Properties

Label 1472.4.a.be.1.3
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2822449.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 27x^{2} - 24x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(6.09653\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.15452 q^{3} -1.44721 q^{5} -23.2480 q^{7} +10.8781 q^{9} +14.1993 q^{11} +16.7274 q^{13} -8.90687 q^{15} +35.5362 q^{17} +77.4222 q^{19} -143.080 q^{21} -23.0000 q^{23} -122.906 q^{25} -99.2226 q^{27} -87.5927 q^{29} +19.1830 q^{31} +87.3901 q^{33} +33.6447 q^{35} -94.8859 q^{37} +102.949 q^{39} +248.138 q^{41} -123.286 q^{43} -15.7429 q^{45} +84.9619 q^{47} +197.468 q^{49} +218.708 q^{51} -372.171 q^{53} -20.5494 q^{55} +476.496 q^{57} -542.472 q^{59} +238.437 q^{61} -252.893 q^{63} -24.2081 q^{65} -1000.91 q^{67} -141.554 q^{69} +15.5404 q^{71} +18.5309 q^{73} -756.424 q^{75} -330.106 q^{77} +754.689 q^{79} -904.376 q^{81} -923.951 q^{83} -51.4283 q^{85} -539.091 q^{87} -1310.65 q^{89} -388.879 q^{91} +118.062 q^{93} -112.046 q^{95} -605.897 q^{97} +154.462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{3} + 2 q^{5} + 32 q^{7} + 79 q^{9} + 56 q^{11} - 139 q^{13} - 230 q^{15} - 6 q^{17} - 108 q^{21} - 92 q^{23} + 160 q^{25} + 119 q^{27} - 489 q^{29} + 127 q^{31} + 438 q^{33} - 408 q^{35} - 826 q^{37}+ \cdots - 1054 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.15452 1.18444 0.592219 0.805777i \(-0.298252\pi\)
0.592219 + 0.805777i \(0.298252\pi\)
\(4\) 0 0
\(5\) −1.44721 −0.129442 −0.0647212 0.997903i \(-0.520616\pi\)
−0.0647212 + 0.997903i \(0.520616\pi\)
\(6\) 0 0
\(7\) −23.2480 −1.25527 −0.627636 0.778507i \(-0.715977\pi\)
−0.627636 + 0.778507i \(0.715977\pi\)
\(8\) 0 0
\(9\) 10.8781 0.402892
\(10\) 0 0
\(11\) 14.1993 0.389206 0.194603 0.980882i \(-0.437658\pi\)
0.194603 + 0.980882i \(0.437658\pi\)
\(12\) 0 0
\(13\) 16.7274 0.356874 0.178437 0.983951i \(-0.442896\pi\)
0.178437 + 0.983951i \(0.442896\pi\)
\(14\) 0 0
\(15\) −8.90687 −0.153316
\(16\) 0 0
\(17\) 35.5362 0.506988 0.253494 0.967337i \(-0.418420\pi\)
0.253494 + 0.967337i \(0.418420\pi\)
\(18\) 0 0
\(19\) 77.4222 0.934835 0.467418 0.884037i \(-0.345184\pi\)
0.467418 + 0.884037i \(0.345184\pi\)
\(20\) 0 0
\(21\) −143.080 −1.48679
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −122.906 −0.983245
\(26\) 0 0
\(27\) −99.2226 −0.707237
\(28\) 0 0
\(29\) −87.5927 −0.560881 −0.280441 0.959871i \(-0.590481\pi\)
−0.280441 + 0.959871i \(0.590481\pi\)
\(30\) 0 0
\(31\) 19.1830 0.111141 0.0555705 0.998455i \(-0.482302\pi\)
0.0555705 + 0.998455i \(0.482302\pi\)
\(32\) 0 0
\(33\) 87.3901 0.460990
\(34\) 0 0
\(35\) 33.6447 0.162485
\(36\) 0 0
\(37\) −94.8859 −0.421599 −0.210799 0.977529i \(-0.567607\pi\)
−0.210799 + 0.977529i \(0.567607\pi\)
\(38\) 0 0
\(39\) 102.949 0.422695
\(40\) 0 0
\(41\) 248.138 0.945187 0.472593 0.881281i \(-0.343318\pi\)
0.472593 + 0.881281i \(0.343318\pi\)
\(42\) 0 0
\(43\) −123.286 −0.437229 −0.218615 0.975811i \(-0.570154\pi\)
−0.218615 + 0.975811i \(0.570154\pi\)
\(44\) 0 0
\(45\) −15.7429 −0.0521512
\(46\) 0 0
\(47\) 84.9619 0.263680 0.131840 0.991271i \(-0.457911\pi\)
0.131840 + 0.991271i \(0.457911\pi\)
