Properties

Label 1472.1.s.a.597.1
Level $1472$
Weight $1$
Character 1472.597
Analytic conductor $0.735$
Analytic rank $0$
Dimension $8$
Projective image $D_{16}$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,1,Mod(45,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 7, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.45");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1472.s (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.734623698596\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{16}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{16} + \cdots)\)

Embedding invariants

Embedding label 597.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 1472.597
Dual form 1472.1.s.a.1149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.382683 + 0.923880i) q^{2} +(0.382683 + 1.92388i) q^{3} +(-0.707107 + 0.707107i) q^{4} +(-1.63099 + 1.08979i) q^{6} +(-0.923880 - 0.382683i) q^{8} +(-2.63099 + 1.08979i) q^{9} +(-1.63099 - 1.08979i) q^{12} +(1.63099 + 1.08979i) q^{13} -1.00000i q^{16} +(-2.01367 - 2.01367i) q^{18} +(-0.382683 - 0.923880i) q^{23} +(0.382683 - 1.92388i) q^{24} +(0.382683 - 0.923880i) q^{25} +(-0.382683 + 1.92388i) q^{26} +(-2.01367 - 3.01367i) q^{27} +(1.08979 - 0.216773i) q^{29} +0.765367i q^{31} +(0.923880 - 0.382683i) q^{32} +(1.08979 - 2.63099i) q^{36} +(-1.47247 + 3.55487i) q^{39} +(-0.765367 - 1.84776i) q^{41} +(0.707107 - 0.707107i) q^{46} +(-1.00000 + 1.00000i) q^{47} +(1.92388 - 0.382683i) q^{48} +(0.707107 + 0.707107i) q^{49} +1.00000 q^{50} +(-1.92388 + 0.382683i) q^{52} +(2.01367 - 3.01367i) q^{54} +(0.617317 + 0.923880i) q^{58} +(-0.324423 + 0.216773i) q^{59} +(-0.707107 + 0.292893i) q^{62} +(0.707107 + 0.707107i) q^{64} +(1.63099 - 1.08979i) q^{69} +(1.70711 + 0.707107i) q^{71} +2.84776 q^{72} +(-1.30656 + 0.541196i) q^{73} +(1.92388 + 0.382683i) q^{75} -3.84776 q^{78} +(3.01367 - 3.01367i) q^{81} +(1.41421 - 1.41421i) q^{82} +(0.834089 + 2.01367i) q^{87} +(0.923880 + 0.382683i) q^{92} +(-1.47247 + 0.292893i) q^{93} +(-1.30656 - 0.541196i) q^{94} +(1.08979 + 1.63099i) q^{96} +(-0.382683 + 0.923880i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{47} + 8 q^{48} + 8 q^{50} - 8 q^{52} + 8 q^{58} + 8 q^{71} + 8 q^{72} + 8 q^{75} - 16 q^{78} + 8 q^{81} + 8 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(e\left(\frac{13}{16}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(3\) 0.382683 + 1.92388i 0.382683 + 1.92388i 0.382683 + 0.923880i \(0.375000\pi\)
1.00000i \(0.5\pi\)
\(4\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(5\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(6\) −1.63099 + 1.08979i −1.63099 + 1.08979i
\(7\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(8\) −0.923880 0.382683i −0.923880 0.382683i
\(9\) −2.63099 + 1.08979i −2.63099 + 1.08979i
\(10\) 0 0
\(11\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(12\) −1.63099 1.08979i −1.63099 1.08979i
\(13\) 1.63099 + 1.08979i 1.63099 + 1.08979i 0.923880 + 0.382683i \(0.125000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000i 1.00000i
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) −2.01367 2.01367i −2.01367 2.01367i
\(19\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.382683 0.923880i −0.382683 0.923880i
\(24\) 0.382683 1.92388i 0.382683 1.92388i
\(25\) 0.382683 0.923880i 0.382683 0.923880i
\(26\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(27\) −2.01367 3.01367i −2.01367 3.01367i
\(28\) 0 0
\(29\) 1.08979 0.216773i 1.08979 0.216773i 0.382683 0.923880i \(-0.375000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(30\) 0 0
\(31\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(32\) 0.923880 0.382683i 0.923880 0.382683i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.08979 2.63099i 1.08979 2.63099i
\(37\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(38\) 0 0
\(39\) −1.47247 + 3.55487i −1.47247 + 3.55487i
\(40\) 0 0
\(41\) −0.765367 1.84776i −0.765367 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(42\) 0 0
\(43\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.707107 0.707107i 0.707107 0.707107i
