Properties

Label 1470.4.a.bi
Level $1470$
Weight $4$
Character orbit 1470.a
Self dual yes
Analytic conductor $86.733$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,4,Mod(1,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1470.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.7328077084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 5 q^{5} - 6 q^{6} - 8 q^{8} + 9 q^{9} + 10 q^{10} + (16 \beta - 8) q^{11} + 12 q^{12} + (10 \beta + 14) q^{13} - 15 q^{15} + 16 q^{16} + (4 \beta + 16) q^{17} - 18 q^{18}+ \cdots + (144 \beta - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 6 q^{3} + 8 q^{4} - 10 q^{5} - 12 q^{6} - 16 q^{8} + 18 q^{9} + 20 q^{10} - 16 q^{11} + 24 q^{12} + 28 q^{13} - 30 q^{15} + 32 q^{16} + 32 q^{17} - 36 q^{18} - 100 q^{19} - 40 q^{20} + 32 q^{22}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 3.00000 4.00000 −5.00000 −6.00000 0 −8.00000 9.00000 10.0000
1.2 −2.00000 3.00000 4.00000 −5.00000 −6.00000 0 −8.00000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.4.a.bi yes 2
7.b odd 2 1 1470.4.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1470.4.a.bg 2 7.b odd 2 1
1470.4.a.bi yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1470))\):

\( T_{11}^{2} + 16T_{11} - 448 \) Copy content Toggle raw display
\( T_{13}^{2} - 28T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 16T - 448 \) Copy content Toggle raw display
$13$ \( T^{2} - 28T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} - 32T + 224 \) Copy content Toggle raw display
$19$ \( T^{2} + 100T + 578 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T - 10654 \) Copy content Toggle raw display
$29$ \( T^{2} - 148T + 4676 \) Copy content Toggle raw display
$31$ \( T^{2} + 132T + 3634 \) Copy content Toggle raw display
$37$ \( T^{2} + 460T + 47900 \) Copy content Toggle raw display
$41$ \( T^{2} - 284T - 61444 \) Copy content Toggle raw display
$43$ \( T^{2} + 192T + 9208 \) Copy content Toggle raw display
$47$ \( T^{2} - 316T + 17276 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 62642 \) Copy content Toggle raw display
$59$ \( T^{2} - 344T - 52024 \) Copy content Toggle raw display
$61$ \( T^{2} + 416T - 34354 \) Copy content Toggle raw display
$67$ \( T^{2} - 184T - 27448 \) Copy content Toggle raw display
$71$ \( T^{2} - 64T - 11144 \) Copy content Toggle raw display
$73$ \( T^{2} + 1052T + 31676 \) Copy content Toggle raw display
$79$ \( T^{2} + 668T + 101756 \) Copy content Toggle raw display
$83$ \( T^{2} + 68T - 303044 \) Copy content Toggle raw display
$89$ \( T^{2} + 468T - 91044 \) Copy content Toggle raw display
$97$ \( T^{2} + 444 T - 1205244 \) Copy content Toggle raw display
show more
show less