Properties

Label 1470.2.bq
Level $1470$
Weight $2$
Character orbit 1470.bq
Rep. character $\chi_{1470}(109,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $672$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.bq (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 245 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1470, [\chi])\).

Total New Old
Modular forms 4128 672 3456
Cusp forms 3936 672 3264
Eisenstein series 192 0 192

Trace form

\( 672 q - 56 q^{4} + 4 q^{5} - 8 q^{6} - 56 q^{9} + 2 q^{10} - 60 q^{11} + 4 q^{14} + 10 q^{15} + 56 q^{16} + 36 q^{19} - 20 q^{20} - 8 q^{21} - 4 q^{24} + 2 q^{25} + 32 q^{26} + 16 q^{29} - 12 q^{31} + 32 q^{34}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1470, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1470, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1470, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(490, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 2}\)