Properties

Label 1472.1.s.b.597.2
Level $1472$
Weight $1$
Character 1472.597
Analytic conductor $0.735$
Analytic rank $0$
Dimension $16$
Projective image $D_{48}$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,1,Mod(45,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 7, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.45");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1472.s (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.734623698596\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{16})\)
Coefficient field: \(\Q(\zeta_{48})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{48}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{48} - \cdots)\)

Embedding invariants

Embedding label 597.2
Root \(0.608761 - 0.793353i\) of defining polynomial
Character \(\chi\) \(=\) 1472.597
Dual form 1472.1.s.b.1149.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.608761 - 0.793353i) q^{2} +(-0.125419 - 0.630526i) q^{3} +(-0.258819 - 0.965926i) q^{4} +(-0.576581 - 0.284338i) q^{6} +(-0.923880 - 0.382683i) q^{8} +(0.542046 - 0.224523i) q^{9} +(-0.576581 + 0.284338i) q^{12} +(-1.09645 - 0.732626i) q^{13} +(-0.866025 + 0.500000i) q^{16} +(0.151851 - 0.566715i) q^{18} +(-0.382683 - 0.923880i) q^{23} +(-0.125419 + 0.630526i) q^{24} +(0.382683 - 0.923880i) q^{25} +(-1.24871 + 0.423880i) q^{26} +(-0.566715 - 0.848149i) q^{27} +(0.867580 - 0.172572i) q^{29} +1.21752i q^{31} +(-0.130526 + 0.991445i) q^{32} +(-0.357164 - 0.465466i) q^{36} +(-0.324423 + 0.783227i) q^{39} +(0.382683 + 0.923880i) q^{41} +(-0.965926 - 0.258819i) q^{46} +(-0.366025 + 0.366025i) q^{47} +(0.423880 + 0.483342i) q^{48} +(0.707107 + 0.707107i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(-0.423880 + 1.24871i) q^{52} +(-1.01788 - 0.0667151i) q^{54} +(0.391239 - 0.793353i) q^{58} +(-0.324423 + 0.216773i) q^{59} +(0.965926 + 0.741181i) q^{62} +(0.707107 + 0.707107i) q^{64} +(-0.534534 + 0.357164i) q^{69} +(-0.241181 - 0.0999004i) q^{71} -0.586707 q^{72} +(1.78480 - 0.739288i) q^{73} +(-0.630526 - 0.125419i) q^{75} +(0.423880 + 0.734181i) q^{78} +(-0.0488389 + 0.0488389i) q^{81} +(0.965926 + 0.258819i) q^{82} +(-0.217623 - 0.525388i) q^{87} +(-0.793353 + 0.608761i) q^{92} +(0.767680 - 0.152701i) q^{93} +(0.0675653 + 0.513210i) q^{94} +(0.641502 - 0.0420463i) q^{96} +(0.991445 - 0.130526i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{9} + 8 q^{47} - 8 q^{48} - 8 q^{50} + 8 q^{52} + 16 q^{58} - 8 q^{71} + 16 q^{72} - 8 q^{75} - 8 q^{78} - 8 q^{81} - 8 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1472\mathbb{Z}\right)^\times\).

