Properties

Label 147.6.e.d
Level $147$
Weight $6$
Character orbit 147.e
Analytic conductor $23.576$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,6,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5764215125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 5 \zeta_{6} q^{2} + ( - 9 \zeta_{6} + 9) q^{3} + ( - 7 \zeta_{6} + 7) q^{4} + 94 \zeta_{6} q^{5} - 45 q^{6} - 195 q^{8} - 81 \zeta_{6} q^{9} + ( - 470 \zeta_{6} + 470) q^{10} + (52 \zeta_{6} - 52) q^{11} + \cdots + 4212 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{2} + 9 q^{3} + 7 q^{4} + 94 q^{5} - 90 q^{6} - 390 q^{8} - 81 q^{9} + 470 q^{10} - 52 q^{11} - 63 q^{12} + 1540 q^{13} + 1692 q^{15} + 751 q^{16} - 2022 q^{17} - 405 q^{18} + 1732 q^{19} + 1316 q^{20}+ \cdots + 8424 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−2.50000 4.33013i 4.50000 7.79423i 3.50000 6.06218i 47.0000 + 81.4064i −45.0000 0 −195.000 −40.5000 70.1481i 235.000 407.032i
79.1 −2.50000 + 4.33013i 4.50000 + 7.79423i 3.50000 + 6.06218i 47.0000 81.4064i −45.0000 0 −195.000 −40.5000 + 70.1481i 235.000 + 407.032i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.6.e.d 2
7.b odd 2 1 147.6.e.c 2
7.c even 3 1 147.6.a.f 1
7.c even 3 1 inner 147.6.e.d 2
7.d odd 6 1 21.6.a.c 1
7.d odd 6 1 147.6.e.c 2
21.g even 6 1 63.6.a.b 1
21.h odd 6 1 441.6.a.c 1
28.f even 6 1 336.6.a.i 1
35.i odd 6 1 525.6.a.b 1
35.k even 12 2 525.6.d.c 2
84.j odd 6 1 1008.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.c 1 7.d odd 6 1
63.6.a.b 1 21.g even 6 1
147.6.a.f 1 7.c even 3 1
147.6.e.c 2 7.b odd 2 1
147.6.e.c 2 7.d odd 6 1
147.6.e.d 2 1.a even 1 1 trivial
147.6.e.d 2 7.c even 3 1 inner
336.6.a.i 1 28.f even 6 1
441.6.a.c 1 21.h odd 6 1
525.6.a.b 1 35.i odd 6 1
525.6.d.c 2 35.k even 12 2
1008.6.a.a 1 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(147, [\chi])\):

\( T_{2}^{2} + 5T_{2} + 25 \) Copy content Toggle raw display
\( T_{5}^{2} - 94T_{5} + 8836 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$3$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} - 94T + 8836 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 52T + 2704 \) Copy content Toggle raw display
$13$ \( (T - 770)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2022 T + 4088484 \) Copy content Toggle raw display
$19$ \( T^{2} - 1732 T + 2999824 \) Copy content Toggle raw display
$23$ \( T^{2} - 576T + 331776 \) Copy content Toggle raw display
$29$ \( (T - 5518)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 6336 T + 40144896 \) Copy content Toggle raw display
$37$ \( T^{2} - 7338 T + 53846244 \) Copy content Toggle raw display
$41$ \( (T - 3262)^{2} \) Copy content Toggle raw display
$43$ \( (T - 5420)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 864T + 746496 \) Copy content Toggle raw display
$53$ \( T^{2} + 4182 T + 17489124 \) Copy content Toggle raw display
$59$ \( T^{2} + 11220 T + 125888400 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2079542404 \) Copy content Toggle raw display
$67$ \( T^{2} + 1396 T + 1948816 \) Copy content Toggle raw display
$71$ \( (T - 18720)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 2149435044 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 9491435776 \) Copy content Toggle raw display
$83$ \( (T - 81228)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 3182 T + 10125124 \) Copy content Toggle raw display
$97$ \( (T + 4914)^{2} \) Copy content Toggle raw display
show more
show less