Properties

Label 1472.1.s.b.45.2
Level $1472$
Weight $1$
Character 1472.45
Analytic conductor $0.735$
Analytic rank $0$
Dimension $16$
Projective image $D_{48}$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,1,Mod(45,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 7, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.45");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1472.s (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.734623698596\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{16})\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{48}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{48} - \cdots)\)

Embedding invariants

Embedding label 45.2
Root \(0.793353 - 0.608761i\) of defining polynomial
Character \(\chi\) \(=\) 1472.45
Dual form 1472.1.s.b.229.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.793353 - 0.608761i) q^{2} +(0.996552 + 1.49144i) q^{3} +(0.258819 - 0.965926i) q^{4} +(1.69855 + 0.576581i) q^{6} +(-0.382683 - 0.923880i) q^{8} +(-0.848609 + 2.04872i) q^{9} +(1.69855 - 0.576581i) q^{12} +(-0.0255190 + 0.128293i) q^{13} +(-0.866025 - 0.500000i) q^{16} +(0.573937 + 2.14196i) q^{18} +(0.923880 + 0.382683i) q^{23} +(0.996552 - 1.49144i) q^{24} +(-0.923880 + 0.382683i) q^{25} +(0.0578541 + 0.117317i) q^{26} +(-2.14196 + 0.426063i) q^{27} +(0.534534 - 0.357164i) q^{29} -1.58671i q^{31} +(-0.991445 + 0.130526i) q^{32} +(1.75928 + 1.34994i) q^{36} +(-0.216773 + 0.0897902i) q^{39} +(-0.923880 - 0.382683i) q^{41} +(0.965926 - 0.258819i) q^{46} +(-0.366025 - 0.366025i) q^{47} +(-0.117317 - 1.78990i) q^{48} +(-0.707107 + 0.707107i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(0.117317 + 0.0578541i) q^{52} +(-1.43996 + 1.64196i) q^{54} +(0.206647 - 0.608761i) q^{58} +(-0.216773 - 1.08979i) q^{59} +(-0.965926 - 1.25882i) q^{62} +(-0.707107 + 0.707107i) q^{64} +(0.349942 + 1.75928i) q^{69} +(-0.758819 - 1.83195i) q^{71} +2.21752 q^{72} +(-0.739288 + 1.78480i) q^{73} +(-1.49144 - 0.996552i) q^{75} +(-0.117317 + 0.203198i) q^{78} +(-1.20200 - 1.20200i) q^{81} +(-0.965926 + 0.258819i) q^{82} +(1.06538 + 0.441296i) q^{87} +(0.608761 - 0.793353i) q^{92} +(2.36649 - 1.58124i) q^{93} +(-0.513210 - 0.0675653i) q^{94} +(-1.18270 - 1.34861i) q^{96} +(-0.130526 + 0.991445i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{9} + 8 q^{47} - 8 q^{48} - 8 q^{50} + 8 q^{52} + 16 q^{58} - 8 q^{71} + 16 q^{72} - 8 q^{75} - 8 q^{78} - 8 q^{81} - 8 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(e\left(\frac{7}{16}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.793353 0.608761i 0.793353 0.608761i
\(3\) 0.996552 + 1.49144i 0.996552 + 1.49144i 0.866025 + 0.500000i \(0.166667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(4\) 0.258819 0.965926i 0.258819 0.965926i
\(5\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(6\) 1.69855 + 0.576581i 1.69855 + 0.576581i
\(7\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(8\) −0.382683 0.923880i −0.382683 0.923880i
\(9\) −0.848609 + 2.04872i −0.848609 + 2.04872i
\(10\) 0 0
\(11\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(12\) 1.69855 0.576581i 1.69855 0.576581i
\(13\) −0.0255190 + 0.128293i −0.0255190 + 0.128293i −0.991445 0.130526i \(-0.958333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.866025 0.500000i −0.866025 0.500000i
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) 0.573937 + 2.14196i 0.573937 + 2.14196i
\(19\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(24\) 0.996552 1.49144i 0.996552 1.49144i
\(25\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(26\) 0.0578541 + 0.117317i 0.0578541 + 0.117317i
\(27\) −2.14196 + 0.426063i −2.14196 + 0.426063i
\(28\) 0 0
\(29\) 0.534534 0.357164i 0.534534 0.357164i −0.258819 0.965926i \(-0.583333\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(30\) 0 0
\(31\) 1.58671i 1.58671i −0.608761 0.793353i \(-0.708333\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(32\) −0.991445 + 0.130526i −0.991445 + 0.130526i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.75928 + 1.34994i 1.75928 + 1.34994i
