Properties

Label 1472.2.a.x.1.3
Level $1472$
Weight $2$
Character 1472.1
Self dual yes
Analytic conductor $11.754$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.34292 q^{3} +1.14637 q^{5} +1.14637 q^{7} +8.17513 q^{9} +3.14637 q^{11} -2.48929 q^{13} +3.83221 q^{15} +0.853635 q^{17} -5.66442 q^{19} +3.83221 q^{21} -1.00000 q^{23} -3.68585 q^{25} +17.3001 q^{27} +6.88240 q^{29} -8.32150 q^{31} +10.5181 q^{33} +1.31415 q^{35} -8.81079 q^{37} -8.32150 q^{39} -6.48929 q^{41} -2.97858 q^{43} +9.37169 q^{45} -2.94981 q^{47} -5.68585 q^{49} +2.85363 q^{51} -0.393115 q^{53} +3.60688 q^{55} -18.9357 q^{57} +5.70727 q^{59} +14.3503 q^{61} +9.37169 q^{63} -2.85363 q^{65} +7.93260 q^{67} -3.34292 q^{69} +0.657077 q^{71} -1.90383 q^{73} -12.3215 q^{75} +3.60688 q^{77} +16.0575 q^{79} +33.3074 q^{81} +2.75325 q^{83} +0.978577 q^{85} +23.0073 q^{87} -15.7648 q^{89} -2.85363 q^{91} -27.8181 q^{93} -6.49350 q^{95} -14.8108 q^{97} +25.7220 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{3} + 2 q^{5} + 2 q^{7} + 5 q^{9} + 8 q^{11} - 2 q^{15} + 4 q^{17} + 10 q^{19} - 2 q^{21} - 3 q^{23} + q^{25} + 16 q^{27} + 4 q^{29} - 4 q^{31} + 6 q^{33} + 16 q^{35} + 2 q^{37} - 4 q^{39} - 12 q^{41}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.34292 1.93004 0.965019 0.262181i \(-0.0844417\pi\)
0.965019 + 0.262181i \(0.0844417\pi\)
\(4\) 0 0
\(5\) 1.14637 0.512670 0.256335 0.966588i \(-0.417485\pi\)
0.256335 + 0.966588i \(0.417485\pi\)
\(6\) 0 0
\(7\) 1.14637 0.433285 0.216643 0.976251i \(-0.430489\pi\)
0.216643 + 0.976251i \(0.430489\pi\)
\(8\) 0 0
\(9\) 8.17513 2.72504
\(10\) 0 0
\(11\) 3.14637 0.948665 0.474332 0.880346i \(-0.342689\pi\)
0.474332 + 0.880346i \(0.342689\pi\)
\(12\) 0 0
\(13\) −2.48929 −0.690404 −0.345202 0.938528i \(-0.612190\pi\)
−0.345202 + 0.938528i \(0.612190\pi\)
\(14\) 0 0
\(15\) 3.83221 0.989473
\(16\) 0 0
\(17\) 0.853635 0.207037 0.103518 0.994628i \(-0.466990\pi\)
0.103518 + 0.994628i \(0.466990\pi\)
\(18\) 0 0
\(19\) −5.66442 −1.29951 −0.649754 0.760145i \(-0.725128\pi\)
−0.649754 + 0.760145i \(0.725128\pi\)
\(20\) 0 0
\(21\) 3.83221 0.836257
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) −3.68585 −0.737169
\(26\) 0 0
\(27\) 17.3001 3.32940
\(28\) 0 0
\(29\) 6.88240 1.27803 0.639015 0.769194i \(-0.279342\pi\)
0.639015 + 0.769194i \(0.279342\pi\)
\(30\) 0 0
\(31\) −8.32150 −1.49459 −0.747293 0.664495i \(-0.768647\pi\)
−0.747293 + 0.664495i \(0.768647\pi\)
\(32\) 0 0
\(33\) 10.5181 1.83096
\(34\) 0 0
\(35\) 1.31415 0.222133
\(36\) 0 0
\(37\) −8.81079 −1.44848 −0.724242 0.689545i \(-0.757810\pi\)
−0.724242 + 0.689545i \(0.757810\pi\)
\(38\) 0 0
\(39\) −8.32150 −1.33251
\(40\) 0 0
\(41\) −6.48929 −1.01346 −0.506728 0.862106i \(-0.669145\pi\)
−0.506728 + 0.862106i \(0.669145\pi\)
\(42\) 0 0
\(43\) −2.97858 −0.454229 −0.227114 0.973868i \(-0.572929\pi\)
−0.227114 + 0.973868i \(0.572929\pi\)
\(44\) 0 0
\(45\) 9.37169 1.39705
\(46\) 0 0
\(47\) −2.94981 −0.430274 −0.215137 0.976584i \(-0.569020\pi\)
−0.215137 + 0.976584i \(0.569020\pi\)
\(48\) 0 0
\(49\) −5.68585 −0.812264
\(50\) 0 0
\(51\) 2.85363 0.399589
\(52\) 0 0
\(53\) −0.393115 −0.0539985 −0.0269993 0.999635i \(-0.508595\pi\)
−0.0269993 + 0.999635i \(0.508595\pi\)
\(54\) 0 0
\(55\) 3.60688 0.486352
\(56\) 0 0
\(57\) −18.9357 −2.50810
\(58\) 0 0
\(59\) 5.70727 0.743023 0.371512 0.928428i \(-0.378840\pi\)
0.371512 + 0.928428i \(0.378840\pi\)
\(60\) 0 0
\(61\) 14.3503 1.83736 0.918682 0.394998i \(-0.129255\pi\)
0.918682 + 0.394998i \(0.129255\pi\)
\(62\) 0 0
\(63\) 9.37169 1.18072
\(64\) 0 0
\(65\) −2.85363 −0.353950
\(66\) 0 0
\(67\) 7.93260 0.969121 0.484560 0.874758i \(-0.338980\pi\)
0.484560 + 0.874758i \(0.338980\pi\)
\(68\) 0 0
\(69\) −3.34292 −0.402441
\(70\) 0 0
\(71\) 0.657077 0.0779807 0.0389903 0.999240i \(-0.487586\pi\)
0.0389903 + 0.999240i \(0.487586\pi\)
\(72\) 0 0
\(73\) −1.90383 −0.222826 −0.111413 0.993774i \(-0.535538\pi\)
−0.111413 + 0.993774i \(0.535538\pi\)
\(74\) 0 0
\(75\) −12.3215 −1.42276
\(76\) 0 0
\(77\) 3.60688 0.411043
\(78\) 0 0
\(79\) 16.0575 1.80661 0.903307 0.428994i \(-0.141132\pi\)
0.903307 + 0.428994i \(0.141132\pi\)
