Properties

Label 1472.4.a.bd.1.4
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.167313.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 16x^{2} + 4x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.38136\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.30570 q^{3} +19.3975 q^{5} +22.5880 q^{7} +41.9846 q^{9} -42.8067 q^{11} +61.5287 q^{13} +161.110 q^{15} +73.0895 q^{17} -32.1955 q^{19} +187.609 q^{21} +23.0000 q^{23} +251.264 q^{25} +124.458 q^{27} -82.1985 q^{29} -294.493 q^{31} -355.539 q^{33} +438.151 q^{35} +97.8289 q^{37} +511.038 q^{39} -420.501 q^{41} -97.8130 q^{43} +814.398 q^{45} -78.5106 q^{47} +167.217 q^{49} +607.059 q^{51} +501.744 q^{53} -830.344 q^{55} -267.406 q^{57} -790.472 q^{59} -193.563 q^{61} +948.348 q^{63} +1193.50 q^{65} +562.027 q^{67} +191.031 q^{69} +835.854 q^{71} +548.055 q^{73} +2086.92 q^{75} -966.917 q^{77} -164.766 q^{79} -99.8765 q^{81} +811.712 q^{83} +1417.76 q^{85} -682.716 q^{87} -1066.59 q^{89} +1389.81 q^{91} -2445.97 q^{93} -624.512 q^{95} -1503.73 q^{97} -1797.22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 20 q^{5} + 10 q^{7} + 23 q^{9} - 30 q^{11} + 153 q^{13} + 136 q^{15} - 68 q^{17} - 120 q^{19} + 426 q^{21} + 92 q^{23} - 76 q^{25} + 43 q^{27} + 315 q^{29} - 249 q^{31} - 504 q^{33} + 224 q^{35}+ \cdots - 1470 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.30570 1.59843 0.799216 0.601044i \(-0.205248\pi\)
0.799216 + 0.601044i \(0.205248\pi\)
\(4\) 0 0
\(5\) 19.3975 1.73497 0.867484 0.497465i \(-0.165736\pi\)
0.867484 + 0.497465i \(0.165736\pi\)
\(6\) 0 0
\(7\) 22.5880 1.21964 0.609818 0.792541i \(-0.291242\pi\)
0.609818 + 0.792541i \(0.291242\pi\)
\(8\) 0 0
\(9\) 41.9846 1.55499
\(10\) 0 0
\(11\) −42.8067 −1.17334 −0.586668 0.809827i \(-0.699561\pi\)
−0.586668 + 0.809827i \(0.699561\pi\)
\(12\) 0 0
\(13\) 61.5287 1.31269 0.656345 0.754461i \(-0.272101\pi\)
0.656345 + 0.754461i \(0.272101\pi\)
\(14\) 0 0
\(15\) 161.110 2.77323
\(16\) 0 0
\(17\) 73.0895 1.04275 0.521377 0.853327i \(-0.325419\pi\)
0.521377 + 0.853327i \(0.325419\pi\)
\(18\) 0 0
\(19\) −32.1955 −0.388744 −0.194372 0.980928i \(-0.562267\pi\)
−0.194372 + 0.980928i \(0.562267\pi\)
\(20\) 0 0
\(21\) 187.609 1.94951
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 251.264 2.01011
\(26\) 0 0
\(27\) 124.458 0.887107
\(28\) 0 0
\(29\) −82.1985 −0.526340 −0.263170 0.964749i \(-0.584768\pi\)
−0.263170 + 0.964749i \(0.584768\pi\)
\(30\) 0 0
\(31\) −294.493 −1.70621 −0.853105 0.521739i \(-0.825283\pi\)
−0.853105 + 0.521739i \(0.825283\pi\)
\(32\) 0 0
\(33\) −355.539 −1.87550
\(34\) 0 0
\(35\) 438.151 2.11603
\(36\) 0 0
\(37\) 97.8289 0.434675 0.217337 0.976097i \(-0.430263\pi\)
0.217337 + 0.976097i \(0.430263\pi\)
\(38\) 0 0
\(39\) 511.038 2.09825
\(40\) 0 0
\(41\) −420.501 −1.60174 −0.800868 0.598841i \(-0.795628\pi\)
−0.800868 + 0.598841i \(0.795628\pi\)
\(42\) 0 0
\(43\) −97.8130 −0.346892 −0.173446 0.984843i \(-0.555490\pi\)
−0.173446 + 0.984843i \(0.555490\pi\)
\(44\) 0 0
\(45\) 814.398 2.69785
\(46\) 0 0
\(47\) −78.5106 −0.243659 −0.121829 0.992551i \(-0.538876\pi\)
−0.121829 + 0.992551i \(0.538876\pi\)
\(48\) 0 0
\(49\) 167.217 0.487514
\(50\) 0 0
\(51\) 607.059 1.66677
\(52\) 0 0
\(53\) 501.744 1.30037 0.650187 0.759774i \(-0.274690\pi\)
0.650187 + 0.759774i \(0.274690\pi\)
\(54\) 0 0
\(55\) −830.344 −2.03570
\(56\) 0 0
\(57\) −267.406 −0.621382
\(58\) 0 0
\(59\) −790.472 −1.74425 −0.872125 0.489283i \(-0.837258\pi\)
−0.872125 + 0.489283i \(0.837258\pi\)
\(60\) 0 0
\(61\) −193.563 −0.406283 −0.203141 0.979149i \(-0.565115\pi\)
−0.203141 + 0.979149i \(0.565115\pi\)
\(62\) 0 0
\(63\) 948.348 1.89652
\(64\) 0 0
\(65\) 1193.50 2.27748
\(66\) 0 0
\(67\) 562.027 1.02481 0.512407 0.858743i \(-0.328754\pi\)
0.512407 + 0.858743i \(0.328754\pi\)
\(68\) 0 0
\(69\) 191.031 0.333296
\(70\) 0 0
\(71\) 835.854 1.39715 0.698575 0.715537i \(-0.253818\pi\)
0.698575 + 0.715537i \(0.253818\pi\)
\(72\) 0 0
\(73\) 548.055 0.878699 0.439349 0.898316i \(-0.355209\pi\)
0.439349 + 0.898316i \(0.355209\pi\)
\(74\) 0 0
\(75\) 2086.92 3.21303
\(76\) 0 0
\(77\) −966.917 −1.43104
\(78\) 0 0