\(37\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(38\) 0 0
\(39\) −0.216773 + 0.0897902i −0.216773 + 0.0897902i
\(40\) 0 0
\(41\) −0.923880 0.382683i −0.923880 0.382683i −0.130526 0.991445i \(-0.541667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(42\) 0 0
\(43\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.965926 0.258819i 0.965926 0.258819i
\(47\) −0.366025 0.366025i −0.366025 0.366025i 0.500000 0.866025i \(-0.333333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −0.117317 1.78990i −0.117317 1.78990i
\(49\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(50\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(51\) 0 0
\(52\) 0.117317 + 0.0578541i 0.117317 + 0.0578541i
\(53\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(54\) −1.43996 + 1.64196i −1.43996 + 1.64196i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.206647 0.608761i 0.206647 0.608761i
\(59\) −0.216773 1.08979i −0.216773 1.08979i −0.923880 0.382683i \(-0.875000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(62\) −0.965926 1.25882i −0.965926 1.25882i
\(63\) 0 0
\(64\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(68\) 0 0
\(69\) 0.349942 + 1.75928i 0.349942 + 1.75928i
\(70\) 0 0
\(71\) −0.758819 1.83195i −0.758819 1.83195i −0.500000 0.866025i \(-0.666667\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(72\) 2.21752 2.21752
\(73\) −0.739288 + 1.78480i −0.739288 + 1.78480i −0.130526 + 0.991445i \(0.541667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(74\) 0 0
\(75\) −1.49144 0.996552i −1.49144 0.996552i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.117317 + 0.203198i −0.117317 + 0.203198i
\(79\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(80\) 0 0
\(81\) −1.20200 1.20200i −1.20200 1.20200i
\(82\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(83\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.06538 + 0.441296i 1.06538 + 0.441296i
\(88\) 0 0
\(89\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.608761 0.793353i 0.608761 0.793353i
\(93\) 2.36649 1.58124i 2.36649 1.58124i
\(94\) −0.513210 0.0675653i −0.513210 0.0675653i
\(95\) 0 0
\(96\) −1.18270 1.34861i −1.18270 1.34861i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(99\) 0 0
\(100\) 0.130526 + 0.991445i 0.130526 + 0.991445i
\(101\) 1.08979 0.216773i 1.08979 0.216773i 0.382683 0.923880i \(-0.375000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(102\) 0 0
\(103\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(104\) 0.128293 0.0255190i 0.128293 0.0255190i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(108\) −0.142836 + 2.17925i −0.142836 + 2.17925i
\(109\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.206647 0.608761i −0.206647 0.608761i
\(117\) −0.241181 0.161152i −0.241181 0.161152i
\(118\) −0.835400 0.732626i −0.835400 0.732626i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(122\) 0 0
\(123\) −0.349942 1.75928i −0.349942 1.75928i
\(124\) −1.53264 0.410670i −1.53264 0.410670i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.93185 −1.93185 −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(128\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.732626 + 1.09645i 0.732626 + 1.09645i 0.991445 + 0.130526i \(0.0416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(138\) 1.34861 + 1.18270i 1.34861 + 1.18270i
\(139\) 1.25026 + 0.835400i 1.25026 + 0.835400i 0.991445 0.130526i \(-0.0416667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(140\) 0 0
\(141\) 0.181144 0.910670i 0.181144 0.910670i
\(142\) −1.71723 0.991445i −1.71723 0.991445i
\(143\) 0 0
\(144\) 1.75928 1.34994i 1.75928 1.34994i
\(145\) 0 0
\(146\) 0.500000 + 1.86603i 0.500000 + 1.86603i
\(147\) −1.75928 0.349942i −1.75928 0.349942i
\(148\) 0 0
\(149\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(150\) −1.78990 + 0.117317i −1.78990 + 0.117317i
\(151\) 1.60021 + 0.662827i 1.60021 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.0306258 + 0.232626i 0.0306258 + 0.232626i