\(80\) 0 0
\(81\) 33.3074 3.70082
\(82\) 0 0
\(83\) 2.75325 0.302208 0.151104 0.988518i \(-0.451717\pi\)
0.151104 + 0.988518i \(0.451717\pi\)
\(84\) 0 0
\(85\) 0.978577 0.106142
\(86\) 0 0
\(87\) 23.0073 2.46665
\(88\) 0 0
\(89\) −15.7648 −1.67107 −0.835533 0.549440i \(-0.814841\pi\)
−0.835533 + 0.549440i \(0.814841\pi\)
\(90\) 0 0
\(91\) −2.85363 −0.299142
\(92\) 0 0
\(93\) −27.8181 −2.88461
\(94\) 0 0
\(95\) −6.49350 −0.666219
\(96\) 0 0
\(97\) −14.8108 −1.50381 −0.751904 0.659273i \(-0.770864\pi\)
−0.751904 + 0.659273i \(0.770864\pi\)
\(98\) 0 0
\(99\) 25.7220 2.58515
\(100\) 0 0
\(101\) −17.2713 −1.71856 −0.859280 0.511506i \(-0.829088\pi\)
−0.859280 + 0.511506i \(0.829088\pi\)
\(102\) 0 0
\(103\) 16.2253 1.59873 0.799364 0.600846i \(-0.205170\pi\)
0.799364 + 0.600846i \(0.205170\pi\)
\(104\) 0 0
\(105\) 4.39312 0.428724
\(106\) 0 0
\(107\) −3.70727 −0.358395 −0.179198 0.983813i \(-0.557350\pi\)
−0.179198 + 0.983813i \(0.557350\pi\)
\(108\) 0 0
\(109\) 4.58546 0.439208 0.219604 0.975589i \(-0.429524\pi\)
0.219604 + 0.975589i \(0.429524\pi\)
\(110\) 0 0
\(111\) −29.4538 −2.79563
\(112\) 0 0
\(113\) −0.518058 −0.0487348 −0.0243674 0.999703i \(-0.507757\pi\)
−0.0243674 + 0.999703i \(0.507757\pi\)
\(114\) 0 0
\(115\) −1.14637 −0.106899
\(116\) 0 0
\(117\) −20.3503 −1.88138
\(118\) 0 0
\(119\) 0.978577 0.0897060
\(120\) 0 0
\(121\) −1.10038 −0.100035
\(122\) 0 0
\(123\) −21.6932 −1.95601
\(124\) 0 0
\(125\) −9.95715 −0.890595
\(126\) 0 0
\(127\) 8.65708 0.768191 0.384096 0.923293i \(-0.374513\pi\)
0.384096 + 0.923293i \(0.374513\pi\)
\(128\) 0 0
\(129\) −9.95715 −0.876679
\(130\) 0 0
\(131\) 18.6142 1.62633 0.813166 0.582031i \(-0.197742\pi\)
0.813166 + 0.582031i \(0.197742\pi\)
\(132\) 0 0
\(133\) −6.49350 −0.563058
\(134\) 0 0
\(135\) 19.8322 1.70689
\(136\) 0 0
\(137\) 7.76481 0.663392 0.331696 0.943386i \(-0.392379\pi\)
0.331696 + 0.943386i \(0.392379\pi\)
\(138\) 0 0
\(139\) 9.30008 0.788822 0.394411 0.918934i \(-0.370949\pi\)
0.394411 + 0.918934i \(0.370949\pi\)
\(140\) 0 0
\(141\) −9.86098 −0.830444
\(142\) 0 0
\(143\) −7.83221 −0.654962
\(144\) 0 0
\(145\) 7.88975 0.655208
\(146\) 0 0
\(147\) −19.0073 −1.56770
\(148\) 0 0
\(149\) 10.3503 0.847927 0.423964 0.905679i \(-0.360638\pi\)
0.423964 + 0.905679i \(0.360638\pi\)
\(150\) 0 0
\(151\) −14.6718 −1.19397 −0.596986 0.802252i \(-0.703635\pi\)
−0.596986 + 0.802252i \(0.703635\pi\)
\(152\) 0 0
\(153\) 6.97858 0.564185
\(154\) 0 0
\(155\) −9.53948 −0.766230
\(156\) 0 0
\(157\) 19.3288 1.54261 0.771305 0.636466i \(-0.219604\pi\)
0.771305 + 0.636466i \(0.219604\pi\)
\(158\) 0 0
\(159\) −1.31415 −0.104219
\(160\) 0 0
\(161\) −1.14637 −0.0903463
\(162\) 0 0
\(163\) 1.24254 0.0973232 0.0486616 0.998815i \(-0.484504\pi\)
0.0486616 + 0.998815i \(0.484504\pi\)
\(164\) 0 0
\(165\) 12.0575 0.938678
\(166\) 0 0
\(167\) −2.29273 −0.177417 −0.0887084 0.996058i \(-0.528274\pi\)
−0.0887084 + 0.996058i \(0.528274\pi\)
\(168\) 0 0
\(169\) −6.80344 −0.523342
\(170\) 0 0
\(171\) −46.3074 −3.54122
\(172\) 0 0
\(173\) 8.93573 0.679371 0.339686 0.940539i \(-0.389679\pi\)
0.339686 + 0.940539i \(0.389679\pi\)
\(174\) 0 0
\(175\) −4.22533 −0.319405
\(176\) 0 0
\(177\) 19.0790 1.43406
\(178\) 0 0
\(179\) −17.6932 −1.32245 −0.661226 0.750187i \(-0.729963\pi\)
−0.661226 + 0.750187i \(0.729963\pi\)
\(180\) 0 0
\(181\) −12.4752 −0.927275 −0.463638 0.886025i \(-0.653456\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(182\) 0 0
\(183\) 47.9718 3.54618
\(184\) 0 0
\(185\) −10.1004 −0.742595
\(186\) 0 0
\(187\) 2.68585 0.196409
\(188\) 0 0
\(189\) 19.8322 1.44258
\(190\) 0 0
\(191\) −11.2467 −0.813786 −0.406893 0.913476i \(-0.633388\pi\)
−0.406893 + 0.913476i \(0.633388\pi\)
\(192\) 0 0
\(193\) −1.17513 −0.0845880 −0.0422940 0.999105i \(-0.513467\pi\)
−0.0422940 + 0.999105i \(0.513467\pi\)
\(194\) 0 0
\(195\) −9.53948 −0.683136
\(196\) 0 0
\(197\) −5.36748 −0.382417 −0.191209 0.981549i \(-0.561241\pi\)
−0.191209 + 0.981549i \(0.561241\pi\)
\(198\) 0 0
\(199\) −9.78937 −0.693950 −0.346975 0.937874i \(-0.612791\pi\)
−0.346975 + 0.937874i \(0.612791\pi\)
\(200\) 0 0
\(201\) 26.5181 1.87044