\(79\) −164.766 −0.234654 −0.117327 0.993093i \(-0.537433\pi\)
−0.117327 + 0.993093i \(0.537433\pi\)
\(80\) 0 0
\(81\) −99.8765 −0.137005
\(82\) 0 0
\(83\) 811.712 1.07346 0.536729 0.843755i \(-0.319660\pi\)
0.536729 + 0.843755i \(0.319660\pi\)
\(84\) 0 0
\(85\) 1417.76 1.80914
\(86\) 0 0
\(87\) −682.716 −0.841319
\(88\) 0 0
\(89\) −1066.59 −1.27031 −0.635157 0.772383i \(-0.719065\pi\)
−0.635157 + 0.772383i \(0.719065\pi\)
\(90\) 0 0
\(91\) 1389.81 1.60101
\(92\) 0 0
\(93\) −2445.97 −2.72726
\(94\) 0 0
\(95\) −624.512 −0.674459
\(96\) 0 0
\(97\) −1503.73 −1.57403 −0.787016 0.616933i \(-0.788375\pi\)
−0.787016 + 0.616933i \(0.788375\pi\)
\(98\) 0 0
\(99\) −1797.22 −1.82452
\(100\) 0 0
\(101\) −1522.89 −1.50032 −0.750162 0.661254i \(-0.770025\pi\)
−0.750162 + 0.661254i \(0.770025\pi\)
\(102\) 0 0
\(103\) −680.287 −0.650783 −0.325392 0.945579i \(-0.605496\pi\)
−0.325392 + 0.945579i \(0.605496\pi\)
\(104\) 0 0
\(105\) 3639.15 3.38233
\(106\) 0 0
\(107\) −936.924 −0.846503 −0.423252 0.906012i \(-0.639111\pi\)
−0.423252 + 0.906012i \(0.639111\pi\)
\(108\) 0 0
\(109\) 428.377 0.376432 0.188216 0.982128i \(-0.439730\pi\)
0.188216 + 0.982128i \(0.439730\pi\)
\(110\) 0 0
\(111\) 812.537 0.694798
\(112\) 0 0
\(113\) −858.464 −0.714668 −0.357334 0.933977i \(-0.616314\pi\)
−0.357334 + 0.933977i \(0.616314\pi\)
\(114\) 0 0
\(115\) 446.143 0.361766
\(116\) 0 0
\(117\) 2583.26 2.04122
\(118\) 0 0
\(119\) 1650.94 1.27178
\(120\) 0 0
\(121\) 501.412 0.376718
\(122\) 0 0
\(123\) −3492.55 −2.56027
\(124\) 0 0
\(125\) 2449.21 1.75251
\(126\) 0 0
\(127\) −446.125 −0.311710 −0.155855 0.987780i \(-0.549813\pi\)
−0.155855 + 0.987780i \(0.549813\pi\)
\(128\) 0 0
\(129\) −812.405 −0.554483
\(130\) 0 0
\(131\) −1405.24 −0.937226 −0.468613 0.883403i \(-0.655246\pi\)
−0.468613 + 0.883403i \(0.655246\pi\)
\(132\) 0 0
\(133\) −727.231 −0.474127
\(134\) 0 0
\(135\) 2414.17 1.53910
\(136\) 0 0
\(137\) 2000.41 1.24749 0.623747 0.781626i \(-0.285609\pi\)
0.623747 + 0.781626i \(0.285609\pi\)
\(138\) 0 0
\(139\) 1659.33 1.01254 0.506269 0.862375i \(-0.331024\pi\)
0.506269 + 0.862375i \(0.331024\pi\)
\(140\) 0 0
\(141\) −652.086 −0.389472
\(142\) 0 0
\(143\) −2633.84 −1.54023
\(144\) 0 0
\(145\) −1594.45 −0.913184
\(146\) 0 0
\(147\) 1388.86 0.779258
\(148\) 0 0
\(149\) −1068.09 −0.587257 −0.293628 0.955920i \(-0.594863\pi\)
−0.293628 + 0.955920i \(0.594863\pi\)
\(150\) 0 0
\(151\) −2902.06 −1.56402 −0.782008 0.623269i \(-0.785804\pi\)
−0.782008 + 0.623269i \(0.785804\pi\)
\(152\) 0 0
\(153\) 3068.63 1.62147
\(154\) 0 0
\(155\) −5712.44 −2.96022
\(156\) 0 0
\(157\) 3244.69 1.64939 0.824694 0.565578i \(-0.191347\pi\)
0.824694 + 0.565578i \(0.191347\pi\)
\(158\) 0 0
\(159\) 4167.33 2.07856
\(160\) 0 0
\(161\) 519.524 0.254312
\(162\) 0 0
\(163\) 1690.87 0.812509 0.406255 0.913760i \(-0.366835\pi\)
0.406255 + 0.913760i \(0.366835\pi\)
\(164\) 0 0
\(165\) −6896.58 −3.25393
\(166\) 0 0
\(167\) −848.474 −0.393155 −0.196578 0.980488i \(-0.562983\pi\)
−0.196578 + 0.980488i \(0.562983\pi\)
\(168\) 0 0
\(169\) 1588.78 0.723157
\(170\) 0 0
\(171\) −1351.71 −0.604492
\(172\) 0 0
\(173\) 2586.68 1.13677 0.568387 0.822762i \(-0.307568\pi\)
0.568387 + 0.822762i \(0.307568\pi\)
\(174\) 0 0
\(175\) 5675.55 2.45161
\(176\) 0 0
\(177\) −6565.43 −2.78807
\(178\) 0 0
\(179\) −577.163 −0.241001 −0.120501 0.992713i \(-0.538450\pi\)
−0.120501 + 0.992713i \(0.538450\pi\)
\(180\) 0 0
\(181\) 1889.29 0.775857 0.387929 0.921689i \(-0.373191\pi\)
0.387929 + 0.921689i \(0.373191\pi\)
\(182\) 0 0
\(183\) −1607.68 −0.649415
\(184\) 0 0
\(185\) 1897.64 0.754147
\(186\) 0 0
\(187\) −3128.72 −1.22350
\(188\) 0 0
\(189\) 2811.25 1.08195
\(190\) 0 0
\(191\) −4725.47 −1.79017 −0.895086 0.445893i \(-0.852886\pi\)
−0.895086 + 0.445893i \(0.852886\pi\)
\(192\) 0 0
\(193\) 279.011 0.104060 0.0520301 0.998646i \(-0.483431\pi\)
0.0520301 + 0.998646i \(0.483431\pi\)
\(194\) 0 0
\(195\) 9912.88 3.64039
\(196\) 0 0
\(197\) 5223.37 1.88909 0.944543 0.328389i \(-0.106506\pi\)
0.944543 + 0.328389i \(0.106506\pi\)
\(198\) 0 0
\(199\) 2512.67 0.895069 0.447535 0.894267i \(-0.352302\pi\)