\(48\) 0 0
\(49\) 197.468 0.575707
\(50\) 0 0
\(51\) 218.708 0.600496
\(52\) 0 0
\(53\) −372.171 −0.964559 −0.482280 0.876017i \(-0.660191\pi\)
−0.482280 + 0.876017i \(0.660191\pi\)
\(54\) 0 0
\(55\) −20.5494 −0.0503797
\(56\) 0 0
\(57\) 476.496 1.10725
\(58\) 0 0
\(59\) −542.472 −1.19701 −0.598507 0.801117i \(-0.704239\pi\)
−0.598507 + 0.801117i \(0.704239\pi\)
\(60\) 0 0
\(61\) 238.437 0.500471 0.250235 0.968185i \(-0.419492\pi\)
0.250235 + 0.968185i \(0.419492\pi\)
\(62\) 0 0
\(63\) −252.893 −0.505739
\(64\) 0 0
\(65\) −24.2081 −0.0461946
\(66\) 0 0
\(67\) −1000.91 −1.82509 −0.912545 0.408977i \(-0.865886\pi\)
−0.912545 + 0.408977i \(0.865886\pi\)
\(68\) 0 0
\(69\) −141.554 −0.246972
\(70\) 0 0
\(71\) 15.5404 0.0259761 0.0129880 0.999916i \(-0.495866\pi\)
0.0129880 + 0.999916i \(0.495866\pi\)
\(72\) 0 0
\(73\) 18.5309 0.0297107 0.0148554 0.999890i \(-0.495271\pi\)
0.0148554 + 0.999890i \(0.495271\pi\)
\(74\) 0 0
\(75\) −756.424 −1.16459
\(76\) 0 0
\(77\) −330.106 −0.488559
\(78\) 0 0
\(79\) 754.689 1.07480 0.537400 0.843328i \(-0.319407\pi\)
0.537400 + 0.843328i \(0.319407\pi\)
\(80\) 0 0
\(81\) −904.376 −1.24057
\(82\) 0 0
\(83\) −923.951 −1.22189 −0.610945 0.791673i \(-0.709210\pi\)
−0.610945 + 0.791673i \(0.709210\pi\)
\(84\) 0 0
\(85\) −51.4283 −0.0656257
\(86\) 0 0
\(87\) −539.091 −0.664329
\(88\) 0 0
\(89\) −1310.65 −1.56099 −0.780497 0.625159i \(-0.785034\pi\)
−0.780497 + 0.625159i \(0.785034\pi\)
\(90\) 0 0
\(91\) −388.879 −0.447974
\(92\) 0 0
\(93\) 118.062 0.131639
\(94\) 0 0
\(95\) −112.046 −0.121007
\(96\) 0 0
\(97\) −605.897 −0.634222 −0.317111 0.948388i \(-0.602713\pi\)
−0.317111 + 0.948388i \(0.602713\pi\)
\(98\) 0 0
\(99\) 154.462 0.156808
\(100\) 0 0
\(101\) −401.451 −0.395503 −0.197752 0.980252i \(-0.563364\pi\)
−0.197752 + 0.980252i \(0.563364\pi\)
\(102\) 0 0
\(103\) −1007.34 −0.963657 −0.481828 0.876266i \(-0.660027\pi\)
−0.481828 + 0.876266i \(0.660027\pi\)
\(104\) 0 0
\(105\) 207.067 0.192454
\(106\) 0 0
\(107\) 218.166 0.197111 0.0985556 0.995132i \(-0.468578\pi\)
0.0985556 + 0.995132i \(0.468578\pi\)
\(108\) 0 0
\(109\) 657.112 0.577430 0.288715 0.957415i \(-0.406772\pi\)
0.288715 + 0.957415i \(0.406772\pi\)
\(110\) 0 0
\(111\) −583.977 −0.499357
\(112\) 0 0
\(113\) −677.125 −0.563704 −0.281852 0.959458i \(-0.590949\pi\)
−0.281852 + 0.959458i \(0.590949\pi\)
\(114\) 0 0
\(115\) 33.2858 0.0269906
\(116\) 0 0
\(117\) 181.962 0.143781
\(118\) 0 0
\(119\) −826.145 −0.636408
\(120\) 0 0
\(121\) −1129.38 −0.848519
\(122\) 0 0
\(123\) 1527.17 1.11951
\(124\) 0 0
\(125\) 358.771 0.256716
\(126\) 0 0
\(127\) −1316.92 −0.920138 −0.460069 0.887883i \(-0.652175\pi\)
−0.460069 + 0.887883i \(0.652175\pi\)
\(128\) 0 0
\(129\) −758.763 −0.517871
\(130\) 0 0
\(131\) −78.7994 −0.0525552 −0.0262776 0.999655i \(-0.508365\pi\)
−0.0262776 + 0.999655i \(0.508365\pi\)
\(132\) 0 0
\(133\) −1799.91 −1.17347
\(134\) 0 0
\(135\) 143.596 0.0915464
\(136\) 0 0
\(137\) 1415.41 0.882677 0.441338 0.897341i \(-0.354504\pi\)
0.441338 + 0.897341i \(0.354504\pi\)
\(138\) 0 0
\(139\) 1377.84 0.840771 0.420386 0.907346i \(-0.361895\pi\)
0.420386 + 0.907346i \(0.361895\pi\)
\(140\) 0 0