\(202\) 0 0
\(203\) 7.88975 0.553752
\(204\) 0 0
\(205\) −7.43910 −0.519569
\(206\) 0 0
\(207\) −8.17513 −0.568211
\(208\) 0 0
\(209\) −17.8223 −1.23280
\(210\) 0 0
\(211\) −4.24989 −0.292574 −0.146287 0.989242i \(-0.546732\pi\)
−0.146287 + 0.989242i \(0.546732\pi\)
\(212\) 0 0
\(213\) 2.19656 0.150506
\(214\) 0 0
\(215\) −3.41454 −0.232870
\(216\) 0 0
\(217\) −9.53948 −0.647582
\(218\) 0 0
\(219\) −6.36435 −0.430063
\(220\) 0 0
\(221\) −2.12494 −0.142939
\(222\) 0 0
\(223\) 13.2285 0.885843 0.442922 0.896560i \(-0.353942\pi\)
0.442922 + 0.896560i \(0.353942\pi\)
\(224\) 0 0
\(225\) −30.1323 −2.00882
\(226\) 0 0
\(227\) 22.8683 1.51782 0.758912 0.651193i \(-0.225731\pi\)
0.758912 + 0.651193i \(0.225731\pi\)
\(228\) 0 0
\(229\) −1.17092 −0.0773768 −0.0386884 0.999251i \(-0.512318\pi\)
−0.0386884 + 0.999251i \(0.512318\pi\)
\(230\) 0 0
\(231\) 12.0575 0.793328
\(232\) 0 0
\(233\) −13.4250 −0.879502 −0.439751 0.898120i \(-0.644933\pi\)
−0.439751 + 0.898120i \(0.644933\pi\)
\(234\) 0 0
\(235\) −3.38156 −0.220589
\(236\) 0 0
\(237\) 53.6791 3.48683
\(238\) 0 0
\(239\) −2.30681 −0.149215 −0.0746075 0.997213i \(-0.523770\pi\)
−0.0746075 + 0.997213i \(0.523770\pi\)
\(240\) 0 0
\(241\) 18.2829 1.17770 0.588851 0.808241i \(-0.299580\pi\)
0.588851 + 0.808241i \(0.299580\pi\)
\(242\) 0 0
\(243\) 59.4439 3.81333
\(244\) 0 0
\(245\) −6.51806 −0.416423
\(246\) 0 0
\(247\) 14.1004 0.897186
\(248\) 0 0
\(249\) 9.20390 0.583274
\(250\) 0 0
\(251\) 25.6974 1.62201 0.811003 0.585042i \(-0.198922\pi\)
0.811003 + 0.585042i \(0.198922\pi\)
\(252\) 0 0
\(253\) −3.14637 −0.197810
\(254\) 0 0
\(255\) 3.27131 0.204857
\(256\) 0 0
\(257\) 17.8181 1.11146 0.555732 0.831361i \(-0.312438\pi\)
0.555732 + 0.831361i \(0.312438\pi\)
\(258\) 0 0
\(259\) −10.1004 −0.627607
\(260\) 0 0
\(261\) 56.2646 3.48269
\(262\) 0 0
\(263\) −25.8139 −1.59175 −0.795877 0.605458i \(-0.792990\pi\)
−0.795877 + 0.605458i \(0.792990\pi\)
\(264\) 0 0
\(265\) −0.450654 −0.0276834
\(266\) 0 0
\(267\) −52.7005 −3.22522
\(268\) 0 0
\(269\) −2.09617 −0.127806 −0.0639030 0.997956i \(-0.520355\pi\)
−0.0639030 + 0.997956i \(0.520355\pi\)
\(270\) 0 0
\(271\) 14.1579 0.860033 0.430016 0.902821i \(-0.358508\pi\)
0.430016 + 0.902821i \(0.358508\pi\)
\(272\) 0 0
\(273\) −9.53948 −0.577356
\(274\) 0 0
\(275\) −11.5970 −0.699327
\(276\) 0 0
\(277\) 1.17513 0.0706070 0.0353035 0.999377i \(-0.488760\pi\)
0.0353035 + 0.999377i \(0.488760\pi\)
\(278\) 0 0
\(279\) −68.0294 −4.07281
\(280\) 0 0
\(281\) 12.1825 0.726746 0.363373 0.931644i \(-0.381625\pi\)
0.363373 + 0.931644i \(0.381625\pi\)
\(282\) 0 0
\(283\) 11.4819 0.682531 0.341265 0.939967i \(-0.389145\pi\)
0.341265 + 0.939967i \(0.389145\pi\)
\(284\) 0 0
\(285\) −21.7073 −1.28583
\(286\) 0 0
\(287\) −7.43910 −0.439116
\(288\) 0 0
\(289\) −16.2713 −0.957136
\(290\) 0 0
\(291\) −49.5113 −2.90241
\(292\) 0 0
\(293\) 5.17092 0.302089 0.151044 0.988527i \(-0.451736\pi\)
0.151044 + 0.988527i \(0.451736\pi\)
\(294\) 0 0
\(295\) 6.54262 0.380926
\(296\) 0 0
\(297\) 54.4324 3.15849
\(298\) 0 0
\(299\) 2.48929 0.143959
\(300\) 0 0
\(301\) −3.41454 −0.196811
\(302\) 0 0
\(303\) −57.7367 −3.31688
\(304\) 0 0
\(305\) 16.4507 0.941962
\(306\) 0 0
\(307\) 12.8353 0.732552 0.366276 0.930506i \(-0.380633\pi\)
0.366276 + 0.930506i \(0.380633\pi\)
\(308\) 0 0
\(309\) 54.2400 3.08561
\(310\) 0 0
\(311\) 9.30008 0.527359 0.263680 0.964610i \(-0.415064\pi\)
0.263680 + 0.964610i \(0.415064\pi\)
\(312\) 0 0
\(313\) −7.56404 −0.427545 −0.213772 0.976883i \(-0.568575\pi\)
−0.213772 + 0.976883i \(0.568575\pi\)
\(314\) 0 0
\(315\) 10.7434 0.605321
\(316\) 0 0
\(317\) −13.2713 −0.745391 −0.372695 0.927954i \(-0.621566\pi\)
−0.372695 + 0.927954i \(0.621566\pi\)
\(318\) 0 0
\(319\) 21.6546 1.21242
\(320\) 0 0
\(321\) −12.3931 −0.691716
\(322\) 0 0
\(323\) −4.83535 −0.269046
\(324\) 0 0
\(325\) 9.17513 0.508945
\(326\) 0 0
\(327\) 15.3288 0.847687
\(328\) 0 0
\(329\) −3.38156 −0.186431
\(330\) 0 0
\(331\) −10.2295 −0.562266 −0.281133 0.959669i \(-0.590710\pi\)
−0.281133 + 0.959669i \(0.590710\pi\)
\(332\) 0 0
\(333\) −72.0294 −3.94719
\(334\) 0 0
\(335\) 9.09365 0.496839
