\) −5.40504e6 −0.971734 −0.485867 0.874033i \(-0.661496\pi\)
−0.485867 + 0.874033i \(0.661496\pi\)
\(500\) 530694. 0.0949335
\(501\) −585678. 7.06660e6i −0.104247 1.25781i
\(502\) 2.88868e6i 0.511612i
\(503\) −6.27690e6 −1.10618 −0.553090 0.833122i \(-0.686551\pi\)
−0.553090 + 0.833122i \(0.686551\pi\)
\(504\) 0 0
\(505\) 1.17591e7 2.05185
\(506\) 9.46461e6i 1.64334i
\(507\) 575791. + 6.94731e6i 0.0994821 + 1.20032i
\(508\) −3.54010e6 −0.608634
\(509\) −9.68442e6 −1.65684 −0.828418 0.560111i \(-0.810759\pi\)
−0.828418 + 0.560111i \(0.810759\pi\)
\(510\) −4.19721e6 + 347864.i −0.714555 + 0.0592221i
\(511\) 0 0
\(512\) 4.35987e6i 0.735020i
\(513\) −171451. + 43426.8i −0.0287639 + 0.00728558i
\(514\) 7.24942e6i 1.21031i
\(515\) 8.91070e6i 1.48045i
\(516\) 223132. + 2.69224e6i 0.0368925 + 0.445133i
\(517\) 3.47951e6i 0.572522i
\(518\) 0 0
\(519\) 514002. + 6.20178e6i 0.0837618 + 1.01064i
\(520\) −1.34012e7 −2.17337
\(521\) −9.71902e6 −1.56866 −0.784329 0.620346i \(-0.786992\pi\)
−0.784329 + 0.620346i \(0.786992\pi\)
\(522\) 662335. 110548.i 0.106390 0.0177571i
\(523\) 8.88406e6i 1.42022i −0.704088 0.710112i \(-0.748644\pi\)
0.704088 0.710112i \(-0.251356\pi\)
\(524\) −2.91192e6 −0.463289
\(525\) 0 0
\(526\) −6.28546e6 −0.990542
\(527\) 680654.i 0.106758i
\(528\) 4.29472e6 355945.i 0.670424 0.0555645i
\(529\) −3.97063e6 −0.616908
\(530\) −9.49522e6 −1.46830
\(531\) 3.41739e6 570382.i 0.525966 0.0877868i
\(532\) 0 0
\(533\) 3.24356e6i 0.494543i
\(534\) 801353. 66415.8i 0.121610 0.0100790i
\(535\) 3.32352e6i 0.502012i
\(536\) 1.28506e6i 0.193201i
\(537\) 9.32318e6 772702.i 1.39517 0.115632i
\(538\) 4.14895e6i 0.617991i
\(539\) 0 0
\(540\) −957360. 3.77971e6i −0.141283 0.557794i
\(541\) −1.68555e6 −0.247598 −0.123799 0.992307i \(-0.539508\pi\)
−0.123799 + 0.992307i \(0.539508\pi\)
\(542\) −1.70268e6 −0.248963
\(543\) 2.60691e6 216060.i 0.379425 0.0314466i
\(544\) 3.76294e6i 0.545168i
\(545\) 1.07124e7 1.54488
\(546\) 0 0
\(547\) 787487. 0.112532 0.0562659 0.998416i \(-0.482081\pi\)
0.0562659 + 0.998416i \(0.482081\pi\)
\(548\) 384593.i 0.0547079i
\(549\) 41083.8 + 246150.i 0.00581755 + 0.0348553i
\(550\) −7.65571e6 −1.07914
\(551\) 30073.0 0.00421986
\(552\) −812488. 9.80323e6i −0.113493 1.36937i
\(553\) 0 0
\(554\) 5.47554e6i 0.757971i
\(555\) 1.22080e6 + 1.47297e7i 0.168233 + 2.02984i
\(556\) 145286.i 0.0199313i
\(557\) 1.09724e7i 1.49852i −0.662274 0.749262i \(-0.730408\pi\)
0.662274 0.749262i \(-0.269592\pi\)
\(558\) 841698. 140484.i 0.114438 0.0191004i
\(559\) 1.15345e7i 1.56124i
\(560\) 0 0
\(561\) 8.83420e6 732176.i 1.18511 0.0982219i
\(562\) −956964. −0.127807
\(563\) −1.48913e6 −0.197998 −0.0989991 0.995088i \(-0.531564\pi\)
−0.0989991 + 0.995088i \(0.531564\pi\)
\(564\) −89052.0 1.07447e6i −0.0117882 0.142232i
