Properties

Label 1472.2.a.z.1.2
Level $1472$
Weight $2$
Character 1472.1
Self dual yes
Analytic conductor $11.754$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,2,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.7539791775\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13768.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 2x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.53744\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.901180 q^{3} -2.78819 q^{5} -2.28669 q^{7} -2.18787 q^{9} -0.788195 q^{11} -5.18787 q^{13} +2.51267 q^{15} +4.28669 q^{17} -3.07489 q^{19} +2.06072 q^{21} +1.00000 q^{23} +2.77403 q^{25} +4.67521 q^{27} -3.61149 q^{29} +9.24860 q^{31} +0.710305 q^{33} +6.37575 q^{35} -2.78819 q^{37} +4.67521 q^{39} -2.76426 q^{41} +12.8772 q^{43} +6.10022 q^{45} -7.05096 q^{47} -1.77103 q^{49} -3.86308 q^{51} -0.727471 q^{53} +2.19764 q^{55} +2.77103 q^{57} +12.1781 q^{59} -3.27253 q^{61} +5.00300 q^{63} +14.4648 q^{65} -3.78519 q^{67} -0.901180 q^{69} +3.89818 q^{71} +8.56662 q^{73} -2.49990 q^{75} +1.80236 q^{77} -7.95214 q^{79} +2.35042 q^{81} -1.01417 q^{83} -11.9521 q^{85} +3.25460 q^{87} -4.37575 q^{89} +11.8631 q^{91} -8.33465 q^{93} +8.57339 q^{95} -17.4335 q^{97} +1.72447 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 6 q^{5} + 4 q^{7} + 10 q^{9} + 2 q^{11} - 2 q^{13} - 4 q^{15} + 4 q^{17} + 6 q^{19} - 4 q^{21} + 4 q^{23} + 12 q^{25} + 14 q^{27} - 6 q^{29} + 6 q^{31} - 12 q^{35} - 6 q^{37} + 14 q^{39}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.901180 −0.520297 −0.260148 0.965569i \(-0.583771\pi\)
−0.260148 + 0.965569i \(0.583771\pi\)
\(4\) 0 0
\(5\) −2.78819 −1.24692 −0.623459 0.781856i \(-0.714273\pi\)
−0.623459 + 0.781856i \(0.714273\pi\)
\(6\) 0 0
\(7\) −2.28669 −0.864289 −0.432145 0.901804i \(-0.642243\pi\)
−0.432145 + 0.901804i \(0.642243\pi\)
\(8\) 0 0
\(9\) −2.18787 −0.729291
\(10\) 0 0
\(11\) −0.788195 −0.237650 −0.118825 0.992915i \(-0.537913\pi\)
−0.118825 + 0.992915i \(0.537913\pi\)
\(12\) 0 0
\(13\) −5.18787 −1.43886 −0.719429 0.694566i \(-0.755596\pi\)
−0.719429 + 0.694566i \(0.755596\pi\)
\(14\) 0 0
\(15\) 2.51267 0.648767
\(16\) 0 0
\(17\) 4.28669 1.03968 0.519838 0.854265i \(-0.325992\pi\)
0.519838 + 0.854265i \(0.325992\pi\)
\(18\) 0 0
\(19\) −3.07489 −0.705428 −0.352714 0.935731i \(-0.614741\pi\)
−0.352714 + 0.935731i \(0.614741\pi\)
\(20\) 0 0
\(21\) 2.06072 0.449687
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 2.77403 0.554806
\(26\) 0 0
\(27\) 4.67521 0.899744
\(28\) 0 0
\(29\) −3.61149 −0.670636 −0.335318 0.942105i \(-0.608844\pi\)
−0.335318 + 0.942105i \(0.608844\pi\)
\(30\) 0 0
\(31\) 9.24860 1.66110 0.830549 0.556946i \(-0.188027\pi\)
0.830549 + 0.556946i \(0.188027\pi\)
\(32\) 0 0
\(33\) 0.710305 0.123648
\(34\) 0 0
\(35\) 6.37575 1.07770
\(36\) 0 0
\(37\) −2.78819 −0.458376 −0.229188 0.973382i \(-0.573607\pi\)
−0.229188 + 0.973382i \(0.573607\pi\)
\(38\) 0 0
\(39\) 4.67521 0.748633
\(40\) 0 0
\(41\) −2.76426 −0.431705 −0.215853 0.976426i \(-0.569253\pi\)
−0.215853 + 0.976426i \(0.569253\pi\)
\(42\) 0 0
\(43\) 12.8772 1.96376 0.981881 0.189498i \(-0.0606862\pi\)
0.981881 + 0.189498i \(0.0606862\pi\)
\(44\) 0 0
\(45\) 6.10022 0.909367
\(46\) 0 0
\(47\) −7.05096 −1.02849 −0.514244 0.857644i \(-0.671927\pi\)
−0.514244 + 0.857644i \(0.671927\pi\)
\(48\) 0 0
\(49\) −1.77103 −0.253004
\(50\) 0 0
\(51\) −3.86308 −0.540940
\(52\) 0 0
\(53\) −0.727471 −0.0999258 −0.0499629 0.998751i \(-0.515910\pi\)
−0.0499629 + 0.998751i \(0.515910\pi\)
\(54\) 0 0
\(55\) 2.19764 0.296330
\(56\) 0 0
\(57\) 2.77103 0.367032
\(58\) 0 0
\(59\) 12.1781 1.58545 0.792727 0.609576i \(-0.208660\pi\)
0.792727 + 0.609576i \(0.208660\pi\)
\(60\) 0 0
\(61\) −3.27253 −0.419004 −0.209502 0.977808i \(-0.567184\pi\)
−0.209502 + 0.977808i \(0.567184\pi\)
\(62\) 0 0
\(63\) 5.00300 0.630319
\(64\) 0 0
\(65\) 14.4648 1.79414
\(66\) 0 0
\(67\) −3.78519 −0.462435 −0.231218 0.972902i \(-0.574271\pi\)
−0.231218 + 0.972902i \(0.574271\pi\)
\(68\) 0 0
\(69\) −0.901180 −0.108489
\(70\) 0 0
\(71\) 3.89818 0.462629 0.231314 0.972879i \(-0.425697\pi\)
0.231314 + 0.972879i \(0.425697\pi\)
\(72\) 0 0