\(336\) 0 0
\(337\) 18.9786 1.03383 0.516914 0.856037i \(-0.327081\pi\)
0.516914 + 0.856037i \(0.327081\pi\)
\(338\) 0 0
\(339\) −1.73183 −0.0940600
\(340\) 0 0
\(341\) −26.1825 −1.41786
\(342\) 0 0
\(343\) −14.5426 −0.785227
\(344\) 0 0
\(345\) −3.83221 −0.206319
\(346\) 0 0
\(347\) −20.6430 −1.10817 −0.554087 0.832459i \(-0.686933\pi\)
−0.554087 + 0.832459i \(0.686933\pi\)
\(348\) 0 0
\(349\) −23.9185 −1.28033 −0.640164 0.768238i \(-0.721134\pi\)
−0.640164 + 0.768238i \(0.721134\pi\)
\(350\) 0 0
\(351\) −43.0649 −2.29863
\(352\) 0 0
\(353\) 14.0105 0.745703 0.372851 0.927891i \(-0.378380\pi\)
0.372851 + 0.927891i \(0.378380\pi\)
\(354\) 0 0
\(355\) 0.753250 0.0399784
\(356\) 0 0
\(357\) 3.27131 0.173136
\(358\) 0 0
\(359\) −22.1004 −1.16641 −0.583207 0.812324i \(-0.698202\pi\)
−0.583207 + 0.812324i \(0.698202\pi\)
\(360\) 0 0
\(361\) 13.0857 0.688721
\(362\) 0 0
\(363\) −3.67850 −0.193071
\(364\) 0 0
\(365\) −2.18248 −0.114236
\(366\) 0 0
\(367\) 17.1464 0.895033 0.447516 0.894276i \(-0.352309\pi\)
0.447516 + 0.894276i \(0.352309\pi\)
\(368\) 0 0
\(369\) −53.0508 −2.76171
\(370\) 0 0
\(371\) −0.450654 −0.0233968
\(372\) 0 0
\(373\) −25.2614 −1.30799 −0.653994 0.756500i \(-0.726908\pi\)
−0.653994 + 0.756500i \(0.726908\pi\)
\(374\) 0 0
\(375\) −33.2860 −1.71888
\(376\) 0 0
\(377\) −17.1323 −0.882358
\(378\) 0 0
\(379\) 19.7648 1.01525 0.507625 0.861578i \(-0.330524\pi\)
0.507625 + 0.861578i \(0.330524\pi\)
\(380\) 0 0
\(381\) 28.9399 1.48264
\(382\) 0 0
\(383\) −19.4145 −0.992037 −0.496018 0.868312i \(-0.665205\pi\)
−0.496018 + 0.868312i \(0.665205\pi\)
\(384\) 0 0
\(385\) 4.13481 0.210729
\(386\) 0 0
\(387\) −24.3503 −1.23779
\(388\) 0 0
\(389\) −24.7862 −1.25671 −0.628356 0.777926i \(-0.716272\pi\)
−0.628356 + 0.777926i \(0.716272\pi\)
\(390\) 0 0
\(391\) −0.853635 −0.0431702
\(392\) 0 0
\(393\) 62.2259 3.13888
\(394\) 0 0
\(395\) 18.4078 0.926197
\(396\) 0 0
\(397\) −26.1537 −1.31262 −0.656309 0.754493i \(-0.727883\pi\)
−0.656309 + 0.754493i \(0.727883\pi\)
\(398\) 0 0
\(399\) −21.7073 −1.08672
\(400\) 0 0
\(401\) −14.6676 −0.732463 −0.366231 0.930524i \(-0.619352\pi\)
−0.366231 + 0.930524i \(0.619352\pi\)
\(402\) 0 0
\(403\) 20.7146 1.03187
\(404\) 0 0
\(405\) 38.1825 1.89730
\(406\) 0 0
\(407\) −27.7220 −1.37413
\(408\) 0 0
\(409\) −3.94667 −0.195150 −0.0975752 0.995228i \(-0.531109\pi\)
−0.0975752 + 0.995228i \(0.531109\pi\)
\(410\) 0 0
\(411\) 25.9572 1.28037
\(412\) 0 0
\(413\) 6.54262 0.321941
\(414\) 0 0
\(415\) 3.15623 0.154933
\(416\) 0 0
\(417\) 31.0894 1.52246
\(418\) 0 0
\(419\) 0.235192 0.0114899 0.00574495 0.999983i \(-0.498171\pi\)
0.00574495 + 0.999983i \(0.498171\pi\)
\(420\) 0 0
\(421\) 8.95402 0.436392 0.218196 0.975905i \(-0.429983\pi\)
0.218196 + 0.975905i \(0.429983\pi\)
\(422\) 0 0
\(423\) −24.1151 −1.17252
\(424\) 0 0
\(425\) −3.14637 −0.152621
\(426\) 0 0
\(427\) 16.4507 0.796103
\(428\) 0 0
\(429\) −26.1825 −1.26410
\(430\) 0 0
\(431\) 19.3288 0.931038 0.465519 0.885038i \(-0.345868\pi\)
0.465519 + 0.885038i \(0.345868\pi\)
\(432\) 0 0
\(433\) −32.1249 −1.54383 −0.771913 0.635728i \(-0.780700\pi\)
−0.771913 + 0.635728i \(0.780700\pi\)
\(434\) 0 0
\(435\) 26.3748 1.26458
\(436\) 0 0
\(437\) 5.66442 0.270966
\(438\) 0 0
\(439\) 12.3790 0.590819 0.295410 0.955371i \(-0.404544\pi\)
0.295410 + 0.955371i \(0.404544\pi\)
\(440\) 0 0
\(441\) −46.4826 −2.21346
\(442\) 0 0
\(443\) −33.0220 −1.56892 −0.784462 0.620177i \(-0.787061\pi\)
−0.784462 + 0.620177i \(0.787061\pi\)
\(444\) 0 0
\(445\) −18.0722 −0.856706
\(446\) 0 0
\(447\) 34.6002 1.63653
\(448\) 0 0
\(449\) 5.21377 0.246053 0.123027 0.992403i \(-0.460740\pi\)
0.123027 + 0.992403i \(0.460740\pi\)
\(450\) 0 0
\(451\) −20.4177 −0.961431
\(452\) 0 0
\(453\) −49.0466 −2.30441
\(454\) 0 0
\(455\) −3.27131 −0.153361
\(456\) 0 0
\(457\) 5.88975 0.275511 0.137755 0.990466i \(-0.456011\pi\)
0.137755 + 0.990466i \(0.456011\pi\)
\(458\) 0 0
\(459\) 14.7679 0.689309
\(460\) 0 0
\(461\) 30.0680 1.40041 0.700204 0.713943i \(-0.253093\pi\)
0.700204 + 0.713943i \(0.253093\pi\)
\(462\) 0 0
\(463\) −22.6858 −1.05430 −0.527150 0.849772i \(-0.676740\pi\)