\(157\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.68534 0.221879i −1.68534 0.221879i
\(163\) 1.65938 1.10876i 1.65938 1.10876i 0.793353 0.608761i \(-0.208333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(164\) −0.608761 + 0.793353i −0.608761 + 0.793353i
\(165\) 0 0
\(166\) 0 0
\(167\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0.908072 + 0.376136i 0.908072 + 0.376136i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.382683 + 0.0761205i 0.382683 + 0.0761205i 0.382683 0.923880i \(-0.375000\pi\)
1.00000i \(0.5\pi\)
\(174\) 1.11387 0.298460i 1.11387 0.298460i
\(175\) 0 0
\(176\) 0 0
\(177\) 1.40934 1.40934i 1.40934 1.40934i
\(178\) 0 0
\(179\) 0.389345 1.95737i 0.389345 1.95737i 0.130526 0.991445i \(-0.458333\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(180\) 0 0
\(181\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000i 1.00000i
\(185\) 0 0
\(186\) 0.914864 2.69510i 0.914864 2.69510i
\(187\) 0 0
\(188\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −1.75928 0.349942i −1.75928 0.349942i
\(193\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(197\) −0.257264 1.29335i −0.257264 1.29335i −0.866025 0.500000i \(-0.833333\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(198\) 0 0
\(199\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(200\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(201\) 0 0
\(202\) 0.732626 0.835400i 0.732626 0.835400i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.56803 + 1.56803i −1.56803 + 1.56803i
\(208\) 0.0862466 0.0983454i 0.0862466 0.0983454i
\(209\) 0 0
\(210\) 0 0
\(211\) −1.63099 0.324423i −1.63099 0.324423i −0.707107 0.707107i \(-0.750000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(212\) 0 0
\(213\) 1.97605 2.95737i 1.97605 2.95737i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.21332 + 1.81587i 1.21332 + 1.81587i
\(217\) 0 0
\(218\) 0 0
\(219\) −3.39867 + 0.676037i −3.39867 + 0.676037i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(224\) 0 0
\(225\) 2.21752i 2.21752i
\(226\) 0 0
\(227\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(228\) 0 0
\(229\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.534534 0.357164i −0.534534 0.357164i
\(233\) 0.241181 + 0.0999004i 0.241181 + 0.0999004i 0.500000 0.866025i \(-0.333333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(234\) −0.289445 + 0.0189712i −0.289445 + 0.0189712i
\(235\) 0 0
\(236\) −1.10876 0.0726721i −1.10876 0.0726721i
\(237\) 0 0
\(238\) 0 0
\(239\) −0.860919 0.860919i −0.860919 0.860919i 0.130526 0.991445i \(-0.458333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(240\) 0 0
\(241\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(242\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(243\) 0.168799 0.848609i 0.168799 0.848609i
\(244\) 0 0
\(245\) 0 0
\(246\) −1.34861 1.18270i −1.34861 1.18270i
\(247\) 0 0
\(248\) −1.46593 + 0.607206i −1.46593 + 0.607206i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −1.53264 + 1.17604i −1.53264 + 1.17604i
\(255\) 0 0
\(256\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(257\) 1.98289 1.98289 0.991445 0.130526i \(-0.0416667\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.278121 + 1.39821i 0.278121 + 1.39821i
\(262\) 1.24871 + 0.423880i 1.24871 + 0.423880i
\(263\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.293353 + 1.47479i −0.293353 + 1.47479i 0.500000 + 0.866025i \(0.333333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(270\) 0 0
\(271\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 1.78990 + 0.117317i 1.78990 + 0.117317i
\(277\) 0.491445 0.735499i 0.491445 0.735499i −0.500000 0.866025i \(-0.666667\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(278\) 1.50046 0.0983454i 1.50046 0.0983454i
\(279\) 3.25072 + 1.34649i 3.25072 + 1.34649i
\(280\) 0 0
\(281\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(282\) −0.410670 0.832756i −0.410670 0.832756i
\(283\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(284\) −1.96593 + 0.258819i −1.96593 + 0.258819i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.573937 2.14196i 0.573937 2.14196i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.53264 + 1.17604i 1.53264 + 1.17604i