\(n\) \(645\) \(833\) \(1151\)
\(\chi(n)\) \(e\left(\frac{13}{16}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.608761 0.793353i 0.608761 0.793353i
\(3\) −0.125419 0.630526i −0.125419 0.630526i −0.991445 0.130526i \(-0.958333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(4\) −0.258819 0.965926i −0.258819 0.965926i
\(5\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(6\) −0.576581 0.284338i −0.576581 0.284338i
\(7\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(8\) −0.923880 0.382683i −0.923880 0.382683i
\(9\) 0.542046 0.224523i 0.542046 0.224523i
\(10\) 0 0
\(11\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(12\) −0.576581 + 0.284338i −0.576581 + 0.284338i
\(13\) −1.09645 0.732626i −1.09645 0.732626i −0.130526 0.991445i \(-0.541667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 0.151851 0.566715i 0.151851 0.566715i
\(19\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.382683 0.923880i −0.382683 0.923880i
\(24\) −0.125419 + 0.630526i −0.125419 + 0.630526i
\(25\) 0.382683 0.923880i 0.382683 0.923880i
\(26\) −1.24871 + 0.423880i −1.24871 + 0.423880i
\(27\) −0.566715 0.848149i −0.566715 0.848149i
\(28\) 0 0
\(29\) 0.867580 0.172572i 0.867580 0.172572i 0.258819 0.965926i \(-0.416667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(30\) 0 0
\(31\) 1.21752i 1.21752i 0.793353 + 0.608761i \(0.208333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(32\) −0.130526 + 0.991445i −0.130526 + 0.991445i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.357164 0.465466i −0.357164 0.465466i
\(37\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(38\) 0 0
\(39\) −0.324423 + 0.783227i −0.324423 + 0.783227i
\(40\) 0 0
\(41\) 0.382683 + 0.923880i 0.382683 + 0.923880i 0.991445 + 0.130526i \(0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(42\) 0 0
\(43\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.965926 0.258819i −0.965926 0.258819i
\(47\) −0.366025 + 0.366025i −0.366025 + 0.366025i −0.866025 0.500000i \(-0.833333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0.423880 + 0.483342i 0.423880 + 0.483342i
\(49\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(50\) −0.500000 0.866025i −0.500000 0.866025i
\(51\) 0 0
\(52\) −0.423880 + 1.24871i −0.423880 + 1.24871i
\(53\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(54\) −1.01788 0.0667151i −1.01788 0.0667151i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.391239 0.793353i 0.391239 0.793353i
\(59\) −0.324423 + 0.216773i −0.324423 + 0.216773i −0.707107 0.707107i \(-0.750000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(62\) 0.965926 + 0.741181i 0.965926 + 0.741181i
\(63\) 0 0
\(64\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(68\) 0 0
\(69\) −0.534534 + 0.357164i −0.534534 + 0.357164i
\(70\) 0 0
\(71\) −0.241181 0.0999004i −0.241181 0.0999004i 0.258819 0.965926i \(-0.416667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) −0.586707 −0.586707
\(73\) 1.78480 0.739288i 1.78480 0.739288i 0.793353 0.608761i \(-0.208333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(74\) 0 0
\(75\) −0.630526 0.125419i −0.630526 0.125419i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.423880 + 0.734181i 0.423880 + 0.734181i
\(79\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(80\) 0 0
\(81\) −0.0488389 + 0.0488389i −0.0488389 + 0.0488389i
\(82\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(83\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.217623 0.525388i −0.217623 0.525388i
\(88\) 0 0
\(89\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.793353 + 0.608761i −0.793353 + 0.608761i
\(93\) 0.767680 0.152701i 0.767680 0.152701i
\(94\) 0.0675653 + 0.513210i 0.0675653 + 0.513210i
\(95\) 0 0
\(96\) 0.641502 0.0420463i 0.641502 0.0420463i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0.991445 0.130526i 0.991445 0.130526i
\(99\) 0 0
\(100\) −0.991445 0.130526i −0.991445 0.130526i
\(101\) 0.216773 + 0.324423i 0.216773 + 0.324423i 0.923880 0.382683i \(-0.125000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(102\) 0 0
\(103\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(104\) 0.732626 + 1.09645i 0.732626 + 1.09645i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(108\) −0.672572 + 0.766922i −0.672572 + 0.766922i
\(109\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.391239 0.793353i −0.391239 0.793353i