−0.527150 + 0.849772i \(0.676740\pi\)
\(464\) 0 0
\(465\) −31.8898 −1.47885
\(466\) 0 0
\(467\) 31.8223 1.47256 0.736281 0.676676i \(-0.236580\pi\)
0.736281 + 0.676676i \(0.236580\pi\)
\(468\) 0 0
\(469\) 9.09365 0.419906
\(470\) 0 0
\(471\) 64.6148 2.97730
\(472\) 0 0
\(473\) −9.37169 −0.430911
\(474\) 0 0
\(475\) 20.8782 0.957957
\(476\) 0 0
\(477\) −3.21377 −0.147148
\(478\) 0 0
\(479\) −24.5609 −1.12222 −0.561108 0.827742i \(-0.689625\pi\)
−0.561108 + 0.827742i \(0.689625\pi\)
\(480\) 0 0
\(481\) 21.9326 1.00004
\(482\) 0 0
\(483\) −3.83221 −0.174372
\(484\) 0 0
\(485\) −16.9786 −0.770957
\(486\) 0 0
\(487\) 40.1783 1.82065 0.910326 0.413893i \(-0.135831\pi\)
0.910326 + 0.413893i \(0.135831\pi\)
\(488\) 0 0
\(489\) 4.15371 0.187837
\(490\) 0 0
\(491\) −17.2425 −0.778145 −0.389072 0.921207i \(-0.627204\pi\)
−0.389072 + 0.921207i \(0.627204\pi\)
\(492\) 0 0
\(493\) 5.87506 0.264599
\(494\) 0 0
\(495\) 29.4868 1.32533
\(496\) 0 0
\(497\) 0.753250 0.0337879
\(498\) 0 0
\(499\) −7.59281 −0.339901 −0.169950 0.985453i \(-0.554361\pi\)
−0.169950 + 0.985453i \(0.554361\pi\)
\(500\) 0 0
\(501\) −7.66442 −0.342421
\(502\) 0 0
\(503\) 39.3864 1.75615 0.878076 0.478521i \(-0.158827\pi\)
0.878076 + 0.478521i \(0.158827\pi\)
\(504\) 0 0
\(505\) −19.7992 −0.881054
\(506\) 0 0
\(507\) −22.7434 −1.01007
\(508\) 0 0
\(509\) −4.98279 −0.220858 −0.110429 0.993884i \(-0.535223\pi\)
−0.110429 + 0.993884i \(0.535223\pi\)
\(510\) 0 0
\(511\) −2.18248 −0.0965473
\(512\) 0 0
\(513\) −97.9950 −4.32658
\(514\) 0 0
\(515\) 18.6002 0.819621
\(516\) 0 0
\(517\) −9.28117 −0.408186
\(518\) 0 0
\(519\) 29.8715 1.31121
\(520\) 0 0
\(521\) 1.22219 0.0535452 0.0267726 0.999642i \(-0.491477\pi\)
0.0267726 + 0.999642i \(0.491477\pi\)
\(522\) 0 0
\(523\) −10.2829 −0.449638 −0.224819 0.974401i \(-0.572179\pi\)
−0.224819 + 0.974401i \(0.572179\pi\)
\(524\) 0 0
\(525\) −14.1249 −0.616463
\(526\) 0 0
\(527\) −7.10352 −0.309434
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 46.6577 2.02477
\(532\) 0 0
\(533\) 16.1537 0.699695
\(534\) 0 0
\(535\) −4.24989 −0.183739
\(536\) 0 0
\(537\) −59.1470 −2.55238
\(538\) 0 0
\(539\) −17.8898 −0.770566
\(540\) 0 0
\(541\) −11.2180 −0.482299 −0.241149 0.970488i \(-0.577524\pi\)
−0.241149 + 0.970488i \(0.577524\pi\)
\(542\) 0 0
\(543\) −41.7037 −1.78968
\(544\) 0 0
\(545\) 5.25662 0.225169
\(546\) 0 0
\(547\) −0.657077 −0.0280946 −0.0140473 0.999901i \(-0.504472\pi\)
−0.0140473 + 0.999901i \(0.504472\pi\)
\(548\) 0 0
\(549\) 117.315 5.00690
\(550\) 0 0
\(551\) −38.9848 −1.66081
\(552\) 0 0
\(553\) 18.4078 0.782780
\(554\) 0 0
\(555\) −33.7648 −1.43324
\(556\) 0 0
\(557\) 24.7862 1.05023 0.525113 0.851032i \(-0.324023\pi\)
0.525113 + 0.851032i \(0.324023\pi\)
\(558\) 0 0
\(559\) 7.41454 0.313602
\(560\) 0 0
\(561\) 8.97858 0.379076
\(562\) 0 0
\(563\) 10.3931 0.438018 0.219009 0.975723i \(-0.429718\pi\)
0.219009 + 0.975723i \(0.429718\pi\)
\(564\) 0 0
\(565\) −0.593884 −0.0249849
\(566\) 0 0
\(567\) 38.1825 1.60351
\(568\) 0 0
\(569\) 25.0460 1.04998 0.524991 0.851108i \(-0.324069\pi\)
0.524991 + 0.851108i \(0.324069\pi\)
\(570\) 0 0
\(571\) −4.12494 −0.172623 −0.0863117 0.996268i \(-0.527508\pi\)
−0.0863117 + 0.996268i \(0.527508\pi\)
\(572\) 0 0
\(573\) −37.5970 −1.57064
\(574\) 0 0
\(575\) 3.68585 0.153710
\(576\) 0 0
\(577\) −3.71775 −0.154772 −0.0773860 0.997001i \(-0.524657\pi\)
−0.0773860 + 0.997001i \(0.524657\pi\)
\(578\) 0 0
\(579\) −3.92839 −0.163258
\(580\) 0 0
\(581\) 3.15623 0.130943
\(582\) 0 0
\(583\) −1.23688 −0.0512265
\(584\) 0 0
\(585\) −23.3288 −0.964529
\(586\) 0 0
\(587\) −28.9070 −1.19312 −0.596559 0.802569i \(-0.703466\pi\)
−0.596559 + 0.802569i \(0.703466\pi\)
\(588\) 0 0
\(589\) 47.1365 1.94223
\(590\) 0 0
\(591\) −17.9431 −0.738080
\(592\) 0 0
\(593\) 14.3074 0.587535 0.293768 0.955877i \(-0.405091\pi\)
0.293768 + 0.955877i \(0.405091\pi\)
\(594\) 0 0
\(595\) 1.12181 0.0459896
\(596\) 0 0
\(597\) −32.7251 −1.33935
\(598\) 0 0
\(599\) −46.6577 −1.90638 −0.953191 0.302369i \(-0.902222\pi\)
−0.953191 + 0.302369i \(0.902222\pi\)
\(600\) 0 0
\(601\) 14.9315 0.609069 0.304535 0.952501i \(-0.401499\pi\)