\(73\) 8.56662 1.00265 0.501324 0.865260i \(-0.332847\pi\)
0.501324 + 0.865260i \(0.332847\pi\)
\(74\) 0 0
\(75\) −2.49990 −0.288664
\(76\) 0 0
\(77\) 1.80236 0.205398
\(78\) 0 0
\(79\) −7.95214 −0.894685 −0.447343 0.894363i \(-0.647630\pi\)
−0.447343 + 0.894363i \(0.647630\pi\)
\(80\) 0 0
\(81\) 2.35042 0.261158
\(82\) 0 0
\(83\) −1.01417 −0.111319 −0.0556596 0.998450i \(-0.517726\pi\)
−0.0556596 + 0.998450i \(0.517726\pi\)
\(84\) 0 0
\(85\) −11.9521 −1.29639
\(86\) 0 0
\(87\) 3.25460 0.348930
\(88\) 0 0
\(89\) −4.37575 −0.463828 −0.231914 0.972736i \(-0.574499\pi\)
−0.231914 + 0.972736i \(0.574499\pi\)
\(90\) 0 0
\(91\) 11.8631 1.24359
\(92\) 0 0
\(93\) −8.33465 −0.864263
\(94\) 0 0
\(95\) 8.57339 0.879611
\(96\) 0 0
\(97\) −17.4335 −1.77010 −0.885050 0.465495i \(-0.845876\pi\)
−0.885050 + 0.465495i \(0.845876\pi\)
\(98\) 0 0
\(99\) 1.72447 0.173316
\(100\) 0 0
\(101\) 8.37575 0.833418 0.416709 0.909040i \(-0.363183\pi\)
0.416709 + 0.909040i \(0.363183\pi\)
\(102\) 0 0
\(103\) 20.0412 1.97472 0.987359 0.158502i \(-0.0506664\pi\)
0.987359 + 0.158502i \(0.0506664\pi\)
\(104\) 0 0
\(105\) −5.74570 −0.560723
\(106\) 0 0
\(107\) −6.22767 −0.602051 −0.301026 0.953616i \(-0.597329\pi\)
−0.301026 + 0.953616i \(0.597329\pi\)
\(108\) 0 0
\(109\) 14.2560 1.36548 0.682739 0.730663i \(-0.260789\pi\)
0.682739 + 0.730663i \(0.260789\pi\)
\(110\) 0 0
\(111\) 2.51267 0.238492
\(112\) 0 0
\(113\) 4.89442 0.460428 0.230214 0.973140i \(-0.426057\pi\)
0.230214 + 0.973140i \(0.426057\pi\)
\(114\) 0 0
\(115\) −2.78819 −0.260000
\(116\) 0 0
\(117\) 11.3504 1.04935
\(118\) 0 0
\(119\) −9.80236 −0.898581
\(120\) 0 0
\(121\) −10.3787 −0.943523
\(122\) 0 0
\(123\) 2.49110 0.224615
\(124\) 0 0
\(125\) 6.20644 0.555121
\(126\) 0 0
\(127\) 7.32479 0.649970 0.324985 0.945719i \(-0.394641\pi\)
0.324985 + 0.945719i \(0.394641\pi\)
\(128\) 0 0
\(129\) −11.6047 −1.02174
\(130\) 0 0
\(131\) −9.12715 −0.797443 −0.398721 0.917072i \(-0.630546\pi\)
−0.398721 + 0.917072i \(0.630546\pi\)
\(132\) 0 0
\(133\) 7.03133 0.609694
\(134\) 0 0
\(135\) −13.0354 −1.12191
\(136\) 0 0
\(137\) −9.37875 −0.801281 −0.400640 0.916235i \(-0.631212\pi\)
−0.400640 + 0.916235i \(0.631212\pi\)
\(138\) 0 0
\(139\) 12.2799 1.04157 0.520785 0.853688i \(-0.325639\pi\)
0.520785 + 0.853688i \(0.325639\pi\)
\(140\) 0 0
\(141\) 6.35418 0.535119
\(142\) 0 0
\(143\) 4.08905 0.341944
\(144\) 0 0
\(145\) 10.0695 0.836228
\(146\) 0 0
\(147\) 1.59602 0.131637
\(148\) 0 0
\(149\) −9.42231 −0.771905 −0.385953 0.922519i \(-0.626127\pi\)
−0.385953 + 0.922519i \(0.626127\pi\)
\(150\) 0 0
\(151\) −5.64388 −0.459292 −0.229646 0.973274i \(-0.573757\pi\)
−0.229646 + 0.973274i \(0.573757\pi\)
\(152\) 0 0
\(153\) −9.37875 −0.758227
\(154\) 0 0
\(155\) −25.7869 −2.07125
\(156\) 0 0
\(157\) 21.6483 1.72772 0.863860 0.503731i \(-0.168040\pi\)
0.863860 + 0.503731i \(0.168040\pi\)
\(158\) 0 0
\(159\) 0.655583 0.0519911
\(160\) 0 0
\(161\) −2.28669 −0.180217
\(162\) 0 0
\(163\) 10.0480 0.787017 0.393508 0.919321i \(-0.371261\pi\)
0.393508 + 0.919321i \(0.371261\pi\)
\(164\) 0 0
\(165\) −1.98047 −0.154179
\(166\) 0 0
\(167\) −23.3309 −1.80540 −0.902699 0.430272i \(-0.858418\pi\)
−0.902699 + 0.430272i \(0.858418\pi\)
\(168\) 0 0
\(169\) 13.9140 1.07031
\(170\) 0 0
\(171\) 6.72747 0.514463
\(172\) 0 0
\(173\) 13.1049 0.996348 0.498174 0.867077i \(-0.334004\pi\)
0.498174 + 0.867077i \(0.334004\pi\)
\(174\) 0 0
\(175\) −6.34336 −0.479513
\(176\) 0 0
\(177\) −10.9747 −0.824907
\(178\) 0 0
\(179\) −18.0480 −1.34897 −0.674484 0.738290i \(-0.735634\pi\)
−0.674484 + 0.738290i \(0.735634\pi\)
\(180\) 0 0
\(181\) 6.78819 0.504563 0.252281 0.967654i \(-0.418819\pi\)
0.252281 + 0.967654i \(0.418819\pi\)
\(182\) 0 0
\(183\) 2.94914 0.218007
\(184\) 0 0
\(185\) 7.77403 0.571558
\(186\) 0 0
\(187\) −3.37875 −0.247079
\(188\) 0 0
\(189\) −10.6908 −0.777639
\(190\) 0 0
\(191\) 6.78989 0.491299 0.245650 0.969359i \(-0.420999\pi\)
0.245650 + 0.969359i \(0.420999\pi\)
\(192\) 0 0
\(193\) −1.96490 −0.141437 −0.0707184 0.997496i \(-0.522529\pi\)
−0.0707184 + 0.997496i \(0.522529\pi\)
\(194\) 0 0
\(195\) −13.0354 −0.933484
\(196\) 0 0