\(117\) −0.758819 0.150938i −0.758819 0.150938i
\(118\) −0.0255190 + 0.389345i −0.0255190 + 0.389345i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(122\) 0 0
\(123\) 0.534534 0.357164i 0.534534 0.357164i
\(124\) 1.17604 0.315118i 1.17604 0.315118i
\(125\) 0 0
\(126\) 0 0
\(127\) 1.93185 1.93185 0.965926 0.258819i \(-0.0833333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(128\) 0.991445 0.130526i 0.991445 0.130526i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.389345 + 1.95737i 0.389345 + 1.95737i 0.258819 + 0.965926i \(0.416667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(138\) −0.0420463 + 0.641502i −0.0420463 + 0.641502i
\(139\) −0.128293 0.0255190i −0.128293 0.0255190i 0.130526 0.991445i \(-0.458333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(140\) 0 0
\(141\) 0.276695 + 0.184882i 0.276695 + 0.184882i
\(142\) −0.226078 + 0.130526i −0.226078 + 0.130526i
\(143\) 0 0
\(144\) −0.357164 + 0.465466i −0.357164 + 0.465466i
\(145\) 0 0
\(146\) 0.500000 1.86603i 0.500000 1.86603i
\(147\) 0.357164 0.534534i 0.357164 0.534534i
\(148\) 0 0
\(149\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(150\) −0.483342 + 0.423880i −0.483342 + 0.423880i
\(151\) −0.662827 1.60021i −0.662827 1.60021i −0.793353 0.608761i \(-0.791667\pi\)
0.130526 0.991445i \(-0.458333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.840506 + 0.110655i 0.840506 + 0.110655i
\(157\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.00901526 + 0.0684777i 0.00901526 + 0.0684777i
\(163\) 1.47479 0.293353i 1.47479 0.293353i 0.608761 0.793353i \(-0.291667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(164\) 0.793353 0.608761i 0.793353 0.608761i
\(165\) 0 0
\(166\) 0 0
\(167\) −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i \(0.250000\pi\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0.282783 + 0.682699i 0.282783 + 0.682699i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.923880 1.38268i 0.923880 1.38268i 1.00000i \(-0.5\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(174\) −0.549299 0.147184i −0.549299 0.147184i
\(175\) 0 0
\(176\) 0 0
\(177\) 0.177370 + 0.177370i 0.177370 + 0.177370i
\(178\) 0 0
\(179\) −1.25026 0.835400i −1.25026 0.835400i −0.258819 0.965926i \(-0.583333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(180\) 0 0
\(181\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000i 1.00000i
\(185\) 0 0
\(186\) 0.346188 0.702000i 0.346188 0.702000i
\(187\) 0 0
\(188\) 0.448288 + 0.258819i 0.448288 + 0.258819i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.357164 0.534534i 0.357164 0.534534i
\(193\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.500000 0.866025i 0.500000 0.866025i
\(197\) −1.65938 + 1.10876i −1.65938 + 1.10876i −0.793353 + 0.608761i \(0.791667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(198\) 0 0
\(199\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(200\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(201\) 0 0
\(202\) 0.389345 + 0.0255190i 0.389345 + 0.0255190i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.414864 0.414864i −0.414864 0.414864i
\(208\) 1.31587 + 0.0862466i 1.31587 + 0.0862466i
\(209\) 0 0
\(210\) 0 0
\(211\) 1.08979 1.63099i 1.08979 1.63099i 0.382683 0.923880i \(-0.375000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(212\) 0 0
\(213\) −0.0327410 + 0.164600i −0.0327410 + 0.164600i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.199004 + 1.00046i 0.199004 + 1.00046i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.689989 1.03264i −0.689989 1.03264i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(224\) 0 0
\(225\) 0.586707i 0.586707i
\(226\) 0 0
\(227\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(228\) 0 0
\(229\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.867580 0.172572i −0.867580 0.172572i
\(233\) 0.758819 + 1.83195i 0.758819 + 1.83195i 0.500000 + 0.866025i \(0.333333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(234\) −0.581687 + 0.510126i −0.581687 + 0.510126i
\(235\) 0 0
\(236\) 0.293353 + 0.257264i 0.293353 + 0.257264i
\(237\) 0 0
\(238\) 0 0
\(239\) −1.12197 + 1.12197i −1.12197 + 1.12197i −0.130526 + 0.991445i \(0.541667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(240\) 0 0
\(241\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(242\) 0.866025 0.500000i 0.866025 0.500000i