0.447535 + 0.894267i \(0.352302\pi\)
\(200\) 0 0
\(201\) 4668.03 1.63810
\(202\) 0 0
\(203\) −1856.70 −0.641944
\(204\) 0 0
\(205\) −8156.67 −2.77896
\(206\) 0 0
\(207\) 965.646 0.324237
\(208\) 0 0
\(209\) 1378.18 0.456128
\(210\) 0 0
\(211\) −1071.94 −0.349740 −0.174870 0.984591i \(-0.555951\pi\)
−0.174870 + 0.984591i \(0.555951\pi\)
\(212\) 0 0
\(213\) 6942.35 2.23325
\(214\) 0 0
\(215\) −1897.33 −0.601846
\(216\) 0 0
\(217\) −6652.01 −2.08096
\(218\) 0 0
\(219\) 4551.98 1.40454
\(220\) 0 0
\(221\) 4497.10 1.36881
\(222\) 0 0
\(223\) 1768.84 0.531168 0.265584 0.964088i \(-0.414435\pi\)
0.265584 + 0.964088i \(0.414435\pi\)
\(224\) 0 0
\(225\) 10549.2 3.12570
\(226\) 0 0
\(227\) 50.1307 0.0146577 0.00732883 0.999973i \(-0.497667\pi\)
0.00732883 + 0.999973i \(0.497667\pi\)
\(228\) 0 0
\(229\) −2711.84 −0.782548 −0.391274 0.920274i \(-0.627966\pi\)
−0.391274 + 0.920274i \(0.627966\pi\)
\(230\) 0 0
\(231\) −8030.92 −2.28743
\(232\) 0 0
\(233\) −1058.20 −0.297533 −0.148766 0.988872i \(-0.547530\pi\)
−0.148766 + 0.988872i \(0.547530\pi\)
\(234\) 0 0
\(235\) −1522.91 −0.422740
\(236\) 0 0
\(237\) −1368.50 −0.375079
\(238\) 0 0
\(239\) 3234.31 0.875355 0.437678 0.899132i \(-0.355801\pi\)
0.437678 + 0.899132i \(0.355801\pi\)
\(240\) 0 0
\(241\) −600.544 −0.160516 −0.0802581 0.996774i \(-0.525574\pi\)
−0.0802581 + 0.996774i \(0.525574\pi\)
\(242\) 0 0
\(243\) −4189.90 −1.10610
\(244\) 0 0
\(245\) 3243.60 0.845821
\(246\) 0 0
\(247\) −1980.94 −0.510301
\(248\) 0 0
\(249\) 6741.84 1.71585
\(250\) 0 0
\(251\) −1766.38 −0.444196 −0.222098 0.975024i \(-0.571290\pi\)
−0.222098 + 0.975024i \(0.571290\pi\)
\(252\) 0 0
\(253\) −984.554 −0.244658
\(254\) 0 0
\(255\) 11775.4 2.89179
\(256\) 0 0
\(257\) −2536.75 −0.615713 −0.307856 0.951433i \(-0.599612\pi\)
−0.307856 + 0.951433i \(0.599612\pi\)
\(258\) 0 0
\(259\) 2209.76 0.530145
\(260\) 0 0
\(261\) −3451.07 −0.818452
\(262\) 0 0
\(263\) −2229.51 −0.522727 −0.261363 0.965240i \(-0.584172\pi\)
−0.261363 + 0.965240i \(0.584172\pi\)
\(264\) 0 0
\(265\) 9732.60 2.25611
\(266\) 0 0
\(267\) −8858.75 −2.03051
\(268\) 0 0
\(269\) 7158.72 1.62258 0.811292 0.584642i \(-0.198765\pi\)
0.811292 + 0.584642i \(0.198765\pi\)
\(270\) 0 0
\(271\) −1145.71 −0.256816 −0.128408 0.991721i \(-0.540987\pi\)
−0.128408 + 0.991721i \(0.540987\pi\)
\(272\) 0 0
\(273\) 11543.3 2.55910
\(274\) 0 0
\(275\) −10755.8 −2.35854
\(276\) 0 0
\(277\) 7186.12 1.55874 0.779372 0.626561i \(-0.215538\pi\)
0.779372 + 0.626561i \(0.215538\pi\)
\(278\) 0 0
\(279\) −12364.2 −2.65313
\(280\) 0 0
\(281\) −570.342 −0.121081 −0.0605405 0.998166i \(-0.519282\pi\)
−0.0605405 + 0.998166i \(0.519282\pi\)
\(282\) 0 0
\(283\) 4196.38 0.881446 0.440723 0.897643i \(-0.354722\pi\)
0.440723 + 0.897643i \(0.354722\pi\)
\(284\) 0 0
\(285\) −5187.01 −1.07808
\(286\) 0 0
\(287\) −9498.27 −1.95354
\(288\) 0 0
\(289\) 429.072 0.0873341
\(290\) 0 0
\(291\) −12489.6 −2.51598
\(292\) 0 0
\(293\) 906.601 0.180765 0.0903826 0.995907i \(-0.471191\pi\)
0.0903826 + 0.995907i \(0.471191\pi\)
\(294\) 0 0
\(295\) −15333.2 −3.02622
\(296\) 0 0
\(297\) −5327.62 −1.04088
\(298\) 0 0
\(299\) 1415.16 0.273715
\(300\) 0 0
\(301\) −2209.40 −0.423082
\(302\) 0 0
\(303\) −12648.6 −2.39817
\(304\) 0 0
\(305\) −3754.65 −0.704887
\(306\) 0 0
\(307\) −61.8809 −0.0115040 −0.00575200 0.999983i \(-0.501831\pi\)
−0.00575200 + 0.999983i \(0.501831\pi\)
\(308\) 0 0
\(309\) −5650.26 −1.04023
\(310\) 0 0
\(311\) 2435.15 0.444003 0.222001 0.975046i \(-0.428741\pi\)
0.222001 + 0.975046i \(0.428741\pi\)
\(312\) 0 0
\(313\) 2983.10 0.538705 0.269352 0.963042i \(-0.413190\pi\)
0.269352 + 0.963042i \(0.413190\pi\)
\(314\) 0 0
\(315\) 18395.6 3.29040
\(316\) 0 0
\(317\) −7897.30 −1.39923 −0.699616 0.714519i \(-0.746646\pi\)
−0.699616 + 0.714519i \(0.746646\pi\)
\(318\) 0 0
\(319\) 3518.64 0.617574
\(320\) 0 0
\(321\) −7781.81 −1.35308
\(322\) 0 0
\(323\) −2353.15 −0.405364
\(324\) 0 0
\(325\) 15459.9 2.63866
\(326\) 0 0
\(327\) 3557.97 0.601701
\(328\) 0 0
\(329\) −1773.40 −0.297175
\(330\) 0 0
\(331\) 7166.54 1.19006 0.595028 0.803705i \(-0.297141\pi\)
0.595028 + 0.803705i \(0.297141\pi\)