\(565\) 1.14125e7i 1.50405i
\(566\) −4.37881e6 −0.574533
\(567\) 0 0
\(568\) 4.23887e6 0.551289
\(569\) 3.97438e6i 0.514623i −0.966329 0.257311i \(-0.917163\pi\)
0.966329 0.257311i \(-0.0828366\pi\)
\(570\) 19531.6 + 235662.i 0.00251797 + 0.0303811i
\(571\) −8.06090e6 −1.03465 −0.517325 0.855789i \(-0.673072\pi\)
−0.517325 + 0.855789i \(0.673072\pi\)
\(572\) 8.40930e6 1.07466
\(573\) 1.01618e7 842207.i 1.29296 0.107160i
\(574\) 0 0
\(575\) 8.41796e6i 1.06179i
\(576\) 7.75397e6 1.29418e6i 0.973796 0.162532i
\(577\) 1.43214e7i 1.79080i −0.445264 0.895399i \(-0.646890\pi\)
0.445264 0.895399i \(-0.353110\pi\)
\(578\) 3.12480e6i 0.389048i
\(579\) −1.19634e6 1.44347e7i −0.148306 1.78942i
\(580\) 662971.i 0.0818323i
\(581\) 0 0
\(582\) 728572. + 8.79072e6i 0.0891590 + 1.07576i
\(583\) 1.99853e7 2.43523
\(584\) −1.09874e7 −1.33310
\(585\) 2.74071e6 + 1.64207e7i 0.331111 + 1.98382i
\(586\) 3.21702e6i 0.386999i
\(587\) −4.72674e6 −0.566195 −0.283097 0.959091i \(-0.591362\pi\)
−0.283097 + 0.959091i \(0.591362\pi\)
\(588\) 0 0
\(589\) 38217.0 0.00453908
\(590\) 4.63227e6i 0.547853i
\(591\) −4.11973e6 + 341441.i −0.485176 + 0.0402112i
\(592\) −5.06180e6 −0.593610
\(593\) 1.08122e7 1.26263 0.631317 0.775525i \(-0.282515\pi\)
0.631317 + 0.775525i \(0.282515\pi\)
\(594\) −2.72875e6 1.07733e7i −0.317320 1.25280i
\(595\) 0 0
\(596\) 938257.i 0.108195i
\(597\) −1.14890e7 + 952206.i −1.31931 + 0.109344i
\(598\) 1.25217e7i 1.43189i
\(599\) 1.19679e7i 1.36286i 0.731883 + 0.681430i \(0.238642\pi\)
−0.731883 + 0.681430i \(0.761358\pi\)
\(600\) −7.92961e6 + 657203.i −0.899235 + 0.0745283i
\(601\) 1.06577e7i 1.20359i 0.798651 + 0.601794i \(0.205547\pi\)
−0.798651 + 0.601794i \(0.794453\pi\)
\(602\) 0 0
\(603\) 1.57461e6 262811.i 0.176351 0.0294340i
\(604\) −1.68689e6 −0.188146
\(605\) 2.32151e7 2.57859
\(606\) 1.03500e7 857805.i 1.14488 0.0948871i
\(607\) 3.11542e6i 0.343199i 0.985167 + 0.171599i \(0.0548934\pi\)
−0.985167 + 0.171599i \(0.945107\pi\)
\(608\) 211279. 0.0231792
\(609\) 0 0
\(610\) 333656. 0.0363057
\(611\) 4.60341e6i 0.498857i
\(612\) 2.70926e6 452192.i 0.292397 0.0488027i
\(613\) −4.31540e6 −0.463842 −0.231921 0.972735i \(-0.574501\pi\)
−0.231921 + 0.972735i \(0.574501\pi\)
\(614\) −6.51649e6 −0.697578
\(615\) −349562. 4.21771e6i −0.0372680 0.449665i
\(616\) 0 0
\(617\) 1.27346e7i 1.34671i −0.739319 0.673355i \(-0.764853\pi\)
0.739319 0.673355i \(-0.235147\pi\)
\(618\) −650019. 7.84293e6i −0.0684629 0.826052i
\(619\) 1.19650e7i 1.25512i −0.778569 0.627559i \(-0.784054\pi\)
0.778569 0.627559i \(-0.215946\pi\)
\(620\) 842507.i 0.0880226i
\(621\) −1.18459e7 + 3.00045e6i −1.23265 + 0.312217i
\(622\) 5.60024e6i 0.580404i
\(623\) 0 0
\(624\) −5.68193e6 + 470916.i −0.584163 + 0.0484152i