\(47\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(48\) 1.92388 0.382683i 1.92388 0.382683i
\(49\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(50\) 1.00000 1.00000
\(51\) 0 0
\(52\) −1.92388 + 0.382683i −1.92388 + 0.382683i
\(53\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(54\) 2.01367 3.01367i 2.01367 3.01367i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.617317 + 0.923880i 0.617317 + 0.923880i
\(59\) −0.324423 + 0.216773i −0.324423 + 0.216773i −0.707107 0.707107i \(-0.750000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(62\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(63\) 0 0
\(64\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(68\) 0 0
\(69\) 1.63099 1.08979i 1.63099 1.08979i
\(70\) 0 0
\(71\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(72\) 2.84776 2.84776
\(73\) −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(74\) 0 0
\(75\) 1.92388 + 0.382683i 1.92388 + 0.382683i
\(76\) 0 0
\(77\) 0 0
\(78\) −3.84776 −3.84776
\(79\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(80\) 0 0
\(81\) 3.01367 3.01367i 3.01367 3.01367i
\(82\) 1.41421 1.41421i 1.41421 1.41421i
\(83\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.834089 + 2.01367i 0.834089 + 2.01367i
\(88\) 0 0
\(89\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(93\) −1.47247 + 0.292893i −1.47247 + 0.292893i
\(94\) −1.30656 0.541196i −1.30656 0.541196i
\(95\) 0 0
\(96\) 1.08979 + 1.63099i 1.08979 + 1.63099i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(99\) 0 0
\(100\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(101\) 0.216773 + 0.324423i 0.216773 + 0.324423i 0.923880 0.382683i \(-0.125000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(102\) 0 0
\(103\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(104\) −1.08979 1.63099i −1.08979 1.63099i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(108\) 3.55487 + 0.707107i 3.55487 + 0.707107i
\(109\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.617317 + 0.923880i −0.617317 + 0.923880i
\(117\) −5.47875 1.08979i −5.47875 1.08979i
\(118\) −0.324423 0.216773i −0.324423 0.216773i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(122\) 0 0
\(123\) 3.26197 2.17958i 3.26197 2.17958i
\(124\) −0.541196 0.541196i −0.541196 0.541196i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.216773 1.08979i −0.216773 1.08979i −0.923880 0.382683i \(-0.875000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(138\) 1.63099 + 1.08979i 1.63099 + 1.08979i
\(139\) −1.63099 0.324423i −1.63099 0.324423i −0.707107 0.707107i \(-0.750000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(140\) 0 0
\(141\) −2.30656 1.54120i −2.30656 1.54120i
\(142\) 1.84776i 1.84776i
\(143\) 0 0
\(144\) 1.08979 + 2.63099i 1.08979 + 2.63099i
\(145\) 0 0
\(146\) −1.00000 1.00000i −1.00000 1.00000i
\(147\) −1.08979 + 1.63099i −1.08979 + 1.63099i
\(148\) 0 0
\(149\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(150\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(151\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.47247 3.55487i −1.47247 3.55487i
\(157\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 3.93755 + 1.63099i 3.93755 + 1.63099i
\(163\) 0.382683 0.0761205i 0.382683 0.0761205i 1.00000i \(-0.5\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(164\) 1.84776 + 0.765367i 1.84776 + 0.765367i
\(165\) 0 0
\(166\) 0 0
\(167\) −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i \(0.250000\pi\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.08979 + 2.63099i 1.08979 + 2.63099i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.923880 1.38268i 0.923880 1.38268i 1.00000i \(-0.5\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(174\) −1.54120 + 1.54120i −1.54120 + 1.54120i
\(175\) 0 0
\(176\) 0 0
\(177\) −0.541196 0.541196i −0.541196 0.541196i
\(178\) 0 0
\(179\) −0.324423 0.216773i −0.324423 0.216773i 0.382683 0.923880i \(-0.375000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000i 1.00000i
\(185\) 0 0