0.304535 + 0.952501i \(0.401499\pi\)
\(602\) 0 0
\(603\) 64.8500 2.64090
\(604\) 0 0
\(605\) −1.26144 −0.0512849
\(606\) 0 0
\(607\) −13.4208 −0.544734 −0.272367 0.962193i \(-0.587806\pi\)
−0.272367 + 0.962193i \(0.587806\pi\)
\(608\) 0 0
\(609\) 26.3748 1.06876
\(610\) 0 0
\(611\) 7.34292 0.297063
\(612\) 0 0
\(613\) −21.7894 −0.880064 −0.440032 0.897982i \(-0.645033\pi\)
−0.440032 + 0.897982i \(0.645033\pi\)
\(614\) 0 0
\(615\) −24.8683 −1.00279
\(616\) 0 0
\(617\) 23.0852 0.929376 0.464688 0.885474i \(-0.346166\pi\)
0.464688 + 0.885474i \(0.346166\pi\)
\(618\) 0 0
\(619\) 22.9786 0.923587 0.461793 0.886987i \(-0.347206\pi\)
0.461793 + 0.886987i \(0.347206\pi\)
\(620\) 0 0
\(621\) −17.3001 −0.694228
\(622\) 0 0
\(623\) −18.0722 −0.724049
\(624\) 0 0
\(625\) 7.01469 0.280588
\(626\) 0 0
\(627\) −59.5787 −2.37935
\(628\) 0 0
\(629\) −7.52119 −0.299890
\(630\) 0 0
\(631\) 37.0852 1.47634 0.738170 0.674615i \(-0.235690\pi\)
0.738170 + 0.674615i \(0.235690\pi\)
\(632\) 0 0
\(633\) −14.2070 −0.564679
\(634\) 0 0
\(635\) 9.92417 0.393829
\(636\) 0 0
\(637\) 14.1537 0.560790
\(638\) 0 0
\(639\) 5.37169 0.212501
\(640\) 0 0
\(641\) 29.9227 1.18188 0.590938 0.806717i \(-0.298758\pi\)
0.590938 + 0.806717i \(0.298758\pi\)
\(642\) 0 0
\(643\) −18.2744 −0.720674 −0.360337 0.932822i \(-0.617338\pi\)
−0.360337 + 0.932822i \(0.617338\pi\)
\(644\) 0 0
\(645\) −11.4145 −0.449447
\(646\) 0 0
\(647\) 19.7360 0.775904 0.387952 0.921680i \(-0.373183\pi\)
0.387952 + 0.921680i \(0.373183\pi\)
\(648\) 0 0
\(649\) 17.9572 0.704880
\(650\) 0 0
\(651\) −31.8898 −1.24986
\(652\) 0 0
\(653\) −25.8463 −1.01144 −0.505722 0.862697i \(-0.668774\pi\)
−0.505722 + 0.862697i \(0.668774\pi\)
\(654\) 0 0
\(655\) 21.3387 0.833772
\(656\) 0 0
\(657\) −15.5640 −0.607211
\(658\) 0 0
\(659\) 13.9473 0.543309 0.271655 0.962395i \(-0.412429\pi\)
0.271655 + 0.962395i \(0.412429\pi\)
\(660\) 0 0
\(661\) −0.978577 −0.0380622 −0.0190311 0.999819i \(-0.506058\pi\)
−0.0190311 + 0.999819i \(0.506058\pi\)
\(662\) 0 0
\(663\) −7.10352 −0.275878
\(664\) 0 0
\(665\) −7.44392 −0.288663
\(666\) 0 0
\(667\) −6.88240 −0.266488
\(668\) 0 0
\(669\) 44.2217 1.70971
\(670\) 0 0
\(671\) 45.1512 1.74304
\(672\) 0 0
\(673\) −24.3032 −0.936820 −0.468410 0.883511i \(-0.655173\pi\)
−0.468410 + 0.883511i \(0.655173\pi\)
\(674\) 0 0
\(675\) −63.7654 −2.45433
\(676\) 0 0
\(677\) 23.6069 0.907286 0.453643 0.891183i \(-0.350124\pi\)
0.453643 + 0.891183i \(0.350124\pi\)
\(678\) 0 0
\(679\) −16.9786 −0.651578
\(680\) 0 0
\(681\) 76.4471 2.92946
\(682\) 0 0
\(683\) −20.9070 −0.799983 −0.399991 0.916519i \(-0.630987\pi\)
−0.399991 + 0.916519i \(0.630987\pi\)
\(684\) 0 0
\(685\) 8.90131 0.340101
\(686\) 0 0
\(687\) −3.91431 −0.149340
\(688\) 0 0
\(689\) 0.978577 0.0372808
\(690\) 0 0
\(691\) 48.1151 1.83038 0.915192 0.403018i \(-0.132039\pi\)
0.915192 + 0.403018i \(0.132039\pi\)
\(692\) 0 0
\(693\) 29.4868 1.12011
\(694\) 0 0
\(695\) 10.6613 0.404406
\(696\) 0 0
\(697\) −5.53948 −0.209823
\(698\) 0 0
\(699\) −44.8788 −1.69747
\(700\) 0 0
\(701\) −3.38156 −0.127720 −0.0638598 0.997959i \(-0.520341\pi\)
−0.0638598 + 0.997959i \(0.520341\pi\)
\(702\) 0 0
\(703\) 49.9080 1.88232
\(704\) 0 0
\(705\) −11.3043 −0.425744
\(706\) 0 0
\(707\) −19.7992 −0.744627
\(708\) 0 0
\(709\) −31.1119 −1.16843 −0.584217 0.811598i \(-0.698598\pi\)
−0.584217 + 0.811598i \(0.698598\pi\)
\(710\) 0 0
\(711\) 131.273 4.92310
\(712\) 0 0
\(713\) 8.32150 0.311643
\(714\) 0 0
\(715\) −8.97858 −0.335780
\(716\) 0 0
\(717\) −7.71148 −0.287990
\(718\) 0 0
\(719\) −20.9870 −0.782683 −0.391341 0.920246i \(-0.627989\pi\)
−0.391341 + 0.920246i \(0.627989\pi\)
\(720\) 0 0
\(721\) 18.6002 0.692706
\(722\) 0 0
\(723\) 61.1182 2.27301
\(724\) 0 0
\(725\) −25.3675 −0.942125
\(726\) 0 0
\(727\) 5.92417 0.219715 0.109858 0.993947i \(-0.464960\pi\)
0.109858 + 0.993947i \(0.464960\pi\)
\(728\) 0 0
\(729\) 98.7942 3.65904
\(730\) 0 0
\(731\) −2.54262 −0.0940421
\(732\) 0 0
\(733\) 2.00987 0.0742361 0.0371180 0.999311i \(-0.488182\pi\)
0.0371180 + 0.999311i \(0.488182\pi\)
\(734\) 0 0
\(735\) −21.7894 −0.803713
\(736\) 0 0
\(737\) 24.9588 0.919371