\(625\) −1.11110e7 −1.13776
\(626\) −1.60726e6 −0.163927
\(627\) −41109.7 496017.i −0.00417615 0.0503881i
\(628\) 3.14499e6i 0.318215i
\(629\) −1.04121e7 −1.04933
\(630\) 0 0
\(631\) −7.88130e6 −0.787996 −0.393998 0.919111i \(-0.628908\pi\)
−0.393998 + 0.919111i \(0.628908\pi\)
\(632\) 4.79560e6i 0.477585i
\(633\) 1.00717e6 + 1.21522e7i 0.0999062 + 1.20544i
\(634\) 4.08299e6 0.403418
\(635\) 1.97221e7 1.94097
\(636\) 6.17147e6 511489.i 0.604987 0.0501411i
\(637\) 0 0
\(638\) 1.88966e6i 0.183794i
\(639\) −866904. 5.19397e6i −0.0839883 0.503208i
\(640\) 454705.i 0.0438813i
\(641\) 8.37927e6i 0.805491i −0.915312 0.402746i \(-0.868056\pi\)
0.915312 0.402746i \(-0.131944\pi\)
\(642\) −242445. 2.92527e6i −0.0232154 0.280109i
\(643\) 86587.1i 0.00825897i −0.999991 0.00412949i \(-0.998686\pi\)
0.999991 0.00412949i \(-0.00131446\pi\)
\(644\) 0 0
\(645\) −1.24308e6 1.49987e7i −0.117653 1.41956i
\(646\) −166584. −0.0157055
\(647\) 4.91422e6 0.461523 0.230762 0.973010i \(-0.425878\pi\)
0.230762 + 0.973010i \(0.425878\pi\)
\(648\) −3.75121e6 1.09245e7i −0.350941 1.02203i
\(649\) 9.74991e6i 0.908633i
\(650\) 1.01285e7 0.940292
\(651\) 0 0
\(652\) −890665. −0.0820532
\(653\) 1.74162e7i 1.59834i −0.601103 0.799172i \(-0.705272\pi\)
0.601103 0.799172i \(-0.294728\pi\)
\(654\) 9.42872e6 781449.i 0.862002 0.0714424i
\(655\) 1.62225e7 1.47746
\(656\) 1.44940e6 0.131500
\(657\) 2.24706e6 + 1.34630e7i 0.203096 + 1.21683i
\(658\) 0 0
\(659\) 4.09851e6i 0.367631i −0.982961 0.183816i \(-0.941155\pi\)
0.982961 0.183816i \(-0.0588450\pi\)
\(660\) 1.09349e7 906279.i 0.977134 0.0809846i
\(661\) 1.82046e6i 0.162061i 0.996712 + 0.0810304i \(0.0258211\pi\)
−0.996712 + 0.0810304i \(0.974179\pi\)
\(662\) 5.96102e6i 0.528659i
\(663\) −1.16877e7 + 968671.i −1.03263 + 0.0855840i
\(664\) 2.22017e7i 1.95419i
\(665\) 0 0
\(666\) 2.14901e6 + 1.28756e7i 0.187739 + 1.12482i
\(667\) 2.07781e6 0.180838
\(668\) 6.18302e6 0.536117
\(669\) 1.06224e7 880377.i 0.917604 0.0760507i
\(670\) 2.13438e6i 0.183690i
\(671\) −702273. −0.0602143
\(672\) 0 0
\(673\) 436008. 0.0371070 0.0185535 0.999828i \(-0.494094\pi\)
0.0185535 + 0.999828i \(0.494094\pi\)
\(674\) 1.51969e6i 0.128856i
\(675\) 2.42699e6 + 9.58190e6i 0.205026 + 0.809454i
\(676\) −6.07864e6 −0.511611
\(677\) −5.74216e6 −0.481508 −0.240754 0.970586i \(-0.577395\pi\)
−0.240754 + 0.970586i \(0.577395\pi\)
\(678\) 832523. + 1.00450e7i 0.0695540 + 0.839217i
\(679\) 0 0
\(680\) 1.23180e7i 1.02157i
\(681\) −8500.29 102562.i −0.000702370 0.00847458i
\(682\) 2.40139e6i 0.197698i
\(683\) 2.30403e6i 0.188989i −0.995525 0.0944943i \(-0.969877\pi\)
0.995525 0.0944943i \(-0.0301234\pi\)
\(684\) −25389.4 152118.i −0.00207497 0.0124320i
\(685\) 2.14259e6i 0.174467i
\(686\) 0 0
\(687\) −8.15938e6 + 676247.i −0.659577 + 0.0546655i