\(243\) −0.811230 0.542046i −0.811230 0.542046i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.0420463 0.641502i 0.0420463 0.641502i
\(247\) 0 0
\(248\) 0.465926 1.12484i 0.465926 1.12484i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.17604 1.53264i 1.17604 1.53264i
\(255\) 0 0
\(256\) 0.500000 0.866025i 0.500000 0.866025i
\(257\) 0.261052 0.261052 0.130526 0.991445i \(-0.458333\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.431522 0.288334i 0.431522 0.288334i
\(262\) 1.78990 + 0.882683i 1.78990 + 0.882683i
\(263\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.108761 0.0726721i −0.108761 0.0726721i 0.500000 0.866025i \(-0.333333\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(270\) 0 0
\(271\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0.483342 + 0.423880i 0.483342 + 0.423880i
\(277\) −0.369474 + 1.85747i −0.369474 + 1.85747i 0.130526 + 0.991445i \(0.458333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −0.0983454 + 0.0862466i −0.0983454 + 0.0862466i
\(279\) 0.273362 + 0.659954i 0.273362 + 0.659954i
\(280\) 0 0
\(281\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(282\) 0.315118 0.106968i 0.315118 0.106968i
\(283\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(284\) −0.0340742 + 0.258819i −0.0340742 + 0.258819i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.151851 + 0.566715i 0.151851 + 0.566715i
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) −1.17604 1.53264i −1.17604 1.53264i
\(293\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(294\) −0.206647 0.608761i −0.206647 0.608761i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.257264 + 1.29335i −0.257264 + 1.29335i
\(300\) 0.0420463 + 0.641502i 0.0420463 + 0.641502i
\(301\) 0 0
\(302\) −1.67303 0.448288i −1.67303 0.448288i
\(303\) 0.177370 0.177370i 0.177370 0.177370i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −0.923880 0.617317i −0.923880 0.617317i 1.00000i \(-0.5\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.60021 + 0.662827i −1.60021 + 0.662827i −0.991445 0.130526i \(-0.958333\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(312\) 0.599456 0.599456i 0.599456 0.599456i
\(313\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.216773 + 1.08979i 0.216773 + 1.08979i 0.923880 + 0.382683i \(0.125000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.0598152 + 0.0345343i 0.0598152 + 0.0345343i
\(325\) −1.09645 + 0.732626i −1.09645 + 0.732626i
\(326\) 0.665060 1.34861i 0.665060 1.34861i
\(327\) 0 0
\(328\) 1.00000i 1.00000i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.29335 0.257264i −1.29335 0.257264i −0.500000 0.866025i \(-0.666667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 0.713769 + 0.191254i 0.713769 + 0.191254i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.534534 1.57469i −0.534534 1.57469i
\(347\) 0.617317 + 0.923880i 0.617317 + 0.923880i 1.00000 \(0\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(348\) −0.451161 + 0.346188i −0.451161 + 0.346188i
\(349\) −0.630526 + 0.125419i −0.630526 + 0.125419i −0.500000 0.866025i \(-0.666667\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(350\) 0 0
\(351\) 1.34514i 1.34514i
\(352\) 0 0
\(353\) 0.517638i 0.517638i −0.965926 0.258819i \(-0.916667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(354\) 0.248693 0.0327410i 0.248693 0.0327410i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.42388 + 0.483342i −1.42388 + 0.483342i
\(359\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(360\) 0 0
\(361\) −0.382683 0.923880i −0.382683 0.923880i
\(362\) 0 0
\(363\) 0.125419 0.630526i 0.125419 0.630526i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0.793353 + 0.608761i 0.793353 + 0.608761i
\(369\) 0.414864 + 0.414864i 0.414864 + 0.414864i
\(370\) 0 0
\(371\) 0 0
\(372\) −0.346188 0.702000i −0.346188 0.702000i
\(373\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.478235 0.198092i 0.478235 0.198092i
\(377\) −1.07769 0.446394i −1.07769 0.446394i
\(378\) 0 0
\(379\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(380\) 0 0
\(381\) −0.242292 1.21808i −0.242292 1.21808i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −0.206647 0.608761i −0.206647 0.608761i
\(385\) 0 0
\(386\) −1.05441 + 1.37413i −1.05441 + 1.37413i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.382683 0.923880i −0.382683 0.923880i
\(393\) 1.18534 0.490985i 1.18534 0.490985i