\(186\) −0.834089 1.24830i −0.834089 1.24830i
\(187\) 0 0
\(188\) 1.41421i 1.41421i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −1.08979 + 1.63099i −1.08979 + 1.63099i
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) 0.923880 0.617317i 0.923880 0.617317i 1.00000i \(-0.5\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(198\) 0 0
\(199\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(200\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(201\) 0 0
\(202\) −0.216773 + 0.324423i −0.216773 + 0.324423i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.01367 + 2.01367i 2.01367 + 2.01367i
\(208\) 1.08979 1.63099i 1.08979 1.63099i
\(209\) 0 0
\(210\) 0 0
\(211\) 1.08979 1.63099i 1.08979 1.63099i 0.382683 0.923880i \(-0.375000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(212\) 0 0
\(213\) −0.707107 + 3.55487i −0.707107 + 3.55487i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.707107 + 3.55487i 0.707107 + 3.55487i
\(217\) 0 0
\(218\) 0 0
\(219\) −1.54120 2.30656i −1.54120 2.30656i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(224\) 0 0
\(225\) 2.84776i 2.84776i
\(226\) 0 0
\(227\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(228\) 0 0
\(229\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.08979 0.216773i −1.08979 0.216773i
\(233\) −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
−1.00000 \(\pi\)
\(234\) −1.08979 5.47875i −1.08979 5.47875i
\(235\) 0 0
\(236\) 0.0761205 0.382683i 0.0761205 0.382683i
\(237\) 0 0
\(238\) 0 0
\(239\) 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(240\) 0 0
\(241\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 3.93755 + 2.63099i 3.93755 + 2.63099i
\(244\) 0 0
\(245\) 0 0
\(246\) 3.26197 + 2.17958i 3.26197 + 2.17958i
\(247\) 0 0
\(248\) 0.292893 0.707107i 0.292893 0.707107i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.541196 1.30656i −0.541196 1.30656i
\(255\) 0 0
\(256\) −1.00000 −1.00000
\(257\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2.63099 + 1.75797i −2.63099 + 1.75797i
\(262\) 0.923880 0.617317i 0.923880 0.617317i
\(263\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.38268 0.923880i −1.38268 0.923880i −0.382683 0.923880i \(-0.625000\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(277\) 0.0761205 0.382683i 0.0761205 0.382683i −0.923880 0.382683i \(-0.875000\pi\)
1.00000 \(0\)
\(278\) −0.324423 1.63099i −0.324423 1.63099i
\(279\) −0.834089 2.01367i −0.834089 2.01367i
\(280\) 0 0
\(281\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(282\) 0.541196 2.72078i 0.541196 2.72078i
\(283\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(284\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.01367 + 2.01367i −2.01367 + 2.01367i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.541196 1.30656i 0.541196 1.30656i
\(293\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(294\) −1.92388 0.382683i −1.92388 0.382683i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.382683 1.92388i 0.382683 1.92388i
\(300\) −1.63099 + 1.08979i −1.63099 + 1.08979i
\(301\) 0 0
\(302\) 0 0
\(303\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.923880 0.617317i −0.923880 0.617317i 1.00000i \(-0.5\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(312\) 2.72078 2.72078i 2.72078 2.72078i
\(313\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.216773 + 1.08979i 0.216773 + 1.08979i 0.923880 + 0.382683i \(0.125000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 4.26197i 4.26197i
\(325\) 1.63099 1.08979i 1.63099 1.08979i
\(326\) 0.216773 + 0.324423i 0.216773 + 0.324423i
\(327\) 0 0
\(328\) 2.00000i 2.00000i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.92388 + 0.382683i 1.92388 + 0.382683i 1.00000 \(0\)
0.923880 + 0.382683i \(0.125000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.765367 −0.765367
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −2.01367 + 2.01367i −2.01367 + 2.01367i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 1.63099 + 0.324423i 1.63099 + 0.324423i