\(332\) 0 0
\(333\) 4107.31 0.675913
\(334\) 0 0
\(335\) 10901.9 1.77802
\(336\) 0 0
\(337\) 10628.7 1.71806 0.859028 0.511929i \(-0.171069\pi\)
0.859028 + 0.511929i \(0.171069\pi\)
\(338\) 0 0
\(339\) −7130.15 −1.14235
\(340\) 0 0
\(341\) 12606.3 2.00196
\(342\) 0 0
\(343\) −3970.58 −0.625047
\(344\) 0 0
\(345\) 3705.53 0.578258
\(346\) 0 0
\(347\) 5709.84 0.883344 0.441672 0.897177i \(-0.354386\pi\)
0.441672 + 0.897177i \(0.354386\pi\)
\(348\) 0 0
\(349\) −6740.22 −1.03380 −0.516899 0.856046i \(-0.672914\pi\)
−0.516899 + 0.856046i \(0.672914\pi\)
\(350\) 0 0
\(351\) 7657.72 1.16450
\(352\) 0 0
\(353\) 117.762 0.0177559 0.00887795 0.999961i \(-0.497174\pi\)
0.00887795 + 0.999961i \(0.497174\pi\)
\(354\) 0 0
\(355\) 16213.5 2.42401
\(356\) 0 0
\(357\) 13712.2 2.03285
\(358\) 0 0
\(359\) 7386.91 1.08598 0.542989 0.839740i \(-0.317292\pi\)
0.542989 + 0.839740i \(0.317292\pi\)
\(360\) 0 0
\(361\) −5822.45 −0.848878
\(362\) 0 0
\(363\) 4164.57 0.602158
\(364\) 0 0
\(365\) 10630.9 1.52451
\(366\) 0 0
\(367\) −5281.05 −0.751141 −0.375570 0.926794i \(-0.622553\pi\)
−0.375570 + 0.926794i \(0.622553\pi\)
\(368\) 0 0
\(369\) −17654.6 −2.49068
\(370\) 0 0
\(371\) 11333.4 1.58598
\(372\) 0 0
\(373\) 7997.34 1.11015 0.555076 0.831800i \(-0.312689\pi\)
0.555076 + 0.831800i \(0.312689\pi\)
\(374\) 0 0
\(375\) 20342.4 2.80128
\(376\) 0 0
\(377\) −5057.56 −0.690922
\(378\) 0 0
\(379\) 6863.39 0.930208 0.465104 0.885256i \(-0.346017\pi\)
0.465104 + 0.885256i \(0.346017\pi\)
\(380\) 0 0
\(381\) −3705.38 −0.498247
\(382\) 0 0
\(383\) 12526.2 1.67117 0.835584 0.549362i \(-0.185129\pi\)
0.835584 + 0.549362i \(0.185129\pi\)
\(384\) 0 0
\(385\) −18755.8 −2.48282
\(386\) 0 0
\(387\) −4106.64 −0.539412
\(388\) 0 0
\(389\) 8304.89 1.08245 0.541227 0.840876i \(-0.317960\pi\)
0.541227 + 0.840876i \(0.317960\pi\)
\(390\) 0 0
\(391\) 1681.06 0.217429
\(392\) 0 0
\(393\) −11671.5 −1.49809
\(394\) 0 0
\(395\) −3196.06 −0.407117
\(396\) 0 0
\(397\) −3118.81 −0.394279 −0.197140 0.980375i \(-0.563165\pi\)
−0.197140 + 0.980375i \(0.563165\pi\)
\(398\) 0 0
\(399\) −6040.16 −0.757860
\(400\) 0 0
\(401\) 6961.17 0.866893 0.433447 0.901179i \(-0.357297\pi\)
0.433447 + 0.901179i \(0.357297\pi\)
\(402\) 0 0
\(403\) −18119.8 −2.23973
\(404\) 0 0
\(405\) −1937.36 −0.237699
\(406\) 0 0
\(407\) −4187.73 −0.510020
\(408\) 0 0
\(409\) −11447.5 −1.38397 −0.691983 0.721913i \(-0.743263\pi\)
−0.691983 + 0.721913i \(0.743263\pi\)
\(410\) 0 0
\(411\) 16614.8 1.99404
\(412\) 0 0
\(413\) −17855.2 −2.12735
\(414\) 0 0
\(415\) 15745.2 1.86241
\(416\) 0 0
\(417\) 13781.9 1.61847
\(418\) 0 0
\(419\) −75.2583 −0.00877472 −0.00438736 0.999990i \(-0.501397\pi\)
−0.00438736 + 0.999990i \(0.501397\pi\)
\(420\) 0 0
\(421\) −88.6778 −0.0102658 −0.00513289 0.999987i \(-0.501634\pi\)
−0.00513289 + 0.999987i \(0.501634\pi\)
\(422\) 0 0
\(423\) −3296.24 −0.378886
\(424\) 0 0
\(425\) 18364.8 2.09605
\(426\) 0 0
\(427\) −4372.21 −0.495517
\(428\) 0 0
\(429\) −21875.9 −2.46195
\(430\) 0 0
\(431\) −4231.39 −0.472898 −0.236449 0.971644i \(-0.575984\pi\)
−0.236449 + 0.971644i \(0.575984\pi\)
\(432\) 0 0
\(433\) 6903.87 0.766233 0.383116 0.923700i \(-0.374851\pi\)
0.383116 + 0.923700i \(0.374851\pi\)
\(434\) 0 0
\(435\) −13243.0 −1.45966
\(436\) 0 0
\(437\) −740.495 −0.0810588
\(438\) 0 0
\(439\) 5134.77 0.558244 0.279122 0.960256i \(-0.409957\pi\)
0.279122 + 0.960256i \(0.409957\pi\)
\(440\) 0 0
\(441\) 7020.56 0.758078
\(442\) 0 0
\(443\) −3454.62 −0.370505 −0.185253 0.982691i \(-0.559310\pi\)
−0.185253 + 0.982691i \(0.559310\pi\)
\(444\) 0 0
\(445\) −20689.2 −2.20396
\(446\) 0 0
\(447\) −8871.22 −0.938690
\(448\) 0 0
\(449\) 11358.9 1.19389 0.596947 0.802281i \(-0.296380\pi\)
0.596947 + 0.802281i \(0.296380\pi\)
\(450\) 0 0
\(451\) 18000.2 1.87937
\(452\) 0 0
\(453\) −24103.6 −2.49997
\(454\) 0 0
\(455\) 26958.9 2.77769
\(456\) 0 0
\(457\) −1736.42 −0.177738 −0.0888689 0.996043i \(-0.528325\pi\)
−0.0888689 + 0.996043i \(0.528325\pi\)
\(458\) 0 0
\(459\) 9096.55 0.925034
\(460\) 0 0
\(461\) −4748.97 −0.479787 −0.239893 0.970799i \(-0.577113\pi\)
−0.239893 + 0.970799i \(0.577113\pi\)