\(394\) −0.130526 + 1.99144i −0.130526 + 1.99144i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.49144 0.996552i −1.49144 0.996552i −0.991445 0.130526i \(-0.958333\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.130526 + 0.991445i 0.130526 + 0.991445i
\(401\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(402\) 0 0
\(403\) 0.891989 1.33496i 0.891989 1.33496i
\(404\) 0.257264 0.293353i 0.257264 0.293353i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.758819 + 1.83195i −0.758819 + 1.83195i −0.258819 + 0.965926i \(0.583333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −0.581687 + 0.0765806i −0.581687 + 0.0765806i
\(415\) 0 0
\(416\) 0.869474 0.991445i 0.869474 0.991445i
\(417\) 0.0840926i 0.0840926i
\(418\) 0 0
\(419\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(420\) 0 0
\(421\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(422\) −0.630526 1.85747i −0.630526 1.85747i
\(423\) −0.116222 + 0.280584i −0.116222 + 0.280584i
\(424\) 0 0
\(425\) 0 0
\(426\) 0.110655 + 0.126178i 0.110655 + 0.126178i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) 0.914864 + 0.451161i 0.914864 + 0.451161i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.23929 0.0812272i −1.23929 0.0812272i
\(439\) 1.83195 0.758819i 1.83195 0.758819i 0.866025 0.500000i \(-0.166667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(440\) 0 0
\(441\) 0.542046 + 0.224523i 0.542046 + 0.224523i
\(442\) 0 0
\(443\) −0.108761 + 0.0726721i −0.108761 + 0.0726721i −0.608761 0.793353i \(-0.708333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.607206 + 0.465926i 0.607206 + 0.465926i
\(447\) 0 0
\(448\) 0 0
\(449\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(450\) −0.465466 0.357164i −0.465466 0.357164i
\(451\) 0 0
\(452\) 0 0
\(453\) −0.925841 + 0.618627i −0.925841 + 0.618627i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.57469 1.05217i −1.57469 1.05217i −0.965926 0.258819i \(-0.916667\pi\)
−0.608761 0.793353i \(-0.708333\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) −0.665060 + 0.583242i −0.665060 + 0.583242i
\(465\) 0 0
\(466\) 1.91532 + 0.513210i 1.91532 + 0.513210i
\(467\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(468\) 0.0506014 + 0.772029i 0.0506014 + 0.772029i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.382683 0.0761205i 0.382683 0.0761205i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0.207107 + 1.57313i 0.207107 + 1.57313i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.130526 0.991445i 0.130526 0.991445i
\(485\) 0 0
\(486\) −0.923880 + 0.313615i −0.923880 + 0.313615i
\(487\) −0.0999004 + 0.241181i −0.0999004 + 0.241181i −0.965926 0.258819i \(-0.916667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0 0
\(489\) −0.369934 0.893100i −0.369934 0.893100i
\(490\) 0 0
\(491\) −0.172572 + 0.867580i −0.172572 + 0.867580i 0.793353 + 0.608761i \(0.208333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(492\) −0.483342 0.423880i −0.483342 0.423880i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.608761 1.05441i −0.608761 1.05441i
\(497\) 0 0
\(498\) 0 0
\(499\) 1.49144 + 0.996552i 1.49144 + 0.996552i 0.991445 + 0.130526i \(0.0416667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0 0
\(501\) 0.482584 + 0.0959919i 0.482584 + 0.0959919i
\(502\) 0 0
\(503\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.394993 0.263926i 0.394993 0.263926i
\(508\) −0.500000 1.86603i −0.500000 1.86603i
\(509\) 0.293353 + 1.47479i 0.293353 + 1.47479i 0.793353 + 0.608761i \(0.208333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.382683 0.923880i −0.382683 0.923880i
\(513\) 0 0
\(514\) 0.158919 0.207107i 0.158919 0.207107i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.987691 0.409115i −0.987691 0.409115i
\(520\) 0 0
\(521\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(522\) 0.0339434 0.517876i 0.0339434 0.517876i
\(523\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(524\) 1.78990 0.882683i 1.78990 0.882683i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(530\) 0 0
\(531\) −0.127182 + 0.190341i −0.127182 + 0.190341i
\(532\) 0 0
\(533\) 0.257264 1.29335i 0.257264 1.29335i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.369934 + 0.893100i −0.369934 + 0.893100i