\(293\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(294\) −1.60876 + 0.793353i −1.60876 + 0.793353i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.0726721 + 0.108761i −0.0726721 + 0.108761i
\(300\) −1.34861 + 1.18270i −1.34861 + 1.18270i
\(301\) 0 0
\(302\) 1.67303 0.448288i 1.67303 0.448288i
\(303\) 1.40934 + 1.40934i 1.40934 + 1.40934i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.382683 + 1.92388i −0.382683 + 1.92388i 1.00000i \(0.5\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.662827 + 1.60021i −0.662827 + 1.60021i 0.130526 + 0.991445i \(0.458333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(312\) 0.165911 + 0.165911i 0.165911 + 0.165911i
\(313\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.08979 + 1.63099i 1.08979 + 1.63099i 0.707107 + 0.707107i \(0.250000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.47214 + 0.849942i −1.47214 + 0.849942i
\(325\) −0.0255190 0.128293i −0.0255190 0.128293i
\(326\) 0.641502 1.88981i 0.641502 1.88981i
\(327\) 0 0
\(328\) 1.00000i 1.00000i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.108761 + 0.0726721i 0.108761 + 0.0726721i 0.608761 0.793353i \(-0.291667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.923880 + 1.60021i −0.923880 + 1.60021i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0.949399 0.254391i 0.949399 0.254391i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0.349942 0.172572i 0.349942 0.172572i
\(347\) 1.92388 0.382683i 1.92388 0.382683i 0.923880 0.382683i \(-0.125000\pi\)
1.00000 \(0\)
\(348\) 0.702000 0.914864i 0.702000 0.914864i
\(349\) −1.49144 + 0.996552i −1.49144 + 0.996552i −0.500000 + 0.866025i \(0.666667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(350\) 0 0
\(351\) 0.285671i 0.285671i
\(352\) 0 0
\(353\) 0.517638i 0.517638i −0.965926 0.258819i \(-0.916667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(354\) 0.260152 1.97605i 0.260152 1.97605i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.882683 1.78990i −0.882683 1.78990i
\(359\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(360\) 0 0
\(361\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(362\) 0 0
\(363\) −0.996552 + 1.49144i −0.996552 + 1.49144i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) −0.608761 0.793353i −0.608761 0.793353i
\(369\) 1.56803 1.56803i 1.56803 1.56803i
\(370\) 0 0
\(371\) 0 0
\(372\) −0.914864 2.69510i −0.914864 2.69510i
\(373\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −0.198092 + 0.478235i −0.198092 + 0.478235i
\(377\) 0.0321808 + 0.0776914i 0.0321808 + 0.0776914i
\(378\) 0 0
\(379\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(380\) 0 0
\(381\) −1.92519 2.88125i −1.92519 2.88125i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.60876 + 0.793353i −1.60876 + 0.793353i
\(385\) 0 0
\(386\) −1.37413 + 1.05441i −1.37413 + 1.05441i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(393\) −0.905198 + 2.18534i −0.905198 + 2.18534i
\(394\) −0.991445 0.869474i −0.991445 0.869474i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.369474 + 1.85747i −0.369474 + 1.85747i 0.130526 + 0.991445i \(0.458333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.991445 + 0.130526i 0.991445 + 0.130526i
\(401\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(402\) 0 0
\(403\) 0.203563 + 0.0404912i 0.203563 + 0.0404912i
\(404\) 0.0726721 1.10876i 0.0726721 1.10876i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.241181 + 0.0999004i −0.241181 + 0.0999004i −0.500000 0.866025i \(-0.666667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −0.289445 + 2.19855i −0.289445 + 2.19855i
\(415\) 0 0
\(416\) 0.00855514 0.130526i 0.00855514 0.130526i
\(417\) 2.69722i 2.69722i
\(418\) 0 0
\(419\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(420\) 0 0
\(421\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(422\) −1.49144 + 0.735499i −1.49144 + 0.735499i
\(423\) 1.06050 0.439272i 1.06050 0.439272i