\(197\) −16.9484 −1.20752 −0.603761 0.797166i \(-0.706332\pi\)
−0.603761 + 0.797166i \(0.706332\pi\)
\(198\) 0 0
\(199\) −3.12039 −0.221198 −0.110599 0.993865i \(-0.535277\pi\)
−0.110599 + 0.993865i \(0.535277\pi\)
\(200\) 0 0
\(201\) 3.41114 0.240603
\(202\) 0 0
\(203\) 8.25836 0.579623
\(204\) 0 0
\(205\) 7.70730 0.538302
\(206\) 0 0
\(207\) −2.18787 −0.152068
\(208\) 0 0
\(209\) 2.42361 0.167645
\(210\) 0 0
\(211\) 2.57939 0.177572 0.0887862 0.996051i \(-0.471701\pi\)
0.0887862 + 0.996051i \(0.471701\pi\)
\(212\) 0 0
\(213\) −3.51296 −0.240704
\(214\) 0 0
\(215\) −35.9043 −2.44865
\(216\) 0 0
\(217\) −21.1487 −1.43567
\(218\) 0 0
\(219\) −7.72007 −0.521674
\(220\) 0 0
\(221\) −22.2388 −1.49595
\(222\) 0 0
\(223\) 22.3757 1.49839 0.749195 0.662349i \(-0.230440\pi\)
0.749195 + 0.662349i \(0.230440\pi\)
\(224\) 0 0
\(225\) −6.06923 −0.404615
\(226\) 0 0
\(227\) 11.1983 0.743256 0.371628 0.928382i \(-0.378800\pi\)
0.371628 + 0.928382i \(0.378800\pi\)
\(228\) 0 0
\(229\) 6.25600 0.413408 0.206704 0.978404i \(-0.433726\pi\)
0.206704 + 0.978404i \(0.433726\pi\)
\(230\) 0 0
\(231\) −1.62425 −0.106868
\(232\) 0 0
\(233\) 16.3973 1.07422 0.537112 0.843511i \(-0.319515\pi\)
0.537112 + 0.843511i \(0.319515\pi\)
\(234\) 0 0
\(235\) 19.6594 1.28244
\(236\) 0 0
\(237\) 7.16631 0.465502
\(238\) 0 0
\(239\) 8.86685 0.573549 0.286774 0.957998i \(-0.407417\pi\)
0.286774 + 0.957998i \(0.407417\pi\)
\(240\) 0 0
\(241\) −20.9680 −1.35067 −0.675334 0.737512i \(-0.736000\pi\)
−0.675334 + 0.737512i \(0.736000\pi\)
\(242\) 0 0
\(243\) −16.1438 −1.03562
\(244\) 0 0
\(245\) 4.93797 0.315475
\(246\) 0 0
\(247\) 15.9521 1.01501
\(248\) 0 0
\(249\) 0.913946 0.0579190
\(250\) 0 0
\(251\) −22.5562 −1.42374 −0.711868 0.702313i \(-0.752151\pi\)
−0.711868 + 0.702313i \(0.752151\pi\)
\(252\) 0 0
\(253\) −0.788195 −0.0495534
\(254\) 0 0
\(255\) 10.7710 0.674508
\(256\) 0 0
\(257\) 19.7896 1.23444 0.617220 0.786790i \(-0.288259\pi\)
0.617220 + 0.786790i \(0.288259\pi\)
\(258\) 0 0
\(259\) 6.37575 0.396170
\(260\) 0 0
\(261\) 7.90148 0.489089
\(262\) 0 0
\(263\) −23.3444 −1.43948 −0.719739 0.694245i \(-0.755739\pi\)
−0.719739 + 0.694245i \(0.755739\pi\)
\(264\) 0 0
\(265\) 2.02833 0.124599
\(266\) 0 0
\(267\) 3.94334 0.241328
\(268\) 0 0
\(269\) −28.1713 −1.71764 −0.858819 0.512280i \(-0.828801\pi\)
−0.858819 + 0.512280i \(0.828801\pi\)
\(270\) 0 0
\(271\) 7.60472 0.461954 0.230977 0.972959i \(-0.425808\pi\)
0.230977 + 0.972959i \(0.425808\pi\)
\(272\) 0 0
\(273\) −10.6908 −0.647035
\(274\) 0 0
\(275\) −2.18647 −0.131849
\(276\) 0 0
\(277\) 26.1087 1.56872 0.784359 0.620307i \(-0.212992\pi\)
0.784359 + 0.620307i \(0.212992\pi\)
\(278\) 0 0
\(279\) −20.2348 −1.21142
\(280\) 0 0
\(281\) 14.8318 0.884788 0.442394 0.896821i \(-0.354129\pi\)
0.442394 + 0.896821i \(0.354129\pi\)
\(282\) 0 0
\(283\) 13.7912 0.819801 0.409901 0.912130i \(-0.365563\pi\)
0.409901 + 0.912130i \(0.365563\pi\)
\(284\) 0 0
\(285\) −7.72617 −0.457659
\(286\) 0 0
\(287\) 6.32103 0.373118
\(288\) 0 0
\(289\) 1.37575 0.0809264
\(290\) 0 0
\(291\) 15.7107 0.920977
\(292\) 0 0
\(293\) −4.28906 −0.250570 −0.125285 0.992121i \(-0.539984\pi\)
−0.125285 + 0.992121i \(0.539984\pi\)
\(294\) 0 0
\(295\) −33.9549 −1.97693
\(296\) 0 0
\(297\) −3.68497 −0.213824
\(298\) 0 0
\(299\) −5.18787 −0.300023
\(300\) 0 0
\(301\) −29.4463 −1.69726
\(302\) 0 0
\(303\) −7.54806 −0.433625
\(304\) 0 0
\(305\) 9.12445 0.522464
\(306\) 0 0
\(307\) −0.729167 −0.0416158 −0.0208079 0.999783i \(-0.506624\pi\)
−0.0208079 + 0.999783i \(0.506624\pi\)
\(308\) 0 0
\(309\) −18.0607 −1.02744
\(310\) 0 0
\(311\) 21.0314 1.19258 0.596291 0.802768i \(-0.296640\pi\)
0.596291 + 0.802768i \(0.296640\pi\)
\(312\) 0 0
\(313\) −29.2264 −1.65197 −0.825986 0.563691i \(-0.809381\pi\)
−0.825986 + 0.563691i \(0.809381\pi\)
\(314\) 0 0
\(315\) −13.9493 −0.785956
\(316\) 0 0
\(317\) 16.5315 0.928503 0.464252 0.885703i \(-0.346323\pi\)
0.464252 + 0.885703i \(0.346323\pi\)
\(318\) 0 0
\(319\) 2.84655 0.159376
\(320\) 0 0
\(321\) 5.61225 0.313245
\(322\) 0 0
\(323\) −13.1811 −0.733417
\(324\) 0 0
\(325\) −14.3913 −0.798286
\(326\) 0 0
\(327\) −12.8472 −0.710453
\(328\) 0 0
\(329\) 16.1234 0.888911
