Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1472,2,Mod(367,1472)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1472, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1472.367");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1472 = 2^{6} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1472.i (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.7539791775\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(40\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 368) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
367.1 | 0 | −2.02263 | + | 2.02263i | 0 | 2.65107 | + | 2.65107i | 0 | 3.33656i | 0 | − | 5.18204i | 0 | |||||||||||||
367.2 | 0 | −2.02263 | + | 2.02263i | 0 | −2.65107 | − | 2.65107i | 0 | − | 3.33656i | 0 | − | 5.18204i | 0 | ||||||||||||
367.3 | 0 | −1.81358 | + | 1.81358i | 0 | 1.82931 | + | 1.82931i | 0 | − | 3.62156i | 0 | − | 3.57815i | 0 | ||||||||||||
367.4 | 0 | −1.81358 | + | 1.81358i | 0 | −1.82931 | − | 1.82931i | 0 | 3.62156i | 0 | − | 3.57815i | 0 | |||||||||||||
367.5 | 0 | −1.79623 | + | 1.79623i | 0 | 2.02942 | + | 2.02942i | 0 | − | 3.36009i | 0 | − | 3.45290i | 0 | ||||||||||||
367.6 | 0 | −1.79623 | + | 1.79623i | 0 | −2.02942 | − | 2.02942i | 0 | 3.36009i | 0 | − | 3.45290i | 0 | |||||||||||||
367.7 | 0 | −1.60868 | + | 1.60868i | 0 | −1.03338 | − | 1.03338i | 0 | − | 1.93918i | 0 | − | 2.17568i | 0 | ||||||||||||
367.8 | 0 | −1.60868 | + | 1.60868i | 0 | 1.03338 | + | 1.03338i | 0 | 1.93918i | 0 | − | 2.17568i | 0 | |||||||||||||
367.9 | 0 | −1.07531 | + | 1.07531i | 0 | 2.00611 | + | 2.00611i | 0 | 1.45118i | 0 | 0.687411i | 0 | ||||||||||||||
367.10 | 0 | −1.07531 | + | 1.07531i | 0 | −2.00611 | − | 2.00611i | 0 | − | 1.45118i | 0 | 0.687411i | 0 | |||||||||||||
367.11 | 0 | −0.860099 | + | 0.860099i | 0 | 0.0592628 | + | 0.0592628i | 0 | 2.65917i | 0 | 1.52046i | 0 | ||||||||||||||
367.12 | 0 | −0.860099 | + | 0.860099i | 0 | −0.0592628 | − | 0.0592628i | 0 | − | 2.65917i | 0 | 1.52046i | 0 | |||||||||||||
367.13 | 0 | −0.802883 | + | 0.802883i | 0 | 2.06308 | + | 2.06308i | 0 | 4.69475i | 0 | 1.71076i | 0 | ||||||||||||||
367.14 | 0 | −0.802883 | + | 0.802883i | 0 | −2.06308 | − | 2.06308i | 0 | − | 4.69475i | 0 | 1.71076i | 0 | |||||||||||||
367.15 | 0 | −0.670749 | + | 0.670749i | 0 | 1.44943 | + | 1.44943i | 0 | − | 2.27607i | 0 | 2.10019i | 0 | |||||||||||||
367.16 | 0 | −0.670749 | + | 0.670749i | 0 | −1.44943 | − | 1.44943i | 0 | 2.27607i | 0 | 2.10019i | 0 | ||||||||||||||
367.17 | 0 | −0.290642 | + | 0.290642i | 0 | −0.682402 | − | 0.682402i | 0 | 1.60196i | 0 | 2.83105i | 0 | ||||||||||||||
367.18 | 0 | −0.290642 | + | 0.290642i | 0 | 0.682402 | + | 0.682402i | 0 | − | 1.60196i | 0 | 2.83105i | 0 | |||||||||||||
367.19 | 0 | −0.112079 | + | 0.112079i | 0 | −0.729430 | − | 0.729430i | 0 | 4.66292i | 0 | 2.97488i | 0 | ||||||||||||||
367.20 | 0 | −0.112079 | + | 0.112079i | 0 | 0.729430 | + | 0.729430i | 0 | − | 4.66292i | 0 | 2.97488i | 0 | |||||||||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.f | odd | 4 | 1 | inner |
23.b | odd | 2 | 1 | inner |
368.i | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1472.2.i.b | 80 | |
4.b | odd | 2 | 1 | 368.2.i.b | ✓ | 80 | |
16.e | even | 4 | 1 | 368.2.i.b | ✓ | 80 | |
16.f | odd | 4 | 1 | inner | 1472.2.i.b | 80 | |
23.b | odd | 2 | 1 | inner | 1472.2.i.b | 80 | |
92.b | even | 2 | 1 | 368.2.i.b | ✓ | 80 | |
368.i | even | 4 | 1 | inner | 1472.2.i.b | 80 | |
368.k | odd | 4 | 1 | 368.2.i.b | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
368.2.i.b | ✓ | 80 | 4.b | odd | 2 | 1 | |
368.2.i.b | ✓ | 80 | 16.e | even | 4 | 1 | |
368.2.i.b | ✓ | 80 | 92.b | even | 2 | 1 | |
368.2.i.b | ✓ | 80 | 368.k | odd | 4 | 1 | |
1472.2.i.b | 80 | 1.a | even | 1 | 1 | trivial | |
1472.2.i.b | 80 | 16.f | odd | 4 | 1 | inner | |
1472.2.i.b | 80 | 23.b | odd | 2 | 1 | inner | |
1472.2.i.b | 80 | 368.i | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{40} - 2 T_{3}^{39} + 2 T_{3}^{38} + 10 T_{3}^{37} + 207 T_{3}^{36} - 360 T_{3}^{35} + 356 T_{3}^{34} + \cdots + 1024 \) acting on \(S_{2}^{\mathrm{new}}(1472, [\chi])\).