\(538\) −0.123864 + 0.0420463i −0.123864 + 0.0420463i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.75928 0.349942i 1.75928 0.349942i 0.793353 0.608761i \(-0.208333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(542\) 1.40211 0.184592i 1.40211 0.184592i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.867580 0.172572i 0.867580 0.172572i 0.258819 0.965926i \(-0.416667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0.630526 0.125419i 0.630526 0.125419i
\(553\) 0 0
\(554\) 1.24871 + 1.42388i 1.24871 + 1.42388i
\(555\) 0 0
\(556\) 0.00855514 + 0.130526i 0.00855514 + 0.130526i
\(557\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(558\) 0.689989 + 0.184882i 0.689989 + 0.184882i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(564\) 0.106968 0.315118i 0.106968 0.315118i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0.184592 + 0.184592i 0.184592 + 0.184592i
\(569\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(570\) 0 0
\(571\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −1.00000
\(576\) 0.542046 + 0.224523i 0.542046 + 0.224523i
\(577\) −1.98289 −1.98289 −0.991445 0.130526i \(-0.958333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(578\) −0.793353 0.608761i −0.793353 0.608761i
\(579\) 0.217233 + 1.09210i 0.217233 + 1.09210i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.93185 −1.93185
\(585\) 0 0
\(586\) 0 0
\(587\) −1.75928 0.349942i −1.75928 0.349942i −0.793353 0.608761i \(-0.791667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) −0.608761 0.206647i −0.608761 0.206647i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.907222 + 0.907222i 0.907222 + 0.907222i
\(592\) 0 0
\(593\) −1.30656 + 1.30656i −1.30656 + 1.30656i −0.382683 + 0.923880i \(0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0.869474 + 0.991445i 0.869474 + 0.991445i
\(599\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(600\) 0.534534 + 0.357164i 0.534534 + 0.357164i
\(601\) 0.382683 0.923880i 0.382683 0.923880i −0.608761 0.793353i \(-0.708333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.37413 + 1.05441i −1.37413 + 1.05441i
\(605\) 0 0
\(606\) −0.0327410 0.248693i −0.0327410 0.248693i
\(607\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.669489 0.133170i 0.669489 0.133170i
\(612\) 0 0
\(613\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(614\) −1.05217 + 0.357164i −1.05217 + 0.357164i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(618\) 0 0
\(619\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(620\) 0 0
\(621\) −0.566715 + 0.848149i −0.566715 + 0.848149i
\(622\) −0.448288 + 1.67303i −0.448288 + 1.67303i
\(623\) 0 0
\(624\) −0.110655 0.840506i −0.110655 0.840506i
\(625\) −0.707107 0.707107i −0.707107 0.707107i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(632\) 0 0
\(633\) −1.16506 0.482584i −1.16506 0.482584i
\(634\) 0.996552 + 0.491445i 0.996552 + 0.491445i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.257264 1.29335i −0.257264 1.29335i
\(638\) 0 0
\(639\) −0.153161 −0.153161
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.923880 + 0.382683i 0.923880 + 0.382683i 0.793353 0.608761i \(-0.208333\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(648\) 0.0638111 0.0264314i 0.0638111 0.0264314i
\(649\) 0 0
\(650\) −0.0862466 + 1.31587i −0.0862466 + 1.31587i
\(651\) 0 0
\(652\) −0.665060 1.34861i −0.665060 1.34861i
\(653\) −1.25026 0.835400i −1.25026 0.835400i −0.258819 0.965926i \(-0.583333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.793353 0.608761i −0.793353 0.608761i
\(657\) 0.801456 0.801456i 0.801456 0.801456i
\(658\) 0 0
\(659\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(660\) 0 0
\(661\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(662\) −0.991445 + 0.869474i −0.991445 + 0.869474i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.491445 0.735499i −0.491445 0.735499i
\(668\) 0.758819 + 0.0999004i 0.758819 + 0.0999004i
\(669\) 0.482584 0.0959919i 0.482584 0.0959919i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.21752i 1.21752i −0.793353 0.608761i \(-0.791667\pi\)
0.793353 0.608761i \(-0.208333\pi\)
\(674\) 0 0
\(675\) −1.00046 + 0.199004i −1.00046 + 0.199004i
\(676\) 0.586247 0.449843i 0.586247 0.449843i
\(677\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.0255190 0.128293i 0.0255190 0.128293i −0.965926 0.258819i \(-0.916667\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.923880 + 0.617317i 0.923880 + 0.617317i 0.923880 0.382683i \(-0.125000\pi\)
1.00000i \(0.5\pi\)