\(330\) 0 0
\(331\) −13.6303 −0.749192 −0.374596 0.927188i \(-0.622219\pi\)
−0.374596 + 0.927188i \(0.622219\pi\)
\(332\) 0 0
\(333\) 6.10022 0.334290
\(334\) 0 0
\(335\) 10.5539 0.576619
\(336\) 0 0
\(337\) 7.92381 0.431637 0.215819 0.976433i \(-0.430758\pi\)
0.215819 + 0.976433i \(0.430758\pi\)
\(338\) 0 0
\(339\) −4.41075 −0.239559
\(340\) 0 0
\(341\) −7.28969 −0.394759
\(342\) 0 0
\(343\) 20.0567 1.08296
\(344\) 0 0
\(345\) 2.51267 0.135277
\(346\) 0 0
\(347\) −12.6779 −0.680586 −0.340293 0.940319i \(-0.610526\pi\)
−0.340293 + 0.940319i \(0.610526\pi\)
\(348\) 0 0
\(349\) 19.4591 1.04162 0.520811 0.853672i \(-0.325630\pi\)
0.520811 + 0.853672i \(0.325630\pi\)
\(350\) 0 0
\(351\) −24.2544 −1.29460
\(352\) 0 0
\(353\) −6.33465 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(354\) 0 0
\(355\) −10.8689 −0.576860
\(356\) 0 0
\(357\) 8.83369 0.467529
\(358\) 0 0
\(359\) −17.9581 −0.947794 −0.473897 0.880580i \(-0.657153\pi\)
−0.473897 + 0.880580i \(0.657153\pi\)
\(360\) 0 0
\(361\) −9.54506 −0.502371
\(362\) 0 0
\(363\) 9.35312 0.490912
\(364\) 0 0
\(365\) −23.8854 −1.25022
\(366\) 0 0
\(367\) −9.83475 −0.513370 −0.256685 0.966495i \(-0.582630\pi\)
−0.256685 + 0.966495i \(0.582630\pi\)
\(368\) 0 0
\(369\) 6.04786 0.314839
\(370\) 0 0
\(371\) 1.66350 0.0863648
\(372\) 0 0
\(373\) 17.6895 0.915926 0.457963 0.888971i \(-0.348579\pi\)
0.457963 + 0.888971i \(0.348579\pi\)
\(374\) 0 0
\(375\) −5.59312 −0.288827
\(376\) 0 0
\(377\) 18.7359 0.964950
\(378\) 0 0
\(379\) −6.57169 −0.337565 −0.168783 0.985653i \(-0.553984\pi\)
−0.168783 + 0.985653i \(0.553984\pi\)
\(380\) 0 0
\(381\) −6.60096 −0.338177
\(382\) 0 0
\(383\) 2.00600 0.102502 0.0512509 0.998686i \(-0.483679\pi\)
0.0512509 + 0.998686i \(0.483679\pi\)
\(384\) 0 0
\(385\) −5.02533 −0.256115
\(386\) 0 0
\(387\) −28.1738 −1.43215
\(388\) 0 0
\(389\) −29.2530 −1.48319 −0.741593 0.670850i \(-0.765929\pi\)
−0.741593 + 0.670850i \(0.765929\pi\)
\(390\) 0 0
\(391\) 4.28669 0.216787
\(392\) 0 0
\(393\) 8.22521 0.414907
\(394\) 0 0
\(395\) 22.1721 1.11560
\(396\) 0 0
\(397\) 14.1430 0.709817 0.354909 0.934901i \(-0.384512\pi\)
0.354909 + 0.934901i \(0.384512\pi\)
\(398\) 0 0
\(399\) −6.33650 −0.317222
\(400\) 0 0
\(401\) −14.8406 −0.741102 −0.370551 0.928812i \(-0.620831\pi\)
−0.370551 + 0.928812i \(0.620831\pi\)
\(402\) 0 0
\(403\) −47.9806 −2.39008
\(404\) 0 0
\(405\) −6.55342 −0.325642
\(406\) 0 0
\(407\) 2.19764 0.108933
\(408\) 0 0
\(409\) 29.5576 1.46153 0.730765 0.682629i \(-0.239163\pi\)
0.730765 + 0.682629i \(0.239163\pi\)
\(410\) 0 0
\(411\) 8.45194 0.416904
\(412\) 0 0
\(413\) −27.8476 −1.37029
\(414\) 0 0
\(415\) 2.82769 0.138806
\(416\) 0 0
\(417\) −11.0664 −0.541925
\(418\) 0 0
\(419\) 0.733472 0.0358324 0.0179162 0.999839i \(-0.494297\pi\)
0.0179162 + 0.999839i \(0.494297\pi\)
\(420\) 0 0
\(421\) −29.4635 −1.43596 −0.717982 0.696062i \(-0.754934\pi\)
−0.717982 + 0.696062i \(0.754934\pi\)
\(422\) 0 0
\(423\) 15.4266 0.750068
\(424\) 0 0
\(425\) 11.8914 0.576818
\(426\) 0 0
\(427\) 7.48327 0.362141
\(428\) 0 0
\(429\) −3.68497 −0.177912
\(430\) 0 0
\(431\) 16.6077 0.799966 0.399983 0.916523i \(-0.369016\pi\)
0.399983 + 0.916523i \(0.369016\pi\)
\(432\) 0 0
\(433\) 33.4199 1.60606 0.803030 0.595939i \(-0.203220\pi\)
0.803030 + 0.595939i \(0.203220\pi\)
\(434\) 0 0
\(435\) −9.07445 −0.435087
\(436\) 0 0
\(437\) −3.07489 −0.147092
\(438\) 0 0
\(439\) 8.67521 0.414045 0.207023 0.978336i \(-0.433623\pi\)
0.207023 + 0.978336i \(0.433623\pi\)
\(440\) 0 0
\(441\) 3.87479 0.184514
\(442\) 0 0
\(443\) −14.6900 −0.697943 −0.348972 0.937133i \(-0.613469\pi\)
−0.348972 + 0.937133i \(0.613469\pi\)
\(444\) 0 0
\(445\) 12.2004 0.578356
\(446\) 0 0
\(447\) 8.49120 0.401620
\(448\) 0 0
\(449\) 37.2966 1.76013 0.880067 0.474850i \(-0.157498\pi\)
0.880067 + 0.474850i \(0.157498\pi\)
\(450\) 0 0
\(451\) 2.17878 0.102595
\(452\) 0 0
\(453\) 5.08615 0.238968
\(454\) 0 0
\(455\) −33.0766 −1.55065
\(456\) 0 0
\(457\) 16.7644 0.784204 0.392102 0.919922i \(-0.371748\pi\)
0.392102 + 0.919922i \(0.371748\pi\)
\(458\) 0 0
\(459\) 20.0412 0.935443
\(460\) 0 0
\(461\) 7.15954 0.333453 0.166727 0.986003i \(-0.446680\pi\)