\(424\) 0 0
\(425\) 0 0
\(426\) −0.232626 3.54918i −0.232626 3.54918i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(432\) 2.06803 + 0.702000i 2.06803 + 0.702000i
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −2.28480 + 2.60531i −2.28480 + 2.60531i
\(439\) −0.0999004 + 0.241181i −0.0999004 + 0.241181i −0.965926 0.258819i \(-0.916667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) −0.848609 2.04872i −0.848609 2.04872i
\(442\) 0 0
\(443\) −0.293353 1.47479i −0.293353 1.47479i −0.793353 0.608761i \(-0.791667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.12484 + 1.46593i 1.12484 + 1.46593i
\(447\) 0 0
\(448\) 0 0
\(449\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(450\) −1.34994 1.75928i −1.34994 1.75928i
\(451\) 0 0
\(452\) 0 0
\(453\) 0.606118 + 3.04716i 0.606118 + 3.04716i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.172572 0.867580i 0.172572 0.867580i −0.793353 0.608761i \(-0.791667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) −0.641502 + 0.0420463i −0.641502 + 0.0420463i
\(465\) 0 0
\(466\) 0.252157 0.0675653i 0.252157 0.0675653i
\(467\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(468\) −0.218083 + 0.191254i −0.218083 + 0.191254i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.923880 + 0.617317i −0.923880 + 0.617317i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.20711 0.158919i −1.20711 0.158919i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.991445 0.130526i 0.991445 0.130526i
\(485\) 0 0
\(486\) −0.382683 0.776005i −0.382683 0.776005i
\(487\) 1.83195 0.758819i 1.83195 0.758819i 0.866025 0.500000i \(-0.166667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(488\) 0 0
\(489\) 3.30731 + 1.36993i 3.30731 + 1.36993i
\(490\) 0 0
\(491\) 0.357164 0.534534i 0.357164 0.534534i −0.608761 0.793353i \(-0.708333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(492\) −1.78990 0.117317i −1.78990 0.117317i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.793353 + 1.37413i −0.793353 + 1.37413i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.369474 1.85747i 0.369474 1.85747i −0.130526 0.991445i \(-0.541667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(500\) 0 0
\(501\) −2.75583 1.84139i −2.75583 1.84139i
\(502\) 0 0
\(503\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.343955 + 1.72918i 0.343955 + 1.72918i
\(508\) −0.500000 + 1.86603i −0.500000 + 1.86603i
\(509\) −1.10876 1.65938i −1.10876 1.65938i −0.608761 0.793353i \(-0.708333\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(513\) 0 0
\(514\) 1.57313 1.20711i 1.57313 1.20711i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.267834 + 0.646609i 0.267834 + 0.646609i
\(520\) 0 0
\(521\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(522\) 1.07182 + 0.939963i 1.07182 + 0.939963i
\(523\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(524\) 1.24871 0.423880i 1.24871 0.423880i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(530\) 0 0
\(531\) 2.41663 + 0.480699i 2.41663 + 0.480699i
\(532\) 0 0
\(533\) 0.0726721 0.108761i 0.0726721 0.108761i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.30731 1.36993i 3.30731 1.36993i
\(538\) 0.665060 + 1.34861i 0.665060 + 1.34861i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.57469 + 1.05217i −1.57469 + 1.05217i −0.608761 + 0.793353i \(0.708333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(542\) 0.184592 1.40211i 0.184592 1.40211i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.534534 0.357164i 0.534534 0.357164i −0.258819 0.965926i \(-0.583333\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 1.49144 0.996552i 1.49144 0.996552i
\(553\) 0 0
\(554\) −0.0578541 0.882683i −0.0578541 0.882683i
\(555\) 0 0
\(556\) 1.13053 0.991445i 1.13053 0.991445i
\(557\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(558\) 3.39867 0.910670i 3.39867 0.910670i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(564\) −0.832756 0.410670i −0.832756 0.410670i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −1.40211 + 1.40211i −1.40211 + 1.40211i