\(688\) 5.15422e6 0.415138
\(689\) −2.64407e7 −2.12190
\(690\) 1.34948e6 + 1.62824e7i 0.107906 + 1.30195i
\(691\) 1.37249e7i 1.09349i −0.837300 0.546744i \(-0.815867\pi\)
0.837300 0.546744i \(-0.184133\pi\)
\(692\) −5.42634e6 −0.430766
\(693\) 0 0
\(694\) 7.83703e6 0.617665
\(695\) 809397.i 0.0635623i
\(696\) 162218. + 1.95727e6i 0.0126933 + 0.153154i
\(697\) 2.98140e6 0.232454
\(698\) −1.72949e6 −0.134363
\(699\) −1.33024e7 + 1.10250e6i −1.02976 + 0.0853465i
\(700\) 0 0
\(701\) 1.19545e7i 0.918836i 0.888220 + 0.459418i \(0.151942\pi\)
−0.888220 + 0.459418i \(0.848058\pi\)
\(702\) 3.61015e6 + 1.42531e7i 0.276492 + 1.09161i
\(703\) 584612.i 0.0446148i
\(704\) 2.21223e7i 1.68228i
\(705\) 496115. + 5.98596e6i 0.0375932 + 0.453588i
\(706\) 1.07906e7i 0.814766i
\(707\) 0 0
\(708\) 249532. + 3.01077e6i 0.0187087 + 0.225733i
\(709\) −1.81040e7 −1.35257 −0.676283 0.736642i \(-0.736410\pi\)
−0.676283 + 0.736642i \(0.736410\pi\)
\(710\) −7.04043e6 −0.524147
\(711\) 5.87614e6 980763.i 0.435932 0.0727595i
\(712\) 2.35181e6i 0.173861i
\(713\) 2.64049e6 0.194518
\(714\) 0 0
\(715\) −4.68487e7 −3.42715
\(716\) 8.15745e6i 0.594664i
\(717\) −9.34783e6 + 774745.i −0.679068 + 0.0562809i
\(718\) −5.67641e6 −0.410925
\(719\) 3.32191e6 0.239643 0.119822 0.992795i \(-0.461768\pi\)
0.119822 + 0.992795i \(0.461768\pi\)
\(720\) −7.33764e6 + 1.22470e6i −0.527504 + 0.0880434i
\(721\) 0 0
\(722\) 1.06140e7i 0.757770i
\(723\) 1.42448e6 118060.i 0.101347 0.00839960i
\(724\) 2.28095e6i 0.161722i
\(725\) 1.68069e6i 0.118753i
\(726\) 2.04333e7 1.69350e6i 1.43879 0.119246i
\(727\) 2.47810e6i 0.173893i −0.996213 0.0869467i \(-0.972289\pi\)
0.996213 0.0869467i \(-0.0277110\pi\)
\(728\) 0 0
\(729\) −1.26188e7 + 6.83063e6i −0.879425 + 0.476038i
\(730\) 1.82492e7 1.26746
\(731\) 1.06022e7 0.733842
\(732\) −216862. + 17973.4i −0.0149591 + 0.00123980i
\(733\) 1.81962e7i 1.25090i 0.780266 + 0.625448i \(0.215084\pi\)
−0.780266 + 0.625448i \(0.784916\pi\)
\(734\) 6.51706e6 0.446489
\(735\) 0 0
\(736\) 1.45977e7 0.993322
\(737\) 4.49240e6i 0.304656i
\(738\) −615348. 3.68680e6i −0.0415891 0.249177i
\(739\) 2.65912e7 1.79113 0.895564 0.444932i \(-0.146772\pi\)
0.895564 + 0.444932i \(0.146772\pi\)
\(740\) −1.28880e7 −0.865178
\(741\) 54388.3 + 656233.i 0.00363882 + 0.0439048i
\(742\) 0 0
\(743\) 2.12846e7i 1.41447i 0.706980 + 0.707233i \(0.250057\pi\)
−0.706980 + 0.707233i \(0.749943\pi\)
\(744\) 206147. + 2.48730e6i 0.0136535 + 0.164739i
\(745\) 5.22709e6i 0.345040i
\(746\) 8.35096e6i 0.549401i
\(747\) 2.72042e7 4.54053e6i 1.78375 0.297718i
\(748\) 7.72961e6i 0.505130i
\(749\) 0 0
\(750\) −2.60225e6 + 215674.i −0.168926 + 0.0140005i
\(751\) 2.87030e7 1.85707 0.928533 0.371251i \(-0.121071\pi\)
0.928533 + 0.371251i \(0.121071\pi\)