0.166727 + 0.986003i \(0.446680\pi\)
\(462\) 0 0
\(463\) −16.6813 −0.775246 −0.387623 0.921818i \(-0.626704\pi\)
−0.387623 + 0.921818i \(0.626704\pi\)
\(464\) 0 0
\(465\) 23.2386 1.07767
\(466\) 0 0
\(467\) 31.2187 1.44463 0.722314 0.691565i \(-0.243079\pi\)
0.722314 + 0.691565i \(0.243079\pi\)
\(468\) 0 0
\(469\) 8.65558 0.399678
\(470\) 0 0
\(471\) −19.5090 −0.898927
\(472\) 0 0
\(473\) −10.1498 −0.466687
\(474\) 0 0
\(475\) −8.52983 −0.391376
\(476\) 0 0
\(477\) 1.59162 0.0728751
\(478\) 0 0
\(479\) −19.0725 −0.871446 −0.435723 0.900081i \(-0.643507\pi\)
−0.435723 + 0.900081i \(0.643507\pi\)
\(480\) 0 0
\(481\) 14.4648 0.659538
\(482\) 0 0
\(483\) 2.06072 0.0937662
\(484\) 0 0
\(485\) 48.6079 2.20717
\(486\) 0 0
\(487\) 21.4267 0.970937 0.485468 0.874254i \(-0.338649\pi\)
0.485468 + 0.874254i \(0.338649\pi\)
\(488\) 0 0
\(489\) −9.05502 −0.409482
\(490\) 0 0
\(491\) 38.8250 1.75215 0.876074 0.482177i \(-0.160154\pi\)
0.876074 + 0.482177i \(0.160154\pi\)
\(492\) 0 0
\(493\) −15.4813 −0.697244
\(494\) 0 0
\(495\) −4.80816 −0.216111
\(496\) 0 0
\(497\) −8.91395 −0.399845
\(498\) 0 0
\(499\) −24.6975 −1.10561 −0.552807 0.833309i \(-0.686443\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(500\) 0 0
\(501\) 21.0253 0.939343
\(502\) 0 0
\(503\) −18.7934 −0.837954 −0.418977 0.907997i \(-0.637611\pi\)
−0.418977 + 0.907997i \(0.637611\pi\)
\(504\) 0 0
\(505\) −23.3532 −1.03920
\(506\) 0 0
\(507\) −12.5391 −0.556879
\(508\) 0 0
\(509\) −27.3377 −1.21172 −0.605860 0.795571i \(-0.707171\pi\)
−0.605860 + 0.795571i \(0.707171\pi\)
\(510\) 0 0
\(511\) −19.5893 −0.866577
\(512\) 0 0
\(513\) −14.3757 −0.634705
\(514\) 0 0
\(515\) −55.8787 −2.46231
\(516\) 0 0
\(517\) 5.55753 0.244420
\(518\) 0 0
\(519\) −11.8099 −0.518397
\(520\) 0 0
\(521\) 4.92681 0.215847 0.107924 0.994159i \(-0.465580\pi\)
0.107924 + 0.994159i \(0.465580\pi\)
\(522\) 0 0
\(523\) 17.1699 0.750789 0.375395 0.926865i \(-0.377507\pi\)
0.375395 + 0.926865i \(0.377507\pi\)
\(524\) 0 0
\(525\) 5.71651 0.249489
\(526\) 0 0
\(527\) 39.6459 1.72700
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −26.6442 −1.15626
\(532\) 0 0
\(533\) 14.3407 0.621163
\(534\) 0 0
\(535\) 17.3639 0.750709
\(536\) 0 0
\(537\) 16.2645 0.701863
\(538\) 0 0
\(539\) 1.39592 0.0601263
\(540\) 0 0
\(541\) 16.7583 0.720494 0.360247 0.932857i \(-0.382692\pi\)
0.360247 + 0.932857i \(0.382692\pi\)
\(542\) 0 0
\(543\) −6.11739 −0.262522
\(544\) 0 0
\(545\) −39.7485 −1.70264
\(546\) 0 0
\(547\) 29.8786 1.27752 0.638759 0.769407i \(-0.279448\pi\)
0.638759 + 0.769407i \(0.279448\pi\)
\(548\) 0 0
\(549\) 7.15988 0.305576
\(550\) 0 0
\(551\) 11.1049 0.473085
\(552\) 0 0
\(553\) 18.1841 0.773267
\(554\) 0 0
\(555\) −7.00580 −0.297380
\(556\) 0 0
\(557\) −1.19634 −0.0506904 −0.0253452 0.999679i \(-0.508068\pi\)
−0.0253452 + 0.999679i \(0.508068\pi\)
\(558\) 0 0
\(559\) −66.8056 −2.82557
\(560\) 0 0
\(561\) 3.04486 0.128554
\(562\) 0 0
\(563\) 35.9910 1.51684 0.758419 0.651767i \(-0.225972\pi\)
0.758419 + 0.651767i \(0.225972\pi\)
\(564\) 0 0
\(565\) −13.6466 −0.574116
\(566\) 0 0
\(567\) −5.37469 −0.225716
\(568\) 0 0
\(569\) −44.6942 −1.87368 −0.936838 0.349762i \(-0.886262\pi\)
−0.936838 + 0.349762i \(0.886262\pi\)
\(570\) 0 0
\(571\) 4.34978 0.182033 0.0910164 0.995849i \(-0.470988\pi\)
0.0910164 + 0.995849i \(0.470988\pi\)
\(572\) 0 0
\(573\) −6.11891 −0.255621
\(574\) 0 0
\(575\) 2.77403 0.115685
\(576\) 0 0
\(577\) −37.0186 −1.54110 −0.770552 0.637378i \(-0.780019\pi\)
−0.770552 + 0.637378i \(0.780019\pi\)
\(578\) 0 0
\(579\) 1.77073 0.0735891
\(580\) 0 0
\(581\) 2.31909 0.0962119
\(582\) 0 0
\(583\) 0.573389 0.0237473
\(584\) 0 0
\(585\) −31.6472 −1.30845
\(586\) 0 0
\(587\) 16.5795 0.684309 0.342154 0.939644i \(-0.388843\pi\)
0.342154 + 0.939644i \(0.388843\pi\)
\(588\) 0 0
\(589\) −28.4384 −1.17178
\(590\) 0 0
\(591\) 15.2735 0.628269
\(592\) 0 0
\(593\) 40.0028 1.64272 0.821359 0.570412i \(-0.193216\pi\)
0.821359 + 0.570412i \(0.193216\pi\)
\(594\) 0 0
\(595\) 27.3309 1.12046
\(596\) 0 0
\(597\) 2.81203 0.115089
\(598\) 0 0
\(599\) 41.8146 1.70850 0.854248 0.519865i \(-0.174018\pi\)
0.854248 + 0.519865i \(0.174018\pi\)