\(738\) 0 0
\(739\) −19.6785 −0.723885 −0.361943 0.932200i \(-0.617886\pi\)
−0.361943 + 0.932200i \(0.617886\pi\)
\(740\) 0 0
\(741\) 47.1365 1.73160
\(742\) 0 0
\(743\) 36.1396 1.32583 0.662917 0.748693i \(-0.269318\pi\)
0.662917 + 0.748693i \(0.269318\pi\)
\(744\) 0 0
\(745\) 11.8652 0.434707
\(746\) 0 0
\(747\) 22.5082 0.823532
\(748\) 0 0
\(749\) −4.24989 −0.155287
\(750\) 0 0
\(751\) −1.57246 −0.0573799 −0.0286900 0.999588i \(-0.509134\pi\)
−0.0286900 + 0.999588i \(0.509134\pi\)
\(752\) 0 0
\(753\) 85.9044 3.13053
\(754\) 0 0
\(755\) −16.8192 −0.612114
\(756\) 0 0
\(757\) 35.8041 1.30132 0.650660 0.759369i \(-0.274492\pi\)
0.650660 + 0.759369i \(0.274492\pi\)
\(758\) 0 0
\(759\) −10.5181 −0.381781
\(760\) 0 0
\(761\) 38.6044 1.39941 0.699704 0.714433i \(-0.253315\pi\)
0.699704 + 0.714433i \(0.253315\pi\)
\(762\) 0 0
\(763\) 5.25662 0.190302
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) −14.2070 −0.512986
\(768\) 0 0
\(769\) 40.8255 1.47220 0.736102 0.676870i \(-0.236664\pi\)
0.736102 + 0.676870i \(0.236664\pi\)
\(770\) 0 0
\(771\) 59.5647 2.14517
\(772\) 0 0
\(773\) −18.0722 −0.650013 −0.325006 0.945712i \(-0.605366\pi\)
−0.325006 + 0.945712i \(0.605366\pi\)
\(774\) 0 0
\(775\) 30.6718 1.10176
\(776\) 0 0
\(777\) −33.7648 −1.21131
\(778\) 0 0
\(779\) 36.7581 1.31699
\(780\) 0 0
\(781\) 2.06740 0.0739775
\(782\) 0 0
\(783\) 119.066 4.25508
\(784\) 0 0
\(785\) 22.1579 0.790850
\(786\) 0 0
\(787\) −11.7648 −0.419370 −0.209685 0.977769i \(-0.567244\pi\)
−0.209685 + 0.977769i \(0.567244\pi\)
\(788\) 0 0
\(789\) −86.2940 −3.07215
\(790\) 0 0
\(791\) −0.593884 −0.0211161
\(792\) 0 0
\(793\) −35.7220 −1.26852
\(794\) 0 0
\(795\) −1.50650 −0.0534301
\(796\) 0 0
\(797\) 34.9357 1.23749 0.618744 0.785593i \(-0.287642\pi\)
0.618744 + 0.785593i \(0.287642\pi\)
\(798\) 0 0
\(799\) −2.51806 −0.0890825
\(800\) 0 0
\(801\) −128.879 −4.55373
\(802\) 0 0
\(803\) −5.99013 −0.211387
\(804\) 0 0
\(805\) −1.31415 −0.0463178
\(806\) 0 0
\(807\) −7.00735 −0.246670
\(808\) 0 0
\(809\) −47.4783 −1.66925 −0.834625 0.550819i \(-0.814316\pi\)
−0.834625 + 0.550819i \(0.814316\pi\)
\(810\) 0 0
\(811\) 21.8855 0.768505 0.384253 0.923228i \(-0.374459\pi\)
0.384253 + 0.923228i \(0.374459\pi\)
\(812\) 0 0
\(813\) 47.3288 1.65990
\(814\) 0 0
\(815\) 1.42440 0.0498947
\(816\) 0 0
\(817\) 16.8719 0.590274
\(818\) 0 0
\(819\) −23.3288 −0.815176
\(820\) 0 0
\(821\) 24.4653 0.853846 0.426923 0.904288i \(-0.359597\pi\)
0.426923 + 0.904288i \(0.359597\pi\)
\(822\) 0 0
\(823\) −15.3429 −0.534821 −0.267410 0.963583i \(-0.586168\pi\)
−0.267410 + 0.963583i \(0.586168\pi\)
\(824\) 0 0
\(825\) −38.7679 −1.34973
\(826\) 0 0
\(827\) 44.9357 1.56257 0.781284 0.624175i \(-0.214565\pi\)
0.781284 + 0.624175i \(0.214565\pi\)
\(828\) 0 0
\(829\) 28.8009 1.00030 0.500149 0.865940i \(-0.333279\pi\)
0.500149 + 0.865940i \(0.333279\pi\)
\(830\) 0 0
\(831\) 3.92839 0.136274
\(832\) 0 0
\(833\) −4.85363 −0.168168
\(834\) 0 0
\(835\) −2.62831 −0.0909563
\(836\) 0 0
\(837\) −143.963 −4.97608
\(838\) 0 0
\(839\) −21.1955 −0.731749 −0.365875 0.930664i \(-0.619230\pi\)
−0.365875 + 0.930664i \(0.619230\pi\)
\(840\) 0 0
\(841\) 18.3675 0.633361
\(842\) 0 0
\(843\) 40.7251 1.40265
\(844\) 0 0
\(845\) −7.79923 −0.268302
\(846\) 0 0
\(847\) −1.26144 −0.0433437
\(848\) 0 0
\(849\) 38.3832 1.31731
\(850\) 0 0
\(851\) 8.81079 0.302030
\(852\) 0 0
\(853\) 14.8438 0.508241 0.254120 0.967173i \(-0.418214\pi\)
0.254120 + 0.967173i \(0.418214\pi\)
\(854\) 0 0
\(855\) −53.0852 −1.81548
\(856\) 0 0
\(857\) −40.1684 −1.37213 −0.686063 0.727542i \(-0.740663\pi\)
−0.686063 + 0.727542i \(0.740663\pi\)
\(858\) 0 0
\(859\) 30.3068 1.03405 0.517027 0.855969i \(-0.327039\pi\)
0.517027 + 0.855969i \(0.327039\pi\)
\(860\) 0 0
\(861\) −24.8683 −0.847510
\(862\) 0 0
\(863\) −14.9792 −0.509898 −0.254949 0.966955i \(-0.582059\pi\)
−0.254949 + 0.966955i \(0.582059\pi\)
\(864\) 0 0
\(865\) 10.2436 0.348293
\(866\) 0 0
\(867\) −54.3937 −1.84731
\(868\) 0 0
\(869\) 50.5229 1.71387
\(870\) 0 0
\(871\) −19.7465 −0.669085
\(872\) 0 0
\(873\) −121.080 −4.09794
\(874\) 0 0
\(875\) −11.4145 −0.385882