\(569\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(570\) 0 0
\(571\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −1.00000
\(576\) −0.848609 2.04872i −0.848609 2.04872i
\(577\) 0.261052 0.261052 0.130526 0.991445i \(-0.458333\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(578\) 0.608761 + 0.793353i 0.608761 + 0.793353i
\(579\) −1.72608 2.58326i −1.72608 2.58326i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.93185 1.93185
\(585\) 0 0
\(586\) 0 0
\(587\) 1.57469 + 1.05217i 1.57469 + 1.05217i 0.965926 + 0.258819i \(0.0833333\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(588\) −0.793353 + 1.60876i −0.793353 + 1.60876i
\(589\) 0 0
\(590\) 0 0
\(591\) 1.67259 1.67259i 1.67259 1.67259i
\(592\) 0 0
\(593\) 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0.00855514 + 0.130526i 0.00855514 + 0.130526i
\(599\) −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(600\) −0.349942 + 1.75928i −0.349942 + 1.75928i
\(601\) −0.923880 + 0.382683i −0.923880 + 0.382683i −0.793353 0.608761i \(-0.791667\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.05441 1.37413i 1.05441 1.37413i
\(605\) 0 0
\(606\) 1.97605 + 0.260152i 1.97605 + 0.260152i
\(607\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.0562991 0.0376178i 0.0562991 0.0376178i
\(612\) 0 0
\(613\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(614\) 0.867580 + 1.75928i 0.867580 + 1.75928i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(618\) 0 0
\(619\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(620\) 0 0
\(621\) −2.14196 0.426063i −2.14196 0.426063i
\(622\) 0.448288 + 1.67303i 0.448288 + 1.67303i
\(623\) 0 0
\(624\) 0.232626 + 0.0306258i 0.232626 + 0.0306258i
\(625\) 0.707107 0.707107i 0.707107 0.707107i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(632\) 0 0
\(633\) −1.14150 2.75583i −1.14150 2.75583i
\(634\) 1.85747 + 0.630526i 1.85747 + 0.630526i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.0726721 0.108761i −0.0726721 0.108761i
\(638\) 0 0
\(639\) 4.39710 4.39710
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.382683 + 0.923880i 0.382683 + 0.923880i 0.991445 + 0.130526i \(0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(648\) −0.650518 + 1.57049i −0.650518 + 1.57049i
\(649\) 0 0
\(650\) −0.0983454 0.0862466i −0.0983454 0.0862466i
\(651\) 0 0
\(652\) −0.641502 1.88981i −0.641502 1.88981i
\(653\) 0.389345 1.95737i 0.389345 1.95737i 0.130526 0.991445i \(-0.458333\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.608761 + 0.793353i 0.608761 + 0.793353i
\(657\) −3.02919 3.02919i −3.02919 3.02919i
\(658\) 0 0
\(659\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(660\) 0 0
\(661\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(662\) 0.130526 0.00855514i 0.130526 0.00855514i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.630526 0.125419i 0.630526 0.125419i
\(668\) 0.241181 + 1.83195i 0.241181 + 1.83195i
\(669\) −2.75583 + 1.84139i −2.75583 + 1.84139i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.58671i 1.58671i 0.608761 + 0.793353i \(0.291667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(674\) 0 0
\(675\) 1.81587 1.21332i 1.81587 1.21332i
\(676\) 0.598345 0.779779i 0.598345 0.779779i
\(677\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.835400 1.25026i 0.835400 1.25026i −0.130526 0.991445i \(-0.541667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.382683 1.92388i 0.382683 1.92388i 1.00000i \(-0.5\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(692\) 0.172572 0.349942i 0.172572 0.349942i
\(693\) 0 0
\(694\) 1.29335 1.47479i 1.29335 1.47479i
\(695\) 0 0
\(696\) 1.15316i 1.15316i
\(697\) 0 0
\(698\) −0.576581 + 1.69855i −0.576581 + 1.69855i
\(699\) 0.0913533 + 0.459264i 0.0913533 + 0.459264i
\(700\) 0 0
\(701\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(702\) −0.173906 0.226638i −0.173906 0.226638i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.315118 0.410670i −0.315118 0.410670i
\(707\) 0 0
\(708\) −0.996552 1.72608i −0.996552 1.72608i