\(600\) 0 0
\(601\) 21.8348 0.890662 0.445331 0.895366i \(-0.353086\pi\)
0.445331 + 0.895366i \(0.353086\pi\)
\(602\) 0 0
\(603\) 8.28153 0.337250
\(604\) 0 0
\(605\) 28.9380 1.17650
\(606\) 0 0
\(607\) 45.2682 1.83738 0.918690 0.394979i \(-0.129248\pi\)
0.918690 + 0.394979i \(0.129248\pi\)
\(608\) 0 0
\(609\) −7.44227 −0.301576
\(610\) 0 0
\(611\) 36.5795 1.47985
\(612\) 0 0
\(613\) 12.9858 0.524493 0.262246 0.965001i \(-0.415537\pi\)
0.262246 + 0.965001i \(0.415537\pi\)
\(614\) 0 0
\(615\) −6.94567 −0.280076
\(616\) 0 0
\(617\) −37.3566 −1.50392 −0.751960 0.659208i \(-0.770891\pi\)
−0.751960 + 0.659208i \(0.770891\pi\)
\(618\) 0 0
\(619\) 2.87125 0.115405 0.0577026 0.998334i \(-0.481622\pi\)
0.0577026 + 0.998334i \(0.481622\pi\)
\(620\) 0 0
\(621\) 4.67521 0.187610
\(622\) 0 0
\(623\) 10.0060 0.400882
\(624\) 0 0
\(625\) −31.1749 −1.24700
\(626\) 0 0
\(627\) −2.18411 −0.0872249
\(628\) 0 0
\(629\) −11.9521 −0.476563
\(630\) 0 0
\(631\) 27.0571 1.07712 0.538562 0.842586i \(-0.318968\pi\)
0.538562 + 0.842586i \(0.318968\pi\)
\(632\) 0 0
\(633\) −2.32449 −0.0923904
\(634\) 0 0
\(635\) −20.4229 −0.810460
\(636\) 0 0
\(637\) 9.18787 0.364037
\(638\) 0 0
\(639\) −8.52873 −0.337391
\(640\) 0 0
\(641\) −13.7740 −0.544041 −0.272021 0.962291i \(-0.587692\pi\)
−0.272021 + 0.962291i \(0.587692\pi\)
\(642\) 0 0
\(643\) 39.3899 1.55339 0.776693 0.629879i \(-0.216896\pi\)
0.776693 + 0.629879i \(0.216896\pi\)
\(644\) 0 0
\(645\) 32.3562 1.27402
\(646\) 0 0
\(647\) 39.8672 1.56734 0.783671 0.621176i \(-0.213345\pi\)
0.783671 + 0.621176i \(0.213345\pi\)
\(648\) 0 0
\(649\) −9.59872 −0.376783
\(650\) 0 0
\(651\) 19.0588 0.746973
\(652\) 0 0
\(653\) 23.1819 0.907177 0.453588 0.891211i \(-0.350144\pi\)
0.453588 + 0.891211i \(0.350144\pi\)
\(654\) 0 0
\(655\) 25.4483 0.994346
\(656\) 0 0
\(657\) −18.7427 −0.731222
\(658\) 0 0
\(659\) −41.4352 −1.61408 −0.807042 0.590493i \(-0.798933\pi\)
−0.807042 + 0.590493i \(0.798933\pi\)
\(660\) 0 0
\(661\) −27.6287 −1.07463 −0.537317 0.843380i \(-0.680562\pi\)
−0.537317 + 0.843380i \(0.680562\pi\)
\(662\) 0 0
\(663\) 20.0412 0.778335
\(664\) 0 0
\(665\) −19.6047 −0.760238
\(666\) 0 0
\(667\) −3.61149 −0.139837
\(668\) 0 0
\(669\) −20.1646 −0.779608
\(670\) 0 0
\(671\) 2.57939 0.0995762
\(672\) 0 0
\(673\) 50.6565 1.95267 0.976333 0.216273i \(-0.0693900\pi\)
0.976333 + 0.216273i \(0.0693900\pi\)
\(674\) 0 0
\(675\) 12.9692 0.499183
\(676\) 0 0
\(677\) −19.7845 −0.760381 −0.380191 0.924908i \(-0.624142\pi\)
−0.380191 + 0.924908i \(0.624142\pi\)
\(678\) 0 0
\(679\) 39.8650 1.52988
\(680\) 0 0
\(681\) −10.0917 −0.386713
\(682\) 0 0
\(683\) 12.7967 0.489650 0.244825 0.969567i \(-0.421269\pi\)
0.244825 + 0.969567i \(0.421269\pi\)
\(684\) 0 0
\(685\) 26.1498 0.999132
\(686\) 0 0
\(687\) −5.63778 −0.215095
\(688\) 0 0
\(689\) 3.77403 0.143779
\(690\) 0 0
\(691\) 30.2936 1.15242 0.576211 0.817301i \(-0.304531\pi\)
0.576211 + 0.817301i \(0.304531\pi\)
\(692\) 0 0
\(693\) −3.94334 −0.149795
\(694\) 0 0
\(695\) −34.2388 −1.29875
\(696\) 0 0
\(697\) −11.8496 −0.448834
\(698\) 0 0
\(699\) −14.7769 −0.558915
\(700\) 0 0
\(701\) 28.3047 1.06905 0.534527 0.845151i \(-0.320490\pi\)
0.534527 + 0.845151i \(0.320490\pi\)
\(702\) 0 0
\(703\) 8.57339 0.323351
\(704\) 0 0
\(705\) −17.7167 −0.667249
\(706\) 0 0
\(707\) −19.1528 −0.720314
\(708\) 0 0
\(709\) 9.40344 0.353154 0.176577 0.984287i \(-0.443498\pi\)
0.176577 + 0.984287i \(0.443498\pi\)
\(710\) 0 0
\(711\) 17.3983 0.652486
\(712\) 0 0
\(713\) 9.24860 0.346363
\(714\) 0 0
\(715\) −11.4011 −0.426376
\(716\) 0 0
\(717\) −7.99063 −0.298415
\(718\) 0 0
\(719\) 47.8086 1.78296 0.891479 0.453062i \(-0.149668\pi\)
0.891479 + 0.453062i \(0.149668\pi\)
\(720\) 0 0
\(721\) −45.8281 −1.70673
\(722\) 0 0
\(723\) 18.8959 0.702748
\(724\) 0 0
\(725\) −10.0184 −0.372073
\(726\) 0 0
\(727\) −2.21650 −0.0822055 −0.0411028 0.999155i \(-0.513087\pi\)
−0.0411028 + 0.999155i \(0.513087\pi\)
\(728\) 0 0
\(729\) 7.49720 0.277674
\(730\) 0 0
\(731\) 55.2008 2.04168
\(732\) 0 0
\(733\) −12.4124 −0.458464 −0.229232 0.973372i \(-0.573621\pi\)
−0.229232 + 0.973372i \(0.573621\pi\)
\(734\) 0 0
\(735\) −4.45000 −0.164141
\(736\) 0 0