\(462\) 0 0
\(463\) −4160.49 −0.417612 −0.208806 0.977957i \(-0.566958\pi\)
−0.208806 + 0.977957i \(0.566958\pi\)
\(464\) 0 0
\(465\) −47445.8 −4.73171
\(466\) 0 0
\(467\) 5468.27 0.541844 0.270922 0.962601i \(-0.412671\pi\)
0.270922 + 0.962601i \(0.412671\pi\)
\(468\) 0 0
\(469\) 12695.1 1.24990
\(470\) 0 0
\(471\) 26949.4 2.63644
\(472\) 0 0
\(473\) 4187.05 0.407021
\(474\) 0 0
\(475\) −8089.56 −0.781420
\(476\) 0 0
\(477\) 21065.5 2.02206
\(478\) 0 0
\(479\) 3514.63 0.335256 0.167628 0.985850i \(-0.446389\pi\)
0.167628 + 0.985850i \(0.446389\pi\)
\(480\) 0 0
\(481\) 6019.28 0.570594
\(482\) 0 0
\(483\) 4315.01 0.406500
\(484\) 0 0
\(485\) −29168.7 −2.73089
\(486\) 0 0
\(487\) 1494.52 0.139062 0.0695309 0.997580i \(-0.477850\pi\)
0.0695309 + 0.997580i \(0.477850\pi\)
\(488\) 0 0
\(489\) 14043.8 1.29874
\(490\) 0 0
\(491\) −3658.63 −0.336276 −0.168138 0.985763i \(-0.553775\pi\)
−0.168138 + 0.985763i \(0.553775\pi\)
\(492\) 0 0
\(493\) −6007.84 −0.548843
\(494\) 0 0
\(495\) −34861.7 −3.16549
\(496\) 0 0
\(497\) 18880.3 1.70402
\(498\) 0 0
\(499\) −10572.4 −0.948469 −0.474235 0.880398i \(-0.657275\pi\)
−0.474235 + 0.880398i \(0.657275\pi\)
\(500\) 0 0
\(501\) −7047.17 −0.628432
\(502\) 0 0
\(503\) −17973.1 −1.59320 −0.796602 0.604504i \(-0.793372\pi\)
−0.796602 + 0.604504i \(0.793372\pi\)
\(504\) 0 0
\(505\) −29540.2 −2.60301
\(506\) 0 0
\(507\) 13195.9 1.15592
\(508\) 0 0
\(509\) 1687.64 0.146961 0.0734807 0.997297i \(-0.476589\pi\)
0.0734807 + 0.997297i \(0.476589\pi\)
\(510\) 0 0
\(511\) 12379.5 1.07169
\(512\) 0 0
\(513\) −4006.97 −0.344858
\(514\) 0 0
\(515\) −13195.9 −1.12909
\(516\) 0 0
\(517\) 3360.78 0.285893
\(518\) 0 0
\(519\) 21484.2 1.81706
\(520\) 0 0
\(521\) 9466.62 0.796046 0.398023 0.917375i \(-0.369696\pi\)
0.398023 + 0.917375i \(0.369696\pi\)
\(522\) 0 0
\(523\) 8894.18 0.743624 0.371812 0.928308i \(-0.378737\pi\)
0.371812 + 0.928308i \(0.378737\pi\)
\(524\) 0 0
\(525\) 47139.4 3.91873
\(526\) 0 0
\(527\) −21524.3 −1.77916
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −33187.7 −2.71228
\(532\) 0 0
\(533\) −25872.8 −2.10258
\(534\) 0 0
\(535\) −18174.0 −1.46866
\(536\) 0 0
\(537\) −4793.74 −0.385224
\(538\) 0 0
\(539\) −7158.02 −0.572018
\(540\) 0 0
\(541\) −10683.4 −0.849013 −0.424507 0.905425i \(-0.639552\pi\)
−0.424507 + 0.905425i \(0.639552\pi\)
\(542\) 0 0
\(543\) 15691.9 1.24016
\(544\) 0 0
\(545\) 8309.45 0.653097
\(546\) 0 0
\(547\) −1992.36 −0.155735 −0.0778675 0.996964i \(-0.524811\pi\)
−0.0778675 + 0.996964i \(0.524811\pi\)
\(548\) 0 0
\(549\) −8126.68 −0.631764
\(550\) 0 0
\(551\) 2646.42 0.204612
\(552\) 0 0
\(553\) −3721.74 −0.286193
\(554\) 0 0
\(555\) 15761.2 1.20545
\(556\) 0 0
\(557\) −12302.2 −0.935834 −0.467917 0.883772i \(-0.654995\pi\)
−0.467917 + 0.883772i \(0.654995\pi\)
\(558\) 0 0
\(559\) −6018.30 −0.455362
\(560\) 0 0
\(561\) −25986.2 −1.95568
\(562\) 0 0
\(563\) 2734.61 0.204707 0.102354 0.994748i \(-0.467363\pi\)
0.102354 + 0.994748i \(0.467363\pi\)
\(564\) 0 0
\(565\) −16652.1 −1.23993
\(566\) 0 0
\(567\) −2256.01 −0.167096
\(568\) 0 0
\(569\) 10236.0 0.754160 0.377080 0.926181i \(-0.376928\pi\)
0.377080 + 0.926181i \(0.376928\pi\)
\(570\) 0 0
\(571\) −14018.6 −1.02743 −0.513714 0.857961i \(-0.671731\pi\)
−0.513714 + 0.857961i \(0.671731\pi\)
\(572\) 0 0
\(573\) −39248.3 −2.86147
\(574\) 0 0
\(575\) 5779.08 0.419138
\(576\) 0 0
\(577\) −17229.0 −1.24307 −0.621536 0.783385i \(-0.713491\pi\)
−0.621536 + 0.783385i \(0.713491\pi\)
\(578\) 0 0
\(579\) 2317.38 0.166333
\(580\) 0 0
\(581\) 18334.9 1.30923
\(582\) 0 0
\(583\) −21478.0 −1.52578
\(584\) 0 0
\(585\) 50108.8 3.54144
\(586\) 0 0
\(587\) 1110.47 0.0780821 0.0390411 0.999238i \(-0.487570\pi\)
0.0390411 + 0.999238i \(0.487570\pi\)
\(588\) 0 0
\(589\) 9481.34 0.663280
\(590\) 0 0
\(591\) 43383.7 3.01957
\(592\) 0 0
\(593\) 9073.40 0.628331 0.314165 0.949368i \(-0.398275\pi\)
0.314165 + 0.949368i \(0.398275\pi\)
\(594\) 0 0
\(595\) 32024.2 2.20650
\(596\) 0 0
\(597\) 20869.5 1.43071
\(598\) 0 0
\(599\) 7518.48 0.512849 0.256425 0.966564i \(-0.417455\pi\)
0.256425 + 0.966564i \(0.417455\pi\)
\(600\) 0 0