\(347\) 0.617317 + 0.923880i 0.617317 + 0.923880i 1.00000 \(0\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(348\) −2.01367 0.834089i −2.01367 0.834089i
\(349\) 1.92388 0.382683i 1.92388 0.382683i 0.923880 0.382683i \(-0.125000\pi\)
1.00000 \(0\)
\(350\) 0 0
\(351\) 7.10973i 7.10973i
\(352\) 0 0
\(353\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(354\) 0.292893 0.707107i 0.292893 0.707107i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0.0761205 0.382683i 0.0761205 0.382683i
\(359\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(360\) 0 0
\(361\) −0.382683 0.923880i −0.382683 0.923880i
\(362\) 0 0
\(363\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(369\) 4.02734 + 4.02734i 4.02734 + 4.02734i
\(370\) 0 0
\(371\) 0 0
\(372\) 0.834089 1.24830i 0.834089 1.24830i
\(373\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.30656 0.541196i 1.30656 0.541196i
\(377\) 2.01367 + 0.834089i 2.01367 + 0.834089i
\(378\) 0 0
\(379\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(380\) 0 0
\(381\) −0.541196 2.72078i −0.541196 2.72078i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.92388 0.382683i −1.92388 0.382683i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.382683 0.923880i −0.382683 0.923880i
\(393\) 2.01367 0.834089i 2.01367 0.834089i
\(394\) 0.923880 + 0.617317i 0.923880 + 0.617317i
\(395\) 0 0
\(396\) 0 0
\(397\) 1.38268 + 0.923880i 1.38268 + 0.923880i 1.00000 \(0\)
0.382683 + 0.923880i \(0.375000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.923880 0.382683i −0.923880 0.382683i
\(401\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(402\) 0 0
\(403\) −0.834089 + 1.24830i −0.834089 + 1.24830i
\(404\) −0.382683 0.0761205i −0.382683 0.0761205i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −1.08979 + 2.63099i −1.08979 + 2.63099i
\(415\) 0 0
\(416\) 1.92388 + 0.382683i 1.92388 + 0.382683i
\(417\) 3.26197i 3.26197i
\(418\) 0 0
\(419\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(420\) 0 0
\(421\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(422\) 1.92388 + 0.382683i 1.92388 + 0.382683i
\(423\) 1.54120 3.72078i 1.54120 3.72078i
\(424\) 0 0
\(425\) 0 0
\(426\) −3.55487 + 0.707107i −3.55487 + 0.707107i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) −3.01367 + 2.01367i −3.01367 + 2.01367i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 1.54120 2.30656i 1.54120 2.30656i
\(439\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −2.63099 1.08979i −2.63099 1.08979i
\(442\) 0 0
\(443\) −1.38268 + 0.923880i −1.38268 + 0.923880i −0.382683 + 0.923880i \(0.625000\pi\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(447\) 0 0
\(448\) 0 0
\(449\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(450\) −2.63099 + 1.08979i −2.63099 + 1.08979i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.324423 + 0.216773i 0.324423 + 0.216773i 0.707107 0.707107i \(-0.250000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) −0.216773 1.08979i −0.216773 1.08979i
\(465\) 0 0
\(466\) 0.541196 0.541196i 0.541196 0.541196i
\(467\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(468\) 4.64466 3.10346i 4.64466 3.10346i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.382683 0.0761205i 0.382683 0.0761205i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(485\) 0 0
\(486\) −0.923880 + 4.64466i −0.923880 + 4.64466i
\(487\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(488\) 0 0
\(489\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(490\) 0 0
\(491\) −0.216773 + 1.08979i −0.216773 + 1.08979i 0.707107 + 0.707107i \(0.250000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(492\) −0.765367 + 3.84776i −0.765367 + 3.84776i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.765367 0.765367
\(497\) 0 0
\(498\) 0 0
\(499\) −1.38268 0.923880i −1.38268 0.923880i −0.382683 0.923880i \(-0.625000\pi\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) −1.47247 0.292893i −1.47247 0.292893i
\(502\) 0 0
\(503\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.64466 + 3.10346i −4.64466 + 3.10346i
\(508\) 1.00000 1.00000i 1.00000 1.00000i