\(737\) 2.98347 0.109898
\(738\) 0 0
\(739\) −6.72926 −0.247540 −0.123770 0.992311i \(-0.539498\pi\)
−0.123770 + 0.992311i \(0.539498\pi\)
\(740\) 0 0
\(741\) −14.3757 −0.528106
\(742\) 0 0
\(743\) 0.436472 0.0160126 0.00800631 0.999968i \(-0.497451\pi\)
0.00800631 + 0.999968i \(0.497451\pi\)
\(744\) 0 0
\(745\) 26.2712 0.962503
\(746\) 0 0
\(747\) 2.21887 0.0811841
\(748\) 0 0
\(749\) 14.2408 0.520346
\(750\) 0 0
\(751\) 11.6047 0.423462 0.211731 0.977328i \(-0.432090\pi\)
0.211731 + 0.977328i \(0.432090\pi\)
\(752\) 0 0
\(753\) 20.3272 0.740765
\(754\) 0 0
\(755\) 15.7362 0.572700
\(756\) 0 0
\(757\) −30.9049 −1.12326 −0.561629 0.827389i \(-0.689825\pi\)
−0.561629 + 0.827389i \(0.689825\pi\)
\(758\) 0 0
\(759\) 0.710305 0.0257824
\(760\) 0 0
\(761\) 38.0042 1.37765 0.688825 0.724928i \(-0.258127\pi\)
0.688825 + 0.724928i \(0.258127\pi\)
\(762\) 0 0
\(763\) −32.5991 −1.18017
\(764\) 0 0
\(765\) 26.1498 0.945447
\(766\) 0 0
\(767\) −63.1785 −2.28124
\(768\) 0 0
\(769\) 28.3946 1.02394 0.511968 0.859005i \(-0.328917\pi\)
0.511968 + 0.859005i \(0.328917\pi\)
\(770\) 0 0
\(771\) −17.8340 −0.642275
\(772\) 0 0
\(773\) −4.55816 −0.163946 −0.0819729 0.996635i \(-0.526122\pi\)
−0.0819729 + 0.996635i \(0.526122\pi\)
\(774\) 0 0
\(775\) 25.6559 0.921586
\(776\) 0 0
\(777\) −5.74570 −0.206126
\(778\) 0 0
\(779\) 8.49980 0.304537
\(780\) 0 0
\(781\) −3.07252 −0.109944
\(782\) 0 0
\(783\) −16.8844 −0.603401
\(784\) 0 0
\(785\) −60.3596 −2.15433
\(786\) 0 0
\(787\) 51.2275 1.82606 0.913031 0.407890i \(-0.133735\pi\)
0.913031 + 0.407890i \(0.133735\pi\)
\(788\) 0 0
\(789\) 21.0375 0.748956
\(790\) 0 0
\(791\) −11.1920 −0.397943
\(792\) 0 0
\(793\) 16.9775 0.602888
\(794\) 0 0
\(795\) −1.82789 −0.0648286
\(796\) 0 0
\(797\) −0.883250 −0.0312863 −0.0156432 0.999878i \(-0.504980\pi\)
−0.0156432 + 0.999878i \(0.504980\pi\)
\(798\) 0 0
\(799\) −30.2253 −1.06929
\(800\) 0 0
\(801\) 9.57359 0.338266
\(802\) 0 0
\(803\) −6.75217 −0.238279
\(804\) 0 0
\(805\) 6.37575 0.224716
\(806\) 0 0
\(807\) 25.3875 0.893681
\(808\) 0 0
\(809\) 40.0333 1.40749 0.703747 0.710451i \(-0.251509\pi\)
0.703747 + 0.710451i \(0.251509\pi\)
\(810\) 0 0
\(811\) −38.1647 −1.34014 −0.670071 0.742297i \(-0.733737\pi\)
−0.670071 + 0.742297i \(0.733737\pi\)
\(812\) 0 0
\(813\) −6.85322 −0.240353
\(814\) 0 0
\(815\) −28.0157 −0.981346
\(816\) 0 0
\(817\) −39.5961 −1.38529
\(818\) 0 0
\(819\) −25.9549 −0.906939
\(820\) 0 0
\(821\) −34.0959 −1.18996 −0.594978 0.803742i \(-0.702839\pi\)
−0.594978 + 0.803742i \(0.702839\pi\)
\(822\) 0 0
\(823\) 3.14668 0.109686 0.0548432 0.998495i \(-0.482534\pi\)
0.0548432 + 0.998495i \(0.482534\pi\)
\(824\) 0 0
\(825\) 1.97041 0.0686008
\(826\) 0 0
\(827\) −51.4704 −1.78980 −0.894900 0.446267i \(-0.852753\pi\)
−0.894900 + 0.446267i \(0.852753\pi\)
\(828\) 0 0
\(829\) 28.5195 0.990524 0.495262 0.868744i \(-0.335072\pi\)
0.495262 + 0.868744i \(0.335072\pi\)
\(830\) 0 0
\(831\) −23.5286 −0.816199
\(832\) 0 0
\(833\) −7.59186 −0.263042
\(834\) 0 0
\(835\) 65.0511 2.25118
\(836\) 0 0
\(837\) 43.2391 1.49456
\(838\) 0 0
\(839\) −17.9905 −0.621102 −0.310551 0.950557i \(-0.600514\pi\)
−0.310551 + 0.950557i \(0.600514\pi\)
\(840\) 0 0
\(841\) −15.9572 −0.550247
\(842\) 0 0
\(843\) −13.3661 −0.460352
\(844\) 0 0
\(845\) −38.7951 −1.33459
\(846\) 0 0
\(847\) 23.7330 0.815476
\(848\) 0 0
\(849\) −12.4284 −0.426540
\(850\) 0 0
\(851\) −2.78819 −0.0955781
\(852\) 0 0
\(853\) 16.2800 0.557417 0.278709 0.960376i \(-0.410094\pi\)
0.278709 + 0.960376i \(0.410094\pi\)
\(854\) 0 0
\(855\) −18.7575 −0.641493
\(856\) 0 0
\(857\) −55.5246 −1.89668 −0.948341 0.317251i \(-0.897240\pi\)
−0.948341 + 0.317251i \(0.897240\pi\)
\(858\) 0 0
\(859\) 23.9718 0.817906 0.408953 0.912555i \(-0.365894\pi\)
0.408953 + 0.912555i \(0.365894\pi\)
\(860\) 0 0
\(861\) −5.69638 −0.194132
\(862\) 0 0
\(863\) 24.6632 0.839545 0.419773 0.907629i \(-0.362110\pi\)
0.419773 + 0.907629i \(0.362110\pi\)
\(864\) 0 0
\(865\) −36.5391 −1.24237
\(866\) 0 0
\(867\) −1.23980 −0.0421057
\(868\) 0 0
\(869\) 6.26783 0.212622
\(870\) 0 0
\(871\) 19.6371 0.665378
\(872\) 0 0
\(873\) 38.1422 1.29092
\(874\) 0 0