\(752\) −2.05705e6 −0.132648
\(753\) −866902. 1.04598e7i −0.0557163 0.672256i
\(754\) 2.50003e6i 0.160146i
\(755\) 9.39779e6 0.600010
\(756\) 0 0
\(757\) 2.36595e7 1.50060 0.750302 0.661095i \(-0.229908\pi\)
0.750302 + 0.661095i \(0.229908\pi\)
\(758\) 1.16118e7i 0.734054i
\(759\) −2.84036e6 3.42708e7i −0.178965 2.15934i
\(760\) −691623. −0.0434346
\(761\) −1.21252e7 −0.758973 −0.379487 0.925197i \(-0.623899\pi\)
−0.379487 + 0.925197i \(0.623899\pi\)
\(762\) 1.73588e7 1.43869e6i 1.08301 0.0897595i
\(763\) 0 0
\(764\) 8.89122e6i 0.551097i
\(765\) −1.50935e7 + 2.51919e6i −0.932472 + 0.155635i
\(766\) 4.09661e6i 0.252262i
\(767\) 1.28992e7i 0.791723i
\(768\) 1.36607e6 + 1.64826e7i 0.0835740 + 1.00838i
\(769\) 2.88689e7i 1.76041i −0.474593 0.880206i \(-0.657405\pi\)
0.474593 0.880206i \(-0.342595\pi\)
\(770\) 0 0
\(771\) −2.17557e6 2.62498e7i −0.131807 1.59034i
\(772\) 1.26298e7 0.762702
\(773\) −5.26593e6 −0.316976 −0.158488 0.987361i \(-0.550662\pi\)
−0.158488 + 0.987361i \(0.550662\pi\)
\(774\) −2.18825e6 1.31107e7i −0.131294 0.786635i
\(775\) 2.13583e6i 0.127736i
\(776\) −2.57990e7 −1.53798
\(777\) 0 0
\(778\) −1.24708e7 −0.738664
\(779\) 167398.i 0.00988338i
\(780\) −1.44669e7 + 1.19901e6i −0.851410 + 0.0705646i
\(781\) 1.48185e7 0.869317
\(782\) −1.15096e7 −0.673046
\(783\) 2.36510e6 599055.i 0.137862 0.0349191i
\(784\) 0 0
\(785\) 1.75210e7i 1.01481i
\(786\) 1.42786e7 1.18340e6i 0.824382 0.0683245i
\(787\) 1.36972e7i 0.788306i 0.919045 + 0.394153i \(0.128962\pi\)
−0.919045 + 0.394153i \(0.871038\pi\)
\(788\) 3.60461e6i 0.206796i
\(789\) −2.27593e7 + 1.88628e6i −1.30157 + 0.107873i
\(790\) 7.96512e6i 0.454072i
\(791\) 0 0
\(792\) 3.20609e7 5.35115e6i 1.81620 0.303134i
\(793\) 929109. 0.0524667
\(794\) 1.47750e7 0.831718
\(795\) −3.43817e7 + 2.84954e6i −1.92934 + 0.159903i
\(796\) 1.00525e7i 0.562329i
\(797\) −4.53096e6 −0.252665 −0.126332 0.991988i \(-0.540321\pi\)
−0.126332 + 0.991988i \(0.540321\pi\)
\(798\) 0 0
\(799\) −4.23133e6 −0.234482
\(800\) 1.18077e7i 0.652292i
\(801\) 2.88172e6 480976.i 0.158698 0.0264876i
\(802\) 1.48617e7 0.815892
\(803\) −3.84104e7 −2.10213
\(804\) 114975. + 1.38725e6i 0.00627282 + 0.0756859i
\(805\) 0 0
\(806\) 3.17705e6i 0.172261i
\(807\) −1.24511e6 1.50231e7i −0.0673014 0.812037i
\(808\) 3.03752e7i 1.63678i
\(809\) 2.72004e7i 1.46118i 0.682815 + 0.730592i \(0.260756\pi\)
−0.682815 + 0.730592i \(0.739244\pi\)
\(810\) 6.23047e6 + 1.81447e7i 0.333663 + 0.971710i
\(811\) 1.05261e7i 0.561973i 0.959712 + 0.280987i \(0.0906616\pi\)
−0.959712 + 0.280987i \(0.909338\pi\)
\(812\) 0 0
\(813\) −6.16530e6 + 510978.i −0.327136 + 0.0271129i
\(814\) −3.67345e7 −1.94318
\(815\) 4.96195e6 0.261673
\(816\) −432854. 5.22268e6i −0.0227571 0.274579i
\(817\) 595286.i 0.0312011i