\(601\) 6950.70 0.471755 0.235878 0.971783i \(-0.424204\pi\)
0.235878 + 0.971783i \(0.424204\pi\)
\(602\) 0 0
\(603\) 23596.5 1.59357
\(604\) 0 0
\(605\) 9726.15 0.653593
\(606\) 0 0
\(607\) −1400.06 −0.0936188 −0.0468094 0.998904i \(-0.514905\pi\)
−0.0468094 + 0.998904i \(0.514905\pi\)
\(608\) 0 0
\(609\) −15421.2 −1.02610
\(610\) 0 0
\(611\) −4830.65 −0.319848
\(612\) 0 0
\(613\) 16420.8 1.08194 0.540970 0.841042i \(-0.318057\pi\)
0.540970 + 0.841042i \(0.318057\pi\)
\(614\) 0 0
\(615\) −67746.9 −4.44198
\(616\) 0 0
\(617\) −26651.4 −1.73897 −0.869486 0.493958i \(-0.835550\pi\)
−0.869486 + 0.493958i \(0.835550\pi\)
\(618\) 0 0
\(619\) 254.708 0.0165389 0.00826944 0.999966i \(-0.497368\pi\)
0.00826944 + 0.999966i \(0.497368\pi\)
\(620\) 0 0
\(621\) 2862.53 0.184975
\(622\) 0 0
\(623\) −24092.1 −1.54932
\(624\) 0 0
\(625\) 16100.7 1.03044
\(626\) 0 0
\(627\) 11446.7 0.729090
\(628\) 0 0
\(629\) 7150.26 0.453259
\(630\) 0 0
\(631\) 4973.61 0.313782 0.156891 0.987616i \(-0.449853\pi\)
0.156891 + 0.987616i \(0.449853\pi\)
\(632\) 0 0
\(633\) −8903.19 −0.559036
\(634\) 0 0
\(635\) −8653.72 −0.540807
\(636\) 0 0
\(637\) 10288.7 0.639955
\(638\) 0 0
\(639\) 35093.0 2.17255
\(640\) 0 0
\(641\) −22952.9 −1.41433 −0.707165 0.707049i \(-0.750026\pi\)
−0.707165 + 0.707049i \(0.750026\pi\)
\(642\) 0 0
\(643\) −24788.7 −1.52033 −0.760164 0.649732i \(-0.774881\pi\)
−0.760164 + 0.649732i \(0.774881\pi\)
\(644\) 0 0
\(645\) −15758.7 −0.962010
\(646\) 0 0
\(647\) −3325.08 −0.202044 −0.101022 0.994884i \(-0.532211\pi\)
−0.101022 + 0.994884i \(0.532211\pi\)
\(648\) 0 0
\(649\) 33837.5 2.04659
\(650\) 0 0
\(651\) −55249.6 −3.32627
\(652\) 0 0
\(653\) 17899.1 1.07266 0.536329 0.844009i \(-0.319810\pi\)
0.536329 + 0.844009i \(0.319810\pi\)
\(654\) 0 0
\(655\) −27258.2 −1.62606
\(656\) 0 0
\(657\) 23009.9 1.36636
\(658\) 0 0
\(659\) 3774.81 0.223134 0.111567 0.993757i \(-0.464413\pi\)
0.111567 + 0.993757i \(0.464413\pi\)
\(660\) 0 0
\(661\) −10385.3 −0.611109 −0.305555 0.952175i \(-0.598842\pi\)
−0.305555 + 0.952175i \(0.598842\pi\)
\(662\) 0 0
\(663\) 37351.5 2.18795
\(664\) 0 0
\(665\) −14106.5 −0.822595
\(666\) 0 0
\(667\) −1890.56 −0.109750
\(668\) 0 0
\(669\) 14691.5 0.849037
\(670\) 0 0
\(671\) 8285.80 0.476706
\(672\) 0 0
\(673\) 7805.48 0.447071 0.223536 0.974696i \(-0.428240\pi\)
0.223536 + 0.974696i \(0.428240\pi\)
\(674\) 0 0
\(675\) 31271.8 1.78319
\(676\) 0 0
\(677\) 12114.4 0.687730 0.343865 0.939019i \(-0.388264\pi\)
0.343865 + 0.939019i \(0.388264\pi\)
\(678\) 0 0
\(679\) −33966.3 −1.91975
\(680\) 0 0
\(681\) 416.370 0.0234293
\(682\) 0 0
\(683\) 33165.2 1.85802 0.929012 0.370049i \(-0.120659\pi\)
0.929012 + 0.370049i \(0.120659\pi\)
\(684\) 0 0
\(685\) 38803.1 2.16436
\(686\) 0 0
\(687\) −22523.7 −1.25085
\(688\) 0 0
\(689\) 30871.6 1.70699
\(690\) 0 0
\(691\) −25510.7 −1.40445 −0.702223 0.711958i \(-0.747809\pi\)
−0.702223 + 0.711958i \(0.747809\pi\)
\(692\) 0 0
\(693\) −40595.6 −2.22525
\(694\) 0 0
\(695\) 32187.0 1.75672
\(696\) 0 0
\(697\) −30734.2 −1.67022
\(698\) 0 0
\(699\) −8789.11 −0.475586
\(700\) 0 0
\(701\) −18006.0 −0.970152 −0.485076 0.874472i \(-0.661208\pi\)
−0.485076 + 0.874472i \(0.661208\pi\)
\(702\) 0 0
\(703\) −3149.64 −0.168977
\(704\) 0 0
\(705\) −12648.8 −0.675721
\(706\) 0 0
\(707\) −34398.9 −1.82985
\(708\) 0 0
\(709\) −11732.8 −0.621490 −0.310745 0.950493i \(-0.600578\pi\)
−0.310745 + 0.950493i \(0.600578\pi\)
\(710\) 0 0
\(711\) −6917.66 −0.364884
\(712\) 0 0
\(713\) −6773.34 −0.355769
\(714\) 0 0
\(715\) −51089.9 −2.67225
\(716\) 0 0
\(717\) 26863.2 1.39920
\(718\) 0 0
\(719\) −4592.86 −0.238226 −0.119113 0.992881i \(-0.538005\pi\)
−0.119113 + 0.992881i \(0.538005\pi\)
\(720\) 0 0
\(721\) −15366.3 −0.793719
\(722\) 0 0
\(723\) −4987.94 −0.256574
\(724\) 0 0
\(725\) −20653.5 −1.05800
\(726\) 0 0
\(727\) 12779.3 0.651935 0.325967 0.945381i \(-0.394310\pi\)
0.325967 + 0.945381i \(0.394310\pi\)
\(728\) 0 0
\(729\) −32103.4 −1.63102
\(730\) 0 0
\(731\) −7149.10 −0.361723
\(732\) 0 0
\(733\) −12434.2 −0.626559 −0.313279 0.949661i \(-0.601428\pi\)
−0.313279 + 0.949661i \(0.601428\pi\)
\(734\) 0 0