\(509\) 0.0761205 + 0.382683i 0.0761205 + 0.382683i 1.00000 \(0\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.382683 0.923880i −0.382683 0.923880i
\(513\) 0 0
\(514\) −0.707107 1.70711i −0.707107 1.70711i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 3.01367 + 1.24830i 3.01367 + 1.24830i
\(520\) 0 0
\(521\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(522\) −2.63099 1.75797i −2.63099 1.75797i
\(523\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(524\) 0.923880 + 0.617317i 0.923880 + 0.617317i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(530\) 0 0
\(531\) 0.617317 0.923880i 0.617317 0.923880i
\(532\) 0 0
\(533\) 0.765367 3.84776i 0.765367 3.84776i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.292893 0.707107i 0.292893 0.707107i
\(538\) 0.324423 1.63099i 0.324423 1.63099i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.63099 + 0.324423i −1.63099 + 0.324423i −0.923880 0.382683i \(-0.875000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.08979 0.216773i 1.08979 0.216773i 0.382683 0.923880i \(-0.375000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −1.92388 + 0.382683i −1.92388 + 0.382683i
\(553\) 0 0
\(554\) 0.382683 0.0761205i 0.382683 0.0761205i
\(555\) 0 0
\(556\) 1.38268 0.923880i 1.38268 0.923880i
\(557\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(558\) 1.54120 1.54120i 1.54120 1.54120i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(564\) 2.72078 0.541196i 2.72078 0.541196i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −1.30656 1.30656i −1.30656 1.30656i
\(569\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(570\) 0 0
\(571\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −1.00000
\(576\) −2.63099 1.08979i −2.63099 1.08979i
\(577\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(578\) 0.923880 0.382683i 0.923880 0.382683i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.41421 1.41421
\(585\) 0 0
\(586\) 0 0
\(587\) 1.63099 + 0.324423i 1.63099 + 0.324423i 0.923880 0.382683i \(-0.125000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) −0.382683 1.92388i −0.382683 1.92388i
\(589\) 0 0
\(590\) 0 0
\(591\) 1.54120 + 1.54120i 1.54120 + 1.54120i
\(592\) 0 0
\(593\) −1.30656 + 1.30656i −1.30656 + 1.30656i −0.382683 + 0.923880i \(0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 1.92388 0.382683i 1.92388 0.382683i
\(599\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(600\) −1.63099 1.08979i −1.63099 1.08979i
\(601\) −0.765367 + 1.84776i −0.765367 + 1.84776i −0.382683 + 0.923880i \(0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −0.707107 0.292893i −0.707107 0.292893i
\(607\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.72078 + 0.541196i −2.72078 + 0.541196i
\(612\) 0 0
\(613\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(614\) 0.216773 1.08979i 0.216773 1.08979i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(618\) 0 0
\(619\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(620\) 0 0
\(621\) −2.01367 + 3.01367i −2.01367 + 3.01367i
\(622\) 0 0
\(623\) 0 0
\(624\) 3.55487 + 1.47247i 3.55487 + 1.47247i
\(625\) −0.707107 0.707107i −0.707107 0.707107i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(632\) 0 0
\(633\) 3.55487 + 1.47247i 3.55487 + 1.47247i
\(634\) −0.923880 + 0.617317i −0.923880 + 0.617317i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(638\) 0 0
\(639\) −5.26197 −5.26197
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.84776 0.765367i −1.84776 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 0.382683i \(-0.875000\pi\)
\(648\) −3.93755 + 1.63099i −3.93755 + 1.63099i
\(649\) 0 0
\(650\) 1.63099 + 1.08979i 1.63099 + 1.08979i
\(651\) 0 0
\(652\) −0.216773 + 0.324423i −0.216773 + 0.324423i
\(653\) −0.324423 0.216773i −0.324423 0.216773i 0.382683 0.923880i \(-0.375000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.84776 + 0.765367i −1.84776 + 0.765367i
\(657\) 2.84776 2.84776i 2.84776 2.84776i
\(658\) 0 0
\(659\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(660\) 0 0