\(875\) −14.1922 −0.479785
\(876\) 0 0
\(877\) 27.3457 0.923398 0.461699 0.887037i \(-0.347240\pi\)
0.461699 + 0.887037i \(0.347240\pi\)
\(878\) 0 0
\(879\) 3.86521 0.130370
\(880\) 0 0
\(881\) 14.8318 0.499694 0.249847 0.968285i \(-0.419620\pi\)
0.249847 + 0.968285i \(0.419620\pi\)
\(882\) 0 0
\(883\) −19.2094 −0.646449 −0.323225 0.946322i \(-0.604767\pi\)
−0.323225 + 0.946322i \(0.604767\pi\)
\(884\) 0 0
\(885\) 30.5995 1.02859
\(886\) 0 0
\(887\) −19.1022 −0.641390 −0.320695 0.947183i \(-0.603916\pi\)
−0.320695 + 0.947183i \(0.603916\pi\)
\(888\) 0 0
\(889\) −16.7496 −0.561762
\(890\) 0 0
\(891\) −1.85259 −0.0620640
\(892\) 0 0
\(893\) 21.6809 0.725524
\(894\) 0 0
\(895\) 50.3212 1.68205
\(896\) 0 0
\(897\) 4.67521 0.156101
\(898\) 0 0
\(899\) −33.4012 −1.11399
\(900\) 0 0
\(901\) −3.11845 −0.103891
\(902\) 0 0
\(903\) 26.5364 0.883078
\(904\) 0 0
\(905\) −18.9268 −0.629148
\(906\) 0 0
\(907\) 51.3354 1.70456 0.852282 0.523083i \(-0.175218\pi\)
0.852282 + 0.523083i \(0.175218\pi\)
\(908\) 0 0
\(909\) −18.3251 −0.607805
\(910\) 0 0
\(911\) −9.61952 −0.318709 −0.159354 0.987221i \(-0.550941\pi\)
−0.159354 + 0.987221i \(0.550941\pi\)
\(912\) 0 0
\(913\) 0.799360 0.0264549
\(914\) 0 0
\(915\) −8.22277 −0.271836
\(916\) 0 0
\(917\) 20.8710 0.689221
\(918\) 0 0
\(919\) −37.9738 −1.25264 −0.626320 0.779566i \(-0.715440\pi\)
−0.626320 + 0.779566i \(0.715440\pi\)
\(920\) 0 0
\(921\) 0.657111 0.0216526
\(922\) 0 0
\(923\) −20.2233 −0.665657
\(924\) 0 0
\(925\) −7.73453 −0.254310
\(926\) 0 0
\(927\) −43.8476 −1.44014
\(928\) 0 0
\(929\) 33.4705 1.09813 0.549066 0.835779i \(-0.314984\pi\)
0.549066 + 0.835779i \(0.314984\pi\)
\(930\) 0 0
\(931\) 5.44572 0.178476
\(932\) 0 0
\(933\) −18.9531 −0.620497
\(934\) 0 0
\(935\) 9.42061 0.308087
\(936\) 0 0
\(937\) −32.6908 −1.06796 −0.533981 0.845497i \(-0.679304\pi\)
−0.533981 + 0.845497i \(0.679304\pi\)
\(938\) 0 0
\(939\) 26.3382 0.859515
\(940\) 0 0
\(941\) 52.3648 1.70704 0.853521 0.521058i \(-0.174462\pi\)
0.853521 + 0.521058i \(0.174462\pi\)
\(942\) 0 0
\(943\) −2.76426 −0.0900168
\(944\) 0 0
\(945\) 29.8080 0.969653
\(946\) 0 0
\(947\) −8.69754 −0.282632 −0.141316 0.989965i \(-0.545133\pi\)
−0.141316 + 0.989965i \(0.545133\pi\)
\(948\) 0 0
\(949\) −44.4426 −1.44267
\(950\) 0 0
\(951\) −14.8979 −0.483097
\(952\) 0 0
\(953\) −12.2455 −0.396671 −0.198335 0.980134i \(-0.563554\pi\)
−0.198335 + 0.980134i \(0.563554\pi\)
\(954\) 0 0
\(955\) −18.9315 −0.612610
\(956\) 0 0
\(957\) −2.56526 −0.0829230
\(958\) 0 0
\(959\) 21.4463 0.692538
\(960\) 0 0
\(961\) 54.5366 1.75924
\(962\) 0 0
\(963\) 13.6254 0.439071
\(964\) 0 0
\(965\) 5.47853 0.176360
\(966\) 0 0
\(967\) 3.32479 0.106918 0.0534590 0.998570i \(-0.482975\pi\)
0.0534590 + 0.998570i \(0.482975\pi\)
\(968\) 0 0
\(969\) 11.8786 0.381594
\(970\) 0 0
\(971\) 43.7697 1.40464 0.702319 0.711863i \(-0.252148\pi\)
0.702319 + 0.711863i \(0.252148\pi\)
\(972\) 0 0
\(973\) −28.0804 −0.900218
\(974\) 0 0
\(975\) 12.9692 0.415346
\(976\) 0 0
\(977\) 31.9993 1.02375 0.511875 0.859060i \(-0.328951\pi\)
0.511875 + 0.859060i \(0.328951\pi\)
\(978\) 0 0
\(979\) 3.44894 0.110229
\(980\) 0 0
\(981\) −31.1903 −0.995831
\(982\) 0 0
\(983\) 60.2517 1.92173 0.960865 0.277016i \(-0.0893455\pi\)
0.960865 + 0.277016i \(0.0893455\pi\)
\(984\) 0 0
\(985\) 47.2554 1.50568
\(986\) 0 0
\(987\) −14.5301 −0.462497
\(988\) 0 0
\(989\) 12.8772 0.409473
\(990\) 0 0
\(991\) 3.94334 0.125264 0.0626321 0.998037i \(-0.480051\pi\)
0.0626321 + 0.998037i \(0.480051\pi\)
\(992\) 0 0
\(993\) 12.2834 0.389802
\(994\) 0 0
\(995\) 8.70024 0.275816
\(996\) 0 0
\(997\) −33.8444 −1.07186 −0.535932 0.844261i \(-0.680040\pi\)
−0.535932 + 0.844261i \(0.680040\pi\)
\(998\) 0 0
\(999\) −13.0354 −0.412422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.2.a.z.1.2 4
4.3 odd 2 1472.2.a.y.1.3 4
8.3 odd 2 736.2.a.h.1.2 yes 4
8.5 even 2 736.2.a.g.1.3 4
24.5 odd 2 6624.2.a.bf.1.2 4
24.11 even 2 6624.2.a.be.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.2.a.g.1.3 4 8.5 even 2
736.2.a.h.1.2 yes 4 8.3 odd 2
1472.2.a.y.1.3 4 4.3 odd 2
1472.2.a.z.1.2 4 1.1 even 1 trivial
6624.2.a.be.1.2 4 24.11 even 2
6624.2.a.bf.1.2 4 24.5 odd 2