\(735\) 26940.4 1.35199
\(736\) 0 0
\(737\) −24058.5 −1.20245
\(738\) 0 0
\(739\) −31481.1 −1.56705 −0.783526 0.621359i \(-0.786581\pi\)
−0.783526 + 0.621359i \(0.786581\pi\)
\(740\) 0 0
\(741\) −16453.1 −0.815682
\(742\) 0 0
\(743\) −31833.2 −1.57180 −0.785900 0.618353i \(-0.787800\pi\)
−0.785900 + 0.618353i \(0.787800\pi\)
\(744\) 0 0
\(745\) −20718.3 −1.01887
\(746\) 0 0
\(747\) 34079.4 1.66921
\(748\) 0 0
\(749\) −21163.2 −1.03243
\(750\) 0 0
\(751\) 33233.8 1.61480 0.807402 0.590001i \(-0.200873\pi\)
0.807402 + 0.590001i \(0.200873\pi\)
\(752\) 0 0
\(753\) −14671.1 −0.710017
\(754\) 0 0
\(755\) −56292.8 −2.71352
\(756\) 0 0
\(757\) 2721.56 0.130669 0.0653347 0.997863i \(-0.479189\pi\)
0.0653347 + 0.997863i \(0.479189\pi\)
\(758\) 0 0
\(759\) −8177.40 −0.391068
\(760\) 0 0
\(761\) −24190.1 −1.15229 −0.576143 0.817349i \(-0.695443\pi\)
−0.576143 + 0.817349i \(0.695443\pi\)
\(762\) 0 0
\(763\) 9676.17 0.459110
\(764\) 0 0
\(765\) 59523.9 2.81319
\(766\) 0 0
\(767\) −48636.7 −2.28966
\(768\) 0 0
\(769\) −10310.2 −0.483478 −0.241739 0.970341i \(-0.577718\pi\)
−0.241739 + 0.970341i \(0.577718\pi\)
\(770\) 0 0
\(771\) −21069.5 −0.984175
\(772\) 0 0
\(773\) −1202.02 −0.0559298 −0.0279649 0.999609i \(-0.508903\pi\)
−0.0279649 + 0.999609i \(0.508903\pi\)
\(774\) 0 0
\(775\) −73995.5 −3.42968
\(776\) 0 0
\(777\) 18353.6 0.847402
\(778\) 0 0
\(779\) 13538.2 0.622666
\(780\) 0 0
\(781\) −35780.1 −1.63933
\(782\) 0 0
\(783\) −10230.2 −0.466920
\(784\) 0 0
\(785\) 62938.9 2.86164
\(786\) 0 0
\(787\) 12086.9 0.547460 0.273730 0.961807i \(-0.411743\pi\)
0.273730 + 0.961807i \(0.411743\pi\)
\(788\) 0 0
\(789\) −18517.6 −0.835544
\(790\) 0 0
\(791\) −19391.0 −0.871636
\(792\) 0 0
\(793\) −11909.7 −0.533323
\(794\) 0 0
\(795\) 80836.0 3.60624
\(796\) 0 0
\(797\) −25106.8 −1.11584 −0.557922 0.829893i \(-0.688401\pi\)
−0.557922 + 0.829893i \(0.688401\pi\)
\(798\) 0 0
\(799\) −5738.30 −0.254076
\(800\) 0 0
\(801\) −44780.3 −1.97532
\(802\) 0 0
\(803\) −23460.4 −1.03101
\(804\) 0 0
\(805\) 10077.5 0.441223
\(806\) 0 0
\(807\) 59458.2 2.59359
\(808\) 0 0
\(809\) −19944.8 −0.866774 −0.433387 0.901208i \(-0.642682\pi\)
−0.433387 + 0.901208i \(0.642682\pi\)
\(810\) 0 0
\(811\) 4996.88 0.216355 0.108178 0.994132i \(-0.465498\pi\)
0.108178 + 0.994132i \(0.465498\pi\)
\(812\) 0 0
\(813\) −9515.94 −0.410503
\(814\) 0 0
\(815\) 32798.7 1.40968
\(816\) 0 0
\(817\) 3149.13 0.134852
\(818\) 0 0
\(819\) 58350.6 2.48954
\(820\) 0 0
\(821\) −933.972 −0.0397026 −0.0198513 0.999803i \(-0.506319\pi\)
−0.0198513 + 0.999803i \(0.506319\pi\)
\(822\) 0 0
\(823\) −40805.7 −1.72831 −0.864153 0.503229i \(-0.832145\pi\)
−0.864153 + 0.503229i \(0.832145\pi\)
\(824\) 0 0
\(825\) −89334.3 −3.76996
\(826\) 0 0
\(827\) 38919.3 1.63647 0.818234 0.574886i \(-0.194954\pi\)
0.818234 + 0.574886i \(0.194954\pi\)
\(828\) 0 0
\(829\) 41460.2 1.73700 0.868499 0.495691i \(-0.165085\pi\)
0.868499 + 0.495691i \(0.165085\pi\)
\(830\) 0 0
\(831\) 59685.8 2.49155
\(832\) 0 0
\(833\) 12221.8 0.508357
\(834\) 0 0
\(835\) −16458.3 −0.682112
\(836\) 0 0
\(837\) −36651.9 −1.51359
\(838\) 0 0
\(839\) −2301.38 −0.0946990 −0.0473495 0.998878i \(-0.515077\pi\)
−0.0473495 + 0.998878i \(0.515077\pi\)
\(840\) 0 0
\(841\) −17632.4 −0.722966
\(842\) 0 0
\(843\) −4737.09 −0.193540
\(844\) 0 0
\(845\) 30818.3 1.25465
\(846\) 0 0
\(847\) 11325.9 0.459459
\(848\) 0 0
\(849\) 34853.9 1.40893
\(850\) 0 0
\(851\) 2250.06 0.0906360
\(852\) 0 0
\(853\) 15728.1 0.631326 0.315663 0.948871i \(-0.397773\pi\)
0.315663 + 0.948871i \(0.397773\pi\)
\(854\) 0 0
\(855\) −26219.9 −1.04877
\(856\) 0 0
\(857\) 16543.0 0.659389 0.329695 0.944088i \(-0.393054\pi\)
0.329695 + 0.944088i \(0.393054\pi\)
\(858\) 0 0
\(859\) 6134.46 0.243661 0.121831 0.992551i \(-0.461124\pi\)
0.121831 + 0.992551i \(0.461124\pi\)
\(860\) 0 0
\(861\) −78889.7 −3.12260
\(862\) 0 0
\(863\) −7175.54 −0.283034 −0.141517 0.989936i \(-0.545198\pi\)
−0.141517 + 0.989936i \(0.545198\pi\)
\(864\) 0 0
\(865\) 50175.2 1.97227
\(866\) 0 0
\(867\) 3563.75 0.139598
\(868\) 0 0
\(869\) 7053.11 0.275328
\(870\) 0 0
\(871\) 34580.8 1.34526
\(872\) 0 0