\(661\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(662\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.617317 0.923880i −0.617317 0.923880i
\(668\) −0.292893 0.707107i −0.292893 0.707107i
\(669\) −1.47247 + 0.292893i −1.47247 + 0.292893i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(674\) 0 0
\(675\) −3.55487 + 0.707107i −3.55487 + 0.707107i
\(676\) −2.63099 1.08979i −2.63099 1.08979i
\(677\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.324423 1.63099i 0.324423 1.63099i −0.382683 0.923880i \(-0.625000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.923880 + 0.617317i 0.923880 + 0.617317i 0.923880 0.382683i \(-0.125000\pi\)
1.00000i \(0.5\pi\)
\(692\) 0.324423 + 1.63099i 0.324423 + 1.63099i
\(693\) 0 0
\(694\) −0.617317 + 0.923880i −0.617317 + 0.923880i
\(695\) 0 0
\(696\) 2.17958i 2.17958i
\(697\) 0 0
\(698\) 1.08979 + 1.63099i 1.08979 + 1.63099i
\(699\) 1.24830 0.834089i 1.24830 0.834089i
\(700\) 0 0
\(701\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(702\) 6.56854 2.72078i 6.56854 2.72078i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.30656 0.541196i 1.30656 0.541196i
\(707\) 0 0
\(708\) 0.765367 0.765367
\(709\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.707107 0.292893i 0.707107 0.292893i
\(714\) 0 0
\(715\) 0 0
\(716\) 0.382683 0.0761205i 0.382683 0.0761205i
\(717\) 3.01367 + 2.01367i 3.01367 + 2.01367i
\(718\) 0 0
\(719\) −1.30656 1.30656i −1.30656 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.707107 0.707107i 0.707107 0.707107i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.216773 1.08979i 0.216773 1.08979i
\(726\) −1.92388 + 0.382683i −1.92388 + 0.382683i
\(727\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(728\) 0 0
\(729\) −1.92388 + 4.64466i −1.92388 + 4.64466i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.707107 0.707107i −0.707107 0.707107i
\(737\) 0 0
\(738\) −2.17958 + 5.26197i −2.17958 + 5.26197i
\(739\) −1.08979 + 0.216773i −1.08979 + 0.216773i −0.707107 0.707107i \(-0.750000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(744\) 1.47247 + 0.292893i 1.47247 + 0.292893i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(752\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(753\) 0 0
\(754\) 2.17958i 2.17958i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(762\) 2.30656 1.54120i 2.30656 1.54120i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.765367 −0.765367
\(768\) −0.382683 1.92388i −0.382683 1.92388i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −0.707107 3.55487i −0.707107 3.55487i
\(772\) 0 0
\(773\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(774\) 0 0
\(775\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.84776 2.84776i −2.84776 2.84776i
\(784\) 0.707107 0.707107i 0.707107 0.707107i
\(785\) 0 0
\(786\) 1.54120 + 1.54120i 1.54120 + 1.54120i
\(787\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(788\) −0.216773 + 1.08979i −0.216773 + 1.08979i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −0.324423 + 1.63099i −0.324423 + 1.63099i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000i 1.00000i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −1.47247 0.292893i −1.47247 0.292893i
\(807\) 1.24830 3.01367i 1.24830 3.01367i
\(808\) −0.0761205 0.382683i −0.0761205 0.382683i
\(809\) −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0.324423 1.63099i 0.324423 1.63099i −0.382683 0.923880i \(-0.625000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(812\) 0 0
\(813\) −1.54120 + 2.30656i −1.54120 + 2.30656i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.765367 0.765367
\(819\) 0 0
\(820\) 0 0
\(821\) 1.92388 + 0.382683i 1.92388 + 0.382683i 1.00000 \(0\)
0.923880 + 0.382683i \(0.125000\pi\)
\(822\) 0 0
\(823\) 1.30656 0.541196i 1.30656 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(828\) −2.84776 −2.84776
\(829\) 0.382683 + 1.92388i 0.382683 + 1.92388i 0.382683 + 0.923880i \(0.375000\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0.765367 0.765367
\(832\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(833\) 0 0