\(709\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.607206 1.46593i 0.607206 1.46593i
\(714\) 0 0
\(715\) 0 0
\(716\) −1.78990 0.882683i −1.78990 0.882683i
\(717\) 0.426063 2.14196i 0.426063 2.14196i
\(718\) 0 0
\(719\) 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.965926 0.258819i 0.965926 0.258819i
\(723\) 0 0
\(724\) 0 0
\(725\) −0.357164 + 0.534534i −0.357164 + 0.534534i
\(726\) 0.117317 + 1.78990i 0.117317 + 1.78990i
\(727\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(728\) 0 0
\(729\) −0.136618 + 0.0565890i −0.136618 + 0.0565890i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.965926 0.258819i −0.965926 0.258819i
\(737\) 0 0
\(738\) 0.289445 2.19855i 0.289445 2.19855i
\(739\) −1.09645 + 0.732626i −1.09645 + 0.732626i −0.965926 0.258819i \(-0.916667\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(744\) −2.36649 1.58124i −2.36649 1.58124i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(752\) 0.133975 + 0.500000i 0.133975 + 0.500000i
\(753\) 0 0
\(754\) 0.0728263 + 0.0420463i 0.0728263 + 0.0420463i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.607206 1.46593i −0.607206 1.46593i −0.866025 0.500000i \(-0.833333\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(762\) −3.28135 1.11387i −3.28135 1.11387i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.145344 0.145344
\(768\) −0.793353 + 1.60876i −0.793353 + 1.60876i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 1.97605 + 2.95737i 1.97605 + 2.95737i
\(772\) −0.448288 + 1.67303i −0.448288 + 1.67303i
\(773\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(774\) 0 0
\(775\) 0.607206 + 1.46593i 0.607206 + 1.46593i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.992778 + 0.992778i −0.992778 + 0.992778i
\(784\) 0.965926 0.258819i 0.965926 0.258819i
\(785\) 0 0
\(786\) 0.612210 + 2.28480i 0.612210 + 2.28480i
\(787\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(788\) −1.31587 0.0862466i −1.31587 0.0862466i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.837633 + 1.69855i 0.837633 + 1.69855i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.866025 0.500000i 0.866025 0.500000i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0.186147 0.0917975i 0.186147 0.0917975i
\(807\) −2.49190 + 1.03218i −2.49190 + 1.03218i
\(808\) −0.617317 0.923880i −0.617317 0.923880i
\(809\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −1.05217 + 1.57469i −1.05217 + 1.57469i −0.258819 + 0.965926i \(0.583333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(812\) 0 0
\(813\) 2.48800 + 0.494893i 2.48800 + 0.494893i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.130526 + 0.226078i −0.130526 + 0.226078i
\(819\) 0 0
\(820\) 0 0
\(821\) 1.38268 + 0.923880i 1.38268 + 0.923880i 1.00000 \(0\)
0.382683 + 0.923880i \(0.375000\pi\)
\(822\) 0 0
\(823\) −0.198092 + 0.478235i −0.198092 + 0.478235i −0.991445 0.130526i \(-0.958333\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(828\) 1.10876 + 1.92043i 1.10876 + 1.92043i
\(829\) −0.923880 1.38268i −0.923880 1.38268i −0.923880 0.382683i \(-0.875000\pi\)
1.00000i \(-0.5\pi\)
\(830\) 0 0
\(831\) 1.58671 1.58671
\(832\) −0.0726721 0.108761i −0.0726721 0.108761i
\(833\) 0 0
\(834\) 1.64196 + 2.13985i 1.64196 + 2.13985i
\(835\) 0 0
\(836\) 0 0
\(837\) 0.676037 + 3.39867i 0.676037 + 3.39867i
\(838\) 0 0
\(839\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(840\) 0 0
\(841\) −0.224523 + 0.542046i −0.224523 + 0.542046i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.735499 + 1.49144i −0.735499 + 1.49144i
\(845\) 0 0
\(846\) 0.573937 0.994088i 0.573937 0.994088i
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) −2.34516 2.67414i −2.34516 2.67414i
\(853\) 0.216773 0.324423i 0.216773 0.324423i −0.707107 0.707107i \(-0.750000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.83195 + 0.758819i −1.83195 + 0.758819i −0.866025 + 0.500000i \(0.833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(858\) 0 0