\(873\) −63133.7 −2.44760
\(874\) 0 0
\(875\) 55322.8 2.13743
\(876\) 0 0
\(877\) −8685.50 −0.334423 −0.167211 0.985921i \(-0.553476\pi\)
−0.167211 + 0.985921i \(0.553476\pi\)
\(878\) 0 0
\(879\) 7529.95 0.288941
\(880\) 0 0
\(881\) −45118.5 −1.72540 −0.862702 0.505713i \(-0.831230\pi\)
−0.862702 + 0.505713i \(0.831230\pi\)
\(882\) 0 0
\(883\) 27466.4 1.04679 0.523396 0.852090i \(-0.324665\pi\)
0.523396 + 0.852090i \(0.324665\pi\)
\(884\) 0 0
\(885\) −127353. −4.83720
\(886\) 0 0
\(887\) 17664.0 0.668656 0.334328 0.942457i \(-0.391491\pi\)
0.334328 + 0.942457i \(0.391491\pi\)
\(888\) 0 0
\(889\) −10077.1 −0.380173
\(890\) 0 0
\(891\) 4275.38 0.160753
\(892\) 0 0
\(893\) 2527.69 0.0947209
\(894\) 0 0
\(895\) −11195.5 −0.418129
\(896\) 0 0
\(897\) 11753.9 0.437515
\(898\) 0 0
\(899\) 24206.9 0.898047
\(900\) 0 0
\(901\) 36672.2 1.35597
\(902\) 0 0
\(903\) −18350.6 −0.676268
\(904\) 0 0
\(905\) 36647.6 1.34609
\(906\) 0 0
\(907\) −5918.67 −0.216677 −0.108339 0.994114i \(-0.534553\pi\)
−0.108339 + 0.994114i \(0.534553\pi\)
\(908\) 0 0
\(909\) −63937.8 −2.33298
\(910\) 0 0
\(911\) −21288.3 −0.774217 −0.387108 0.922034i \(-0.626526\pi\)
−0.387108 + 0.922034i \(0.626526\pi\)
\(912\) 0 0
\(913\) −34746.7 −1.25953
\(914\) 0 0
\(915\) −31185.0 −1.12671
\(916\) 0 0
\(917\) −31741.6 −1.14308
\(918\) 0 0
\(919\) 41806.3 1.50061 0.750307 0.661090i \(-0.229906\pi\)
0.750307 + 0.661090i \(0.229906\pi\)
\(920\) 0 0
\(921\) −513.964 −0.0183884
\(922\) 0 0
\(923\) 51429.0 1.83403
\(924\) 0 0
\(925\) 24580.9 0.873746
\(926\) 0 0
\(927\) −28561.6 −1.01196
\(928\) 0 0
\(929\) 13657.9 0.482348 0.241174 0.970482i \(-0.422468\pi\)
0.241174 + 0.970482i \(0.422468\pi\)
\(930\) 0 0
\(931\) −5383.64 −0.189518
\(932\) 0 0
\(933\) 20225.6 0.709708
\(934\) 0 0
\(935\) −60689.4 −2.12273
\(936\) 0 0
\(937\) 9655.47 0.336639 0.168319 0.985733i \(-0.446166\pi\)
0.168319 + 0.985733i \(0.446166\pi\)
\(938\) 0 0
\(939\) 24776.7 0.861083
\(940\) 0 0
\(941\) 17402.7 0.602883 0.301442 0.953485i \(-0.402532\pi\)
0.301442 + 0.953485i \(0.402532\pi\)
\(942\) 0 0
\(943\) −9671.52 −0.333985
\(944\) 0 0
\(945\) 54531.3 1.87715
\(946\) 0 0
\(947\) −26078.5 −0.894864 −0.447432 0.894318i \(-0.647661\pi\)
−0.447432 + 0.894318i \(0.647661\pi\)
\(948\) 0 0
\(949\) 33721.1 1.15346
\(950\) 0 0
\(951\) −65592.6 −2.23658
\(952\) 0 0
\(953\) 22070.2 0.750182 0.375091 0.926988i \(-0.377611\pi\)
0.375091 + 0.926988i \(0.377611\pi\)
\(954\) 0 0
\(955\) −91662.4 −3.10589
\(956\) 0 0
\(957\) 29224.8 0.987151
\(958\) 0 0
\(959\) 45185.3 1.52149
\(960\) 0 0
\(961\) 56935.1 1.91115
\(962\) 0 0
\(963\) −39336.4 −1.31630
\(964\) 0 0
\(965\) 5412.12 0.180541
\(966\) 0 0
\(967\) 46938.7 1.56096 0.780480 0.625181i \(-0.214975\pi\)
0.780480 + 0.625181i \(0.214975\pi\)
\(968\) 0 0
\(969\) −19544.5 −0.647948
\(970\) 0 0
\(971\) −44882.8 −1.48337 −0.741687 0.670746i \(-0.765974\pi\)
−0.741687 + 0.670746i \(0.765974\pi\)
\(972\) 0 0
\(973\) 37481.0 1.23493
\(974\) 0 0
\(975\) 128406. 4.21772
\(976\) 0 0
\(977\) −42525.3 −1.39253 −0.696266 0.717784i \(-0.745157\pi\)
−0.696266 + 0.717784i \(0.745157\pi\)
\(978\) 0 0
\(979\) 45657.0 1.49051
\(980\) 0 0
\(981\) 17985.2 0.585346
\(982\) 0 0
\(983\) −147.145 −0.00477437 −0.00238719 0.999997i \(-0.500760\pi\)
−0.00238719 + 0.999997i \(0.500760\pi\)
\(984\) 0 0
\(985\) 101321. 3.27750
\(986\) 0 0
\(987\) −14729.3 −0.475014
\(988\) 0 0
\(989\) −2249.70 −0.0723319
\(990\) 0 0
\(991\) −21908.2 −0.702258 −0.351129 0.936327i \(-0.614202\pi\)
−0.351129 + 0.936327i \(0.614202\pi\)
\(992\) 0 0
\(993\) 59523.1 1.90222
\(994\) 0 0
\(995\) 48739.7 1.55292
\(996\) 0 0
\(997\) 41766.1 1.32673 0.663363 0.748298i \(-0.269129\pi\)
0.663363 + 0.748298i \(0.269129\pi\)
\(998\) 0 0
\(999\) 12175.6 0.385603
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bd.1.4 4
4.3 odd 2 1472.4.a.ba.1.1 4
8.3 odd 2 184.4.a.e.1.4 4
8.5 even 2 368.4.a.n.1.1 4
24.11 even 2 1656.4.a.n.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.a.e.1.4 4 8.3 odd 2
368.4.a.n.1.1 4 8.5 even 2
1472.4.a.ba.1.1 4 4.3 odd 2
1472.4.a.bd.1.4 4 1.1 even 1 trivial
1656.4.a.n.1.4 4 24.11 even 2