\(692\) −1.57469 0.534534i −1.57469 0.534534i
\(693\) 0 0
\(694\) 1.10876 + 0.0726721i 1.10876 + 0.0726721i
\(695\) 0 0
\(696\) 0.568676i 0.568676i
\(697\) 0 0
\(698\) −0.284338 + 0.576581i −0.284338 + 0.576581i
\(699\) 1.05992 0.708218i 1.05992 0.708218i
\(700\) 0 0
\(701\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(702\) 1.06718 + 0.818872i 1.06718 + 0.818872i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.410670 0.315118i −0.410670 0.315118i
\(707\) 0 0
\(708\) 0.125419 0.217233i 0.125419 0.217233i
\(709\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.12484 0.465926i 1.12484 0.465926i
\(714\) 0 0
\(715\) 0 0
\(716\) −0.483342 + 1.42388i −0.483342 + 1.42388i
\(717\) 0.848149 + 0.566715i 0.848149 + 0.566715i
\(718\) 0 0
\(719\) −1.30656 1.30656i −1.30656 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 0.923880i \(-0.625000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.965926 0.258819i −0.965926 0.258819i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.172572 0.867580i 0.172572 0.867580i
\(726\) −0.423880 0.483342i −0.423880 0.483342i
\(727\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(728\) 0 0
\(729\) −0.266462 + 0.643296i −0.266462 + 0.643296i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.965926 0.258819i 0.965926 0.258819i
\(737\) 0 0
\(738\) 0.581687 0.0765806i 0.581687 0.0765806i
\(739\) 1.95737 0.389345i 1.95737 0.389345i 0.965926 0.258819i \(-0.0833333\pi\)
0.991445 0.130526i \(-0.0416667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(744\) −0.767680 0.152701i −0.767680 0.152701i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(752\) 0.133975 0.500000i 0.133975 0.500000i
\(753\) 0 0
\(754\) −1.01021 + 0.583242i −1.01021 + 0.583242i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.12484 0.465926i −1.12484 0.465926i −0.258819 0.965926i \(-0.583333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) −1.11387 0.549299i −1.11387 0.549299i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.514528 0.514528
\(768\) −0.608761 0.206647i −0.608761 0.206647i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −0.0327410 0.164600i −0.0327410 0.164600i
\(772\) 0.448288 + 1.67303i 0.448288 + 1.67303i
\(773\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(774\) 0 0
\(775\) 1.12484 + 0.465926i 1.12484 + 0.465926i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.638038 0.638038i −0.638038 0.638038i
\(784\) −0.965926 0.258819i −0.965926 0.258819i
\(785\) 0 0
\(786\) 0.332066 1.23929i 0.332066 1.23929i
\(787\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(788\) 1.50046 + 1.31587i 1.50046 + 1.31587i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −1.69855 + 0.576581i −1.69855 + 0.576581i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −0.516083 1.52033i −0.516083 1.52033i
\(807\) −0.0321808 + 0.0776914i −0.0321808 + 0.0776914i
\(808\) −0.0761205 0.382683i −0.0761205 0.382683i
\(809\) −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −0.349942 + 1.75928i −0.349942 + 1.75928i 0.258819 + 0.965926i \(0.416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(812\) 0 0
\(813\) 0.505107 0.755946i 0.505107 0.755946i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.991445 + 1.71723i 0.991445 + 1.71723i
\(819\) 0 0
\(820\) 0 0
\(821\) 1.92388 + 0.382683i 1.92388 + 0.382683i 1.00000 \(0\)
0.923880 + 0.382683i \(0.125000\pi\)
\(822\) 0 0
\(823\) 0.478235 0.198092i 0.478235 0.198092i −0.130526 0.991445i \(-0.541667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(828\) −0.293353 + 0.508103i −0.293353 + 0.508103i
\(829\) 0.382683 + 1.92388i 0.382683 + 1.92388i 0.382683 + 0.923880i \(0.375000\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 1.21752 1.21752
\(832\) −0.257264 1.29335i −0.257264 1.29335i
\(833\) 0 0
\(834\) 0.0667151 + 0.0511923i 0.0667151 + 0.0511923i
\(835\) 0 0
\(836\) 0 0
\(837\) 1.03264 0.689989i 1.03264 0.689989i
\(838\) 0 0
\(839\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(840\) 0 0
\(841\) −0.200965 + 0.0832424i −0.200965 + 0.0832424i
\(842\) 0 0
\(843\) 0 0
\(844\) −1.85747 0.630526i −1.85747 0.630526i
\(845\) 0 0
\(846\) 0.151851 + 0.263013i 0.151851 + 0.263013i
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0.167466 0.0109763i 0.167466 0.0109763i