\(876\) 0 0
\(877\) 16.7715 0.566335 0.283167 0.959071i \(-0.408615\pi\)
0.283167 + 0.959071i \(0.408615\pi\)
\(878\) 0 0
\(879\) 17.2860 0.583042
\(880\) 0 0
\(881\) −19.8175 −0.667669 −0.333835 0.942632i \(-0.608343\pi\)
−0.333835 + 0.942632i \(0.608343\pi\)
\(882\) 0 0
\(883\) 12.2008 0.410589 0.205294 0.978700i \(-0.434185\pi\)
0.205294 + 0.978700i \(0.434185\pi\)
\(884\) 0 0
\(885\) 21.8715 0.735201
\(886\) 0 0
\(887\) −4.04346 −0.135766 −0.0678831 0.997693i \(-0.521624\pi\)
−0.0678831 + 0.997693i \(0.521624\pi\)
\(888\) 0 0
\(889\) 9.92417 0.332846
\(890\) 0 0
\(891\) 104.797 3.51084
\(892\) 0 0
\(893\) 16.7090 0.559144
\(894\) 0 0
\(895\) −20.2829 −0.677981
\(896\) 0 0
\(897\) 8.32150 0.277847
\(898\) 0 0
\(899\) −57.2719 −1.91013
\(900\) 0 0
\(901\) −0.335577 −0.0111797
\(902\) 0 0
\(903\) −11.4145 −0.379852
\(904\) 0 0
\(905\) −14.3012 −0.475386
\(906\) 0 0
\(907\) 38.1642 1.26722 0.633611 0.773652i \(-0.281572\pi\)
0.633611 + 0.773652i \(0.281572\pi\)
\(908\) 0 0
\(909\) −141.195 −4.68315
\(910\) 0 0
\(911\) −20.5279 −0.680120 −0.340060 0.940404i \(-0.610447\pi\)
−0.340060 + 0.940404i \(0.610447\pi\)
\(912\) 0 0
\(913\) 8.66273 0.286695
\(914\) 0 0
\(915\) 54.9933 1.81802
\(916\) 0 0
\(917\) 21.3387 0.704666
\(918\) 0 0
\(919\) 10.7679 0.355202 0.177601 0.984103i \(-0.443166\pi\)
0.177601 + 0.984103i \(0.443166\pi\)
\(920\) 0 0
\(921\) 42.9076 1.41385
\(922\) 0 0
\(923\) −1.63565 −0.0538382
\(924\) 0 0
\(925\) 32.4752 1.06778
\(926\) 0 0
\(927\) 132.644 4.35661
\(928\) 0 0
\(929\) 18.3461 0.601915 0.300957 0.953638i \(-0.402694\pi\)
0.300957 + 0.953638i \(0.402694\pi\)
\(930\) 0 0
\(931\) 32.2070 1.05554
\(932\) 0 0
\(933\) 31.0894 1.01782
\(934\) 0 0
\(935\) 3.07896 0.100693
\(936\) 0 0
\(937\) −2.95402 −0.0965036 −0.0482518 0.998835i \(-0.515365\pi\)
−0.0482518 + 0.998835i \(0.515365\pi\)
\(938\) 0 0
\(939\) −25.2860 −0.825177
\(940\) 0 0
\(941\) 15.4475 0.503575 0.251787 0.967783i \(-0.418982\pi\)
0.251787 + 0.967783i \(0.418982\pi\)
\(942\) 0 0
\(943\) 6.48929 0.211320
\(944\) 0 0
\(945\) 22.7350 0.739568
\(946\) 0 0
\(947\) −21.2510 −0.690563 −0.345282 0.938499i \(-0.612217\pi\)
−0.345282 + 0.938499i \(0.612217\pi\)
\(948\) 0 0
\(949\) 4.73917 0.153840
\(950\) 0 0
\(951\) −44.3650 −1.43863
\(952\) 0 0
\(953\) −8.82908 −0.286002 −0.143001 0.989723i \(-0.545675\pi\)
−0.143001 + 0.989723i \(0.545675\pi\)
\(954\) 0 0
\(955\) −12.8929 −0.417204
\(956\) 0 0
\(957\) 72.3895 2.34002
\(958\) 0 0
\(959\) 8.90131 0.287438
\(960\) 0 0
\(961\) 38.2474 1.23379
\(962\) 0 0
\(963\) −30.3074 −0.976643
\(964\) 0 0
\(965\) −1.34713 −0.0433658
\(966\) 0 0
\(967\) −36.7146 −1.18066 −0.590331 0.807161i \(-0.701003\pi\)
−0.590331 + 0.807161i \(0.701003\pi\)
\(968\) 0 0
\(969\) −16.1642 −0.519269
\(970\) 0 0
\(971\) −42.1642 −1.35311 −0.676557 0.736391i \(-0.736529\pi\)
−0.676557 + 0.736391i \(0.736529\pi\)
\(972\) 0 0
\(973\) 10.6613 0.341785
\(974\) 0 0
\(975\) 30.6718 0.982283
\(976\) 0 0
\(977\) 5.96702 0.190902 0.0954509 0.995434i \(-0.469571\pi\)
0.0954509 + 0.995434i \(0.469571\pi\)
\(978\) 0 0
\(979\) −49.6018 −1.58528
\(980\) 0 0
\(981\) 37.4868 1.19686
\(982\) 0 0
\(983\) 43.3007 1.38108 0.690539 0.723295i \(-0.257373\pi\)
0.690539 + 0.723295i \(0.257373\pi\)
\(984\) 0 0
\(985\) −6.15310 −0.196054
\(986\) 0 0
\(987\) −11.3043 −0.359819
\(988\) 0 0
\(989\) 2.97858 0.0947132
\(990\) 0 0
\(991\) 37.4868 1.19081 0.595403 0.803427i \(-0.296992\pi\)
0.595403 + 0.803427i \(0.296992\pi\)
\(992\) 0 0
\(993\) −34.1966 −1.08519
\(994\) 0 0
\(995\) −11.2222 −0.355767
\(996\) 0 0
\(997\) 38.5939 1.22228 0.611140 0.791522i \(-0.290711\pi\)
0.611140 + 0.791522i \(0.290711\pi\)
\(998\) 0 0
\(999\) −152.427 −4.82259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.a.x.1.3 3
4.3 odd 2 1472.2.a.w.1.1 3
8.3 odd 2 736.2.a.f.1.3 yes 3
8.5 even 2 736.2.a.e.1.1 3
24.5 odd 2 6624.2.a.z.1.2 3
24.11 even 2 6624.2.a.y.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.2.a.e.1.1 3 8.5 even 2
736.2.a.f.1.3 yes 3 8.3 odd 2
1472.2.a.w.1.1 3 4.3 odd 2
1472.2.a.x.1.3 3 1.1 even 1 trivial
6624.2.a.y.1.2 3 24.11 even 2
6624.2.a.z.1.2 3 24.5 odd 2