\(818\) 5.02107e6 0.262369
\(819\) 0 0
\(820\) 3.69034e6 0.191660
\(821\) 1.28015e7i 0.662831i 0.943485 + 0.331415i \(0.107526\pi\)
−0.943485 + 0.331415i \(0.892474\pi\)
\(822\) 156298. + 1.88584e6i 0.00806816 + 0.0973478i
\(823\) −2.56260e7 −1.31881 −0.659404 0.751788i \(-0.729191\pi\)
−0.659404 + 0.751788i \(0.729191\pi\)
\(824\) 2.30175e7 1.18097
\(825\) −2.77209e7 + 2.29750e6i −1.41799 + 0.117522i
\(826\) 0 0
\(827\) 2.01621e7i 1.02511i −0.858654 0.512556i \(-0.828699\pi\)
0.858654 0.512556i \(-0.171301\pi\)
\(828\) −1.75420e6 1.05101e7i −0.0889210 0.532761i
\(829\) 3.20634e7i 1.62040i −0.586151 0.810202i \(-0.699358\pi\)
0.586151 0.810202i \(-0.300642\pi\)
\(830\) 3.68753e7i 1.85798i
\(831\) −1.64322e6 1.98266e7i −0.0825457 0.995970i
\(832\) 2.92679e7i 1.46583i
\(833\) 0 0
\(834\) −59044.0 712407.i −0.00293941 0.0354660i
\(835\) −3.44460e7 −1.70971
\(836\) 433997. 0.0214769
\(837\) 3.00558e6 761282.i 0.148291 0.0375605i
\(838\) 1.05071e7i 0.516860i
\(839\) 2.55689e7 1.25403 0.627013 0.779009i \(-0.284277\pi\)
0.627013 + 0.779009i \(0.284277\pi\)
\(840\) 0 0
\(841\) 2.00963e7 0.979775
\(842\) 808015.i 0.0392771i
\(843\) −3.46511e6 + 287187.i −0.167938 + 0.0139186i
\(844\) −1.06327e7 −0.513793
\(845\) 3.38645e7 1.63156
\(846\) 873330. + 5.23247e6i 0.0419520 + 0.251351i
\(847\) 0 0
\(848\) 1.18151e7i 0.564219i
\(849\) −1.58554e7 + 1.31409e6i −0.754934 + 0.0625686i
\(850\) 9.30988e6i 0.441974i
\(851\) 4.03920e7i 1.91193i
\(852\) 4.57597e6 379255.i 0.215965 0.0178991i
\(853\) 1.91256e7i 0.900001i −0.893028 0.450001i \(-0.851424\pi\)
0.893028 0.450001i \(-0.148576\pi\)
\(854\) 0 0
\(855\) 141446. + 847459.i 0.00661721 + 0.0396464i
\(856\) 8.58508e6 0.400461
\(857\) 1.77319e7 0.824714 0.412357 0.911022i \(-0.364706\pi\)
0.412357 + 0.911022i \(0.364706\pi\)
\(858\) −4.12348e7 + 3.41753e6i −1.91226 + 0.158487i
\(859\) 3.21529e7i 1.48675i −0.668875 0.743375i \(-0.733224\pi\)
0.668875 0.743375i \(-0.266776\pi\)
\(860\) 1.31233e7 0.605057
\(861\) 0 0
\(862\) 2.14176e7 0.981754
\(863\) 1.53188e7i 0.700161i 0.936720 + 0.350081i \(0.113846\pi\)
−0.936720 + 0.350081i \(0.886154\pi\)
\(864\) 1.66161e7 4.20868e6i 0.757260 0.191806i
\(865\) 3.02305e7 1.37374
\(866\) 2.28847e7 1.03693
\(867\) 937761. + 1.13147e7i 0.0423686 + 0.511207i
\(868\) 0 0
\(869\) 1.67648e7i 0.753094i
\(870\) −269431. 3.25087e6i −0.0120684 0.145613i
\(871\) 5.94346e6i 0.265457i
\(872\) 2.76714e7i 1.23237i
\(873\) 5.27624e6 + 3.16121e7i 0.234309 + 1.40384i
\(874\) 646236.i 0.0286162i
\(875\) 0 0
\(876\) −1.18611e7 + 983048.i −0.522236 + 0.0432827i
\(877\) −1.68420e7 −0.739425 −0.369713 0.929146i \(-0.620544\pi\)
−0.369713 + 0.929146i \(0.620544\pi\)
\(878\) −398923. −0.0174644
\(879\) 965437. + 1.16487e7i 0.0421456 + 0.508515i
\(880\) 2.09345e7i 0.911289i