\(834\) 3.01367 1.24830i 3.01367 1.24830i
\(835\) 0 0
\(836\) 0 0
\(837\) 2.30656 1.54120i 2.30656 1.54120i
\(838\) 0 0
\(839\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(840\) 0 0
\(841\) 0.216773 0.0897902i 0.216773 0.0897902i
\(842\) 0 0
\(843\) 0 0
\(844\) 0.382683 + 1.92388i 0.382683 + 1.92388i
\(845\) 0 0
\(846\) 4.02734 4.02734
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) −2.01367 3.01367i −2.01367 3.01367i
\(853\) 0.324423 1.63099i 0.324423 1.63099i −0.382683 0.923880i \(-0.625000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) −1.08979 1.63099i −1.08979 1.63099i −0.707107 0.707107i \(-0.750000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(864\) −3.01367 2.01367i −3.01367 2.01367i
\(865\) 0 0
\(866\) 0 0
\(867\) 1.92388 0.382683i 1.92388 0.382683i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 2.72078 + 0.541196i 2.72078 + 0.541196i
\(877\) −0.216773 + 0.324423i −0.216773 + 0.324423i −0.923880 0.382683i \(-0.875000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) −0.541196 0.541196i −0.541196 0.541196i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(882\) 2.84776i 2.84776i
\(883\) −1.38268 0.923880i −1.38268 0.923880i −0.382683 0.923880i \(-0.625000\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.38268 0.923880i −1.38268 0.923880i
\(887\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −0.541196 0.541196i −0.541196 0.541196i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.84776 3.84776
\(898\) −0.707107 1.70711i −0.707107 1.70711i
\(899\) 0.165911 + 0.834089i 0.165911 + 0.834089i
\(900\) −2.01367 2.01367i −2.01367 2.01367i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(908\) 0 0
\(909\) −0.923880 0.617317i −0.923880 0.617317i
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(920\) 0 0
\(921\) 0.834089 2.01367i 0.834089 2.01367i
\(922\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(923\) 2.01367 + 3.01367i 2.01367 + 3.01367i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0.923880 0.617317i 0.923880 0.617317i
\(929\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 4.64466 + 3.10346i 4.64466 + 3.10346i
\(937\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(942\) 0 0
\(943\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(944\) 0.216773 + 0.324423i 0.216773 + 0.324423i
\(945\) 0 0
\(946\) 0 0
\(947\) 0.923880 + 0.617317i 0.923880 + 0.617317i 0.923880 0.382683i \(-0.125000\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −2.72078 0.541196i −2.72078 0.541196i
\(950\) 0 0
\(951\) −2.01367 + 0.834089i −2.01367 + 0.834089i
\(952\) 0 0
\(953\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.84776i 1.84776i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.414214 0.414214
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.84776 + 0.765367i 1.84776 + 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(968\) −0.707107 0.707107i −0.707107 0.707107i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(972\) −4.64466 + 0.923880i −4.64466 + 0.923880i
\(973\) 0 0
\(974\) 1.84776 1.84776
\(975\) 2.72078 + 2.72078i 2.72078 + 2.72078i
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −1.08979 + 0.216773i −1.08979 + 0.216773i
\(983\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(984\) −3.84776 + 0.765367i −3.84776 + 0.765367i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(992\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(993\) 3.84776i 3.84776i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.617317 + 0.923880i 0.617317 + 0.923880i 1.00000 \(0\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(998\) 0.324423 1.63099i 0.324423 1.63099i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.1.s.a.597.1 8
23.22 odd 2 CM 1472.1.s.a.597.1 8
64.61 even 16 inner 1472.1.s.a.1149.1 yes 8
1472.1149 odd 16 inner 1472.1.s.a.1149.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.1.s.a.597.1 8 1.1 even 1 trivial
1472.1.s.a.597.1 8 23.22 odd 2 CM
1472.1.s.a.1149.1 yes 8 64.61 even 16 inner
1472.1.s.a.1149.1 yes 8 1472.1149 odd 16 inner