\(859\) 0.128293 0.0255190i 0.128293 0.0255190i −0.130526 0.991445i \(-0.541667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.261052i 0.261052i −0.991445 0.130526i \(-0.958333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(864\) 2.06803 0.702000i 2.06803 0.702000i
\(865\) 0 0
\(866\) 0 0
\(867\) −1.49144 + 0.996552i −1.49144 + 0.996552i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −0.226638 + 3.45783i −0.226638 + 3.45783i
\(877\) −1.08979 0.216773i −1.08979 0.216773i −0.382683 0.923880i \(-0.625000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0.0675653 + 0.252157i 0.0675653 + 0.252157i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(882\) −1.92043 1.10876i −1.92043 1.10876i
\(883\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i 0.923880 + 0.382683i \(0.125000\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.13053 0.991445i −1.13053 0.991445i
\(887\) −0.465926 + 1.12484i −0.465926 + 1.12484i 0.500000 + 0.866025i \(0.333333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.78480 + 0.478235i 1.78480 + 0.478235i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.234633 −0.234633
\(898\) −0.607206 + 0.465926i −0.607206 + 0.465926i
\(899\) −0.566715 0.848149i −0.566715 0.848149i
\(900\) −2.14196 0.573937i −2.14196 0.573937i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 2.33586 + 2.04849i 2.33586 + 2.04849i
\(907\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(908\) 0 0
\(909\) −0.480699 + 2.41663i −0.480699 + 2.41663i
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(920\) 0 0
\(921\) −3.25072 + 1.34649i −3.25072 + 1.34649i
\(922\) −0.391239 0.793353i −0.391239 0.793353i
\(923\) 0.254391 0.0506014i 0.254391 0.0506014i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) −0.483342 + 0.423880i −0.483342 + 0.423880i
\(929\) 0.261052i 0.261052i −0.991445 0.130526i \(-0.958333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.158919 0.207107i 0.158919 0.207107i
\(933\) −3.04716 + 0.606118i −3.04716 + 0.606118i
\(934\) 0 0
\(935\) 0 0
\(936\) −0.0565890 + 0.284492i −0.0565890 + 0.284492i
\(937\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(942\) 0 0
\(943\) −0.707107 0.707107i −0.707107 0.707107i
\(944\) −0.357164 + 1.05217i −0.357164 + 1.05217i
\(945\) 0 0
\(946\) 0 0
\(947\) −0.125419 + 0.630526i −0.125419 + 0.630526i 0.866025 + 0.500000i \(0.166667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(948\) 0 0
\(949\) −0.210111 0.140392i −0.210111 0.140392i
\(950\) 0 0
\(951\) −1.34649 + 3.25072i −1.34649 + 3.25072i
\(952\) 0 0
\(953\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.05441 + 0.608761i −1.05441 + 0.608761i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.51764 −1.51764
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.382683 0.923880i −0.382683 0.923880i −0.991445 0.130526i \(-0.958333\pi\)
0.608761 0.793353i \(-0.291667\pi\)
\(968\) 0.707107 0.707107i 0.707107 0.707107i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(972\) −0.776005 0.382683i −0.776005 0.382683i
\(973\) 0 0
\(974\) 0.991445 1.71723i 0.991445 1.71723i
\(975\) 0.165911 0.165911i 0.165911 0.165911i
\(976\) 0 0
\(977\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 3.45783 0.926523i 3.45783 0.926523i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.0420463 0.641502i −0.0420463 0.641502i
\(983\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(984\) −1.49144 + 0.996552i −1.49144 + 0.996552i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(992\) 0.207107 + 1.57313i 0.207107 + 1.57313i
\(993\) 0.234633i 0.234633i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.92388 0.382683i 1.92388 0.382683i 0.923880 0.382683i \(-0.125000\pi\)
1.00000 \(0\)
\(998\) −0.837633 1.69855i −0.837633 1.69855i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.1.s.b.45.2 16
23.22 odd 2 CM 1472.1.s.b.45.2 16
64.37 even 16 inner 1472.1.s.b.229.2 yes 16
1472.229 odd 16 inner 1472.1.s.b.229.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.1.s.b.45.2 16 1.1 even 1 trivial
1472.1.s.b.45.2 16 23.22 odd 2 CM
1472.1.s.b.229.2 yes 16 64.37 even 16 inner
1472.1.s.b.229.2 yes 16 1472.229 odd 16 inner