\(881\) 2.34232e7 1.01673 0.508367 0.861141i \(-0.330249\pi\)
0.508367 + 0.861141i \(0.330249\pi\)
\(882\) 0 0
\(883\) 2.30546e7 0.995077 0.497538 0.867442i \(-0.334237\pi\)
0.497538 + 0.867442i \(0.334237\pi\)
\(884\) 1.02263e7i 0.440137i
\(885\) −1.39016e6 1.67732e7i −0.0596631 0.719876i
\(886\) −2.04434e7 −0.874923
\(887\) −1.73521e7 −0.740531 −0.370265 0.928926i \(-0.620733\pi\)
−0.370265 + 0.928926i \(0.620733\pi\)
\(888\) −3.80487e7 + 3.15347e6i −1.61923 + 0.134201i
\(889\) 0 0
\(890\) 3.90618e6i 0.165302i
\(891\) −1.31138e7 3.81905e7i −0.553392 1.61161i
\(892\) 9.29417e6i 0.391110i
\(893\) 237578.i 0.00996961i
\(894\) −381307. 4.60073e6i −0.0159562 0.192523i
\(895\) 4.54457e7i 1.89642i
\(896\) 0 0
\(897\) 3.75780e6 + 4.53405e7i 0.155938 + 1.88150i
\(898\) 1.48858e7 0.616003
\(899\) −527188. −0.0217553
\(900\) −8.50141e6 + 1.41893e6i −0.349852 + 0.0583924i
\(901\) 2.43036e7i 0.997374i
\(902\) 1.05185e7 0.430466
\(903\) 0 0
\(904\) −2.94800e7 −1.19979
\(905\) 1.27073e7i 0.515742i
\(906\) 8.27165e6 685551.i 0.334789 0.0277472i
\(907\) −3.41252e7 −1.37739 −0.688696 0.725051i \(-0.741816\pi\)
−0.688696 + 0.725051i \(0.741816\pi\)
\(908\) 89737.9 0.00361211
\(909\) 3.72194e7 6.21213e6i 1.49403 0.249362i
\(910\) 0 0
\(911\) 1.86336e7i 0.743878i −0.928257 0.371939i \(-0.878693\pi\)
0.928257 0.371939i \(-0.121307\pi\)
\(912\) −293240. + 24303.6i −0.0116744 + 0.000967573i
\(913\) 7.76143e7i 3.08152i
\(914\) 1.74300e7i 0.690131i
\(915\) 1.20815e6 100131.i 0.0477055 0.00395382i
\(916\) 7.13916e6i 0.281131i
\(917\) 0 0
\(918\) −1.31011e7 + 3.31836e6i −0.513097 + 0.129962i
\(919\) 8.54259e6 0.333657 0.166829 0.985986i \(-0.446647\pi\)
0.166829 + 0.985986i \(0.446647\pi\)
\(920\) −4.77856e7 −1.86135
\(921\) −2.35959e7 + 1.95562e6i −0.916614 + 0.0759687i
\(922\) 1.82094e7i 0.705455i
\(923\) −1.96050e7 −0.757465
\(924\) 0 0
\(925\) 3.26722e7 1.25552
\(926\) 4.79024e6i 0.183582i
\(927\) −4.70737e6 2.82037e7i −0.179920 1.07797i
\(928\) −2.91451e6 −0.111095
\(929\) 1.44120e7 0.547881 0.273940 0.961747i \(-0.411673\pi\)
0.273940 + 0.961747i \(0.411673\pi\)
\(930\) −342394. 4.13122e6i −0.0129813 0.156628i
\(931\) 0 0
\(932\) 1.16391e7i 0.438916i
\(933\) 1.68065e6 + 2.02782e7i 0.0632080 + 0.762648i
\(934\) 2.95932e7i 1.11000i
\(935\) 4.30621e7i 1.61089i
\(936\) −4.24167e7 + 7.07960e6i −1.58251 + 0.264131i
\(937\) 3.08762e7i 1.14888i 0.818547 + 0.574440i \(0.194780\pi\)
−0.818547 + 0.574440i \(0.805220\pi\)
\(938\) 0 0
\(939\) −5.81981e6 + 482344.i −0.215399 + 0.0178522i
\(940\) −5.23750e6 −0.193332
\(941\) 4.32430e7 1.59199 0.795997 0.605301i \(-0.206947\pi\)
0.795997 + 0.605301i \(0.206947\pi\)
\(942\) 1.27812e6 + 1.54214e7i 0.0469294 + 0.566236i
\(943\) 1.15658e7i 0.423543i
\(944\) 5.76403e6 0.210522
\(945\) 0 0