\(853\) 0.324423 1.63099i 0.324423 1.63099i −0.382683 0.923880i \(-0.625000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.0999004 0.241181i 0.0999004 0.241181i −0.866025 0.500000i \(-0.833333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(858\) 0 0
\(859\) 0.732626 + 1.09645i 0.732626 + 1.09645i 0.991445 + 0.130526i \(0.0416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.98289i 1.98289i −0.130526 0.991445i \(-0.541667\pi\)
0.130526 0.991445i \(-0.458333\pi\)
\(864\) 0.914864 0.451161i 0.914864 0.451161i
\(865\) 0 0
\(866\) 0 0
\(867\) −0.630526 + 0.125419i −0.630526 + 0.125419i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −0.818872 + 0.933745i −0.818872 + 0.933745i
\(877\) −0.216773 + 0.324423i −0.216773 + 0.324423i −0.923880 0.382683i \(-0.875000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 0.513210 1.91532i 0.513210 1.91532i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(882\) 0.508103 0.293353i 0.508103 0.293353i
\(883\) −1.38268 0.923880i −1.38268 0.923880i −0.382683 0.923880i \(-0.625000\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.00855514 + 0.130526i −0.00855514 + 0.130526i
\(887\) 1.46593 0.607206i 1.46593 0.607206i 0.500000 0.866025i \(-0.333333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0.739288 0.198092i 0.739288 0.198092i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.847759 0.847759
\(898\) −1.12484 + 1.46593i −1.12484 + 1.46593i
\(899\) 0.210111 + 1.05630i 0.210111 + 1.05630i
\(900\) −0.566715 + 0.151851i −0.566715 + 0.151851i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −0.0728263 + 1.11111i −0.0728263 + 1.11111i
\(907\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(908\) 0 0
\(909\) 0.190341 + 0.127182i 0.190341 + 0.127182i
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(920\) 0 0
\(921\) −0.273362 + 0.659954i −0.273362 + 0.659954i
\(922\) −1.79335 + 0.608761i −1.79335 + 0.608761i
\(923\) 0.191254 + 0.286231i 0.191254 + 0.286231i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0.0578541 + 0.882683i 0.0578541 + 0.882683i
\(929\) 1.98289i 1.98289i −0.130526 0.991445i \(-0.541667\pi\)
0.130526 0.991445i \(-0.458333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.57313 1.20711i 1.57313 1.20711i
\(933\) 0.618627 + 0.925841i 0.618627 + 0.925841i
\(934\) 0 0
\(935\) 0 0
\(936\) 0.643296 + 0.429836i 0.643296 + 0.429836i
\(937\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(942\) 0 0
\(943\) 0.707107 0.707107i 0.707107 0.707107i
\(944\) 0.172572 0.349942i 0.172572 0.349942i
\(945\) 0 0
\(946\) 0 0
\(947\) 0.735499 + 0.491445i 0.735499 + 0.491445i 0.866025 0.500000i \(-0.166667\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(948\) 0 0
\(949\) −2.49857 0.496996i −2.49857 0.496996i
\(950\) 0 0
\(951\) 0.659954 0.273362i 0.659954 0.273362i
\(952\) 0 0
\(953\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.37413 + 0.793353i 1.37413 + 0.793353i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.482362 −0.482362
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.923880 0.382683i −0.923880 0.382683i −0.130526 0.991445i \(-0.541667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(968\) −0.707107 0.707107i −0.707107 0.707107i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(972\) −0.313615 + 0.923880i −0.313615 + 0.923880i
\(973\) 0 0
\(974\) 0.130526 + 0.226078i 0.130526 + 0.226078i
\(975\) 0.599456 + 0.599456i 0.599456 + 0.599456i
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) −0.933745 0.250196i −0.933745 0.250196i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0.583242 + 0.665060i 0.583242 + 0.665060i
\(983\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(984\) −0.630526 + 0.125419i −0.630526 + 0.125419i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(992\) −1.20711 0.158919i −1.20711 0.158919i
\(993\) 0.847759i 0.847759i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.617317 + 0.923880i 0.617317 + 0.923880i 1.00000 \(0\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(998\) 1.69855 0.576581i 1.69855 0.576581i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.1.s.b.597.2 16
23.22 odd 2 CM 1472.1.s.b.597.2 16
64.61 even 16 inner 1472.1.s.b.1149.2 yes 16
1472.1149 odd 16 inner 1472.1.s.b.1149.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1472.1.s.b.597.2 16 1.1 even 1 trivial
1472.1.s.b.597.2 16 23.22 odd 2 CM
1472.1.s.b.1149.2 yes 16 64.61 even 16 inner
1472.1.s.b.1149.2 yes 16 1472.1149 odd 16 inner