\(946\) 3.74052e7 1.35895
\(947\) 9.47194e6i 0.343213i 0.985166 + 0.171607i \(0.0548958\pi\)
−0.985166 + 0.171607i \(0.945104\pi\)
\(948\) 429066. + 5.17697e6i 0.0155061 + 0.187092i
\(949\) 5.08172e7 1.83166
\(950\) 522725. 0.0187916
\(951\) 1.47843e7 1.22532e6i 0.530089 0.0439336i
\(952\) 0 0
\(953\) 5.38831e7i 1.92185i −0.276802 0.960927i \(-0.589275\pi\)
0.276802 0.960927i \(-0.410725\pi\)
\(954\) −3.00538e7 + 5.01616e6i −1.06913 + 0.178443i
\(955\) 4.95335e7i 1.75748i
\(956\) 8.17901e6i 0.289438i
\(957\) 567092. + 6.84236e6i 0.0200158 + 0.241505i
\(958\) 1.96075e7i 0.690254i
\(959\) 0 0
\(960\) −3.15423e6 3.80580e7i −0.110463 1.33281i
\(961\) 2.79592e7 0.976599
\(962\) 4.85999e7 1.69316
\(963\) −1.75576e6 1.05195e7i −0.0610098 0.365534i
\(964\) 1.24637e6i 0.0431970i
\(965\) −7.03617e7 −2.43230
\(966\) 0 0
\(967\) −3.83707e7 −1.31957 −0.659787 0.751453i \(-0.729353\pi\)
−0.659787 + 0.751453i \(0.729353\pi\)
\(968\) 5.99676e7i 2.05697i
\(969\) −603192. + 49992.4i −0.0206370 + 0.00171039i
\(970\) 4.28502e7 1.46226
\(971\) −3.05234e7 −1.03893 −0.519463 0.854493i \(-0.673868\pi\)
−0.519463 + 0.854493i \(0.673868\pi\)
\(972\) −5.02695e6 1.14576e7i −0.170663 0.388981i
\(973\) 0 0
\(974\) 3.52138e7i 1.18937i
\(975\) 3.66748e7 3.03960e6i 1.23554 0.102401i
\(976\) 415176.i 0.0139511i
\(977\) 1.02939e7i 0.345018i −0.985008 0.172509i \(-0.944813\pi\)
0.985008 0.172509i \(-0.0551874\pi\)
\(978\) 4.36736e6 361965.i 0.146006 0.0121010i
\(979\) 8.22164e6i 0.274158i
\(980\) 0 0
\(981\) 3.39064e7 5.65917e6i 1.12489 0.187750i
\(982\) 1.47131e7 0.486883
\(983\) −5.35051e7 −1.76608 −0.883042 0.469294i \(-0.844508\pi\)
−0.883042 + 0.469294i \(0.844508\pi\)
\(984\) 1.08949e7 902963.i 0.358702 0.0297291i
\(985\) 2.00815e7i 0.659487i
\(986\) 2.29796e6 0.0752750
\(987\) 0 0
\(988\) −574180. −0.0187135
\(989\) 4.11295e7i 1.33710i
\(990\) −5.32507e7 + 8.88785e6i −1.72678 + 0.288210i
\(991\) −1.40671e7 −0.455010 −0.227505 0.973777i \(-0.573057\pi\)
−0.227505 + 0.973777i \(0.573057\pi\)
\(992\) −3.70377e6 −0.119499
\(993\) −1.78892e6 2.15845e7i −0.0575728 0.694656i
\(994\) 0 0
\(995\) 5.60030e7i 1.79330i
\(996\) 1.98640e6 + 2.39673e7i 0.0634481 + 0.765545i
\(997\) 1.77878e7i 0.566742i −0.959010 0.283371i \(-0.908547\pi\)
0.959010 0.283371i \(-0.0914528\pi\)
\(998\) 2.31896e7i 0.737000i
\(999\) 1.16455e7 + 4.59770e7i 0.369184 + 1.45756i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.6.c.d.146.7 40
3.2 odd 2 inner 147.6.c.d.146.34 yes 40
7.6 odd 2 inner 147.6.c.d.146.33 yes 40
21.20 even 2 inner 147.6.c.d.146.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.6.c.d.146.7 40 1.1 even 1 trivial
147.6.c.d.146.8 yes 40 21.20 even 2 inner
147.6.c.d.146.33 yes 40 7.6 odd 2 inner
147.6.c.d.146.34 yes 40 3.2 odd 2 inner