\(141\) 522.900 0.312313
\(142\) 0 0
\(143\) 237.519 0.138897
\(144\) 0 0
\(145\) 126.765 0.0726018
\(146\) 0 0
\(147\) 1215.32 0.681889
\(148\) 0 0
\(149\) −2366.57 −1.30119 −0.650593 0.759427i \(-0.725480\pi\)
−0.650593 + 0.759427i \(0.725480\pi\)
\(150\) 0 0
\(151\) 2080.82 1.12142 0.560711 0.828011i \(-0.310528\pi\)
0.560711 + 0.828011i \(0.310528\pi\)
\(152\) 0 0
\(153\) 386.566 0.204261
\(154\) 0 0
\(155\) −27.7618 −0.0143863
\(156\) 0 0
\(157\) −2289.83 −1.16400 −0.582000 0.813189i \(-0.697730\pi\)
−0.582000 + 0.813189i \(0.697730\pi\)
\(158\) 0 0
\(159\) −2290.53 −1.14246
\(160\) 0 0
\(161\) 534.703 0.261742
\(162\) 0 0
\(163\) −2258.91 −1.08547 −0.542735 0.839904i \(-0.682611\pi\)
−0.542735 + 0.839904i \(0.682611\pi\)
\(164\) 0 0
\(165\) −126.472 −0.0596716
\(166\) 0 0
\(167\) −1765.94 −0.818277 −0.409138 0.912472i \(-0.634171\pi\)
−0.409138 + 0.912472i \(0.634171\pi\)
\(168\) 0 0
\(169\) −1917.19 −0.872641
\(170\) 0 0
\(171\) 842.205 0.376637
\(172\) 0 0
\(173\) −206.784 −0.0908755 −0.0454378 0.998967i \(-0.514468\pi\)
−0.0454378 + 0.998967i \(0.514468\pi\)
\(174\) 0 0
\(175\) 2857.30 1.23424
\(176\) 0 0
\(177\) −3338.66 −1.41779
\(178\) 0 0
\(179\) 4581.89 1.91322 0.956611 0.291368i \(-0.0941104\pi\)
0.956611 + 0.291368i \(0.0941104\pi\)
\(180\) 0 0
\(181\) −169.992 −0.0698088 −0.0349044 0.999391i \(-0.511113\pi\)
−0.0349044 + 0.999391i \(0.511113\pi\)
\(182\) 0 0
\(183\) 1467.46 0.592776
\(184\) 0 0
\(185\) 137.320 0.0545727
\(186\) 0 0
\(187\) 504.591 0.197323
\(188\) 0 0
\(189\) 2306.72 0.887775
\(190\) 0 0
\(191\) −423.842 −0.160566 −0.0802831 0.996772i \(-0.525582\pi\)
−0.0802831 + 0.996772i \(0.525582\pi\)
\(192\) 0 0
\(193\) 291.603 0.108757 0.0543784 0.998520i \(-0.482682\pi\)
0.0543784 + 0.998520i \(0.482682\pi\)
\(194\) 0 0
\(195\) −148.989 −0.0547146
\(196\) 0 0
\(197\) −4361.99 −1.57756 −0.788778 0.614678i \(-0.789286\pi\)
−0.788778 + 0.614678i \(0.789286\pi\)
\(198\) 0 0
\(199\) 4418.17 1.57385 0.786924 0.617050i \(-0.211672\pi\)
0.786924 + 0.617050i \(0.211672\pi\)
\(200\) 0 0
\(201\) −6160.14 −2.16170
\(202\) 0 0
\(203\) 2036.35 0.704058
\(204\) 0 0
\(205\) −359.108 −0.122347
\(206\) 0 0
\(207\) −250.196 −0.0840087
\(208\) 0 0
\(209\) 1099.34 0.363843
\(210\) 0 0
\(211\) 4709.41 1.53654 0.768268 0.640129i \(-0.221119\pi\)
0.768268 + 0.640129i \(0.221119\pi\)
\(212\) 0 0
\(213\) 95.6434 0.0307670
\(214\) 0 0
\(215\) 178.420 0.0565960
\(216\) 0 0
\(217\) −445.966 −0.139512
\(218\) 0 0
\(219\) 114.049 0.0351905
\(220\) 0 0
\(221\) 594.430 0.180931
\(222\) 0 0
\(223\) 4936.13 1.48228 0.741138 0.671353i \(-0.234286\pi\)
0.741138 + 0.671353i \(0.234286\pi\)
\(224\) 0 0
\(225\) −1336.98 −0.396141
\(226\) 0 0
\(227\) 5010.95 1.46515 0.732574 0.680687i \(-0.238319\pi\)
0.732574 + 0.680687i \(0.238319\pi\)
\(228\) 0 0
\(229\) −4251.82 −1.22694 −0.613468 0.789720i \(-0.710226\pi\)
−0.613468 + 0.789720i \(0.710226\pi\)
\(230\) 0 0
\(231\) −2031.64 −0.578667
\(232\) 0 0
\(233\) −175.891 −0.0494550 −0.0247275 0.999694i \(-0.507872\pi\)
−0.0247275 + 0.999694i \(0.507872\pi\)
\(234\) 0 0
\(235\) −122.958 −0.0341314
\(236\) 0 0
\(237\) 4644.75 1.27303
\(238\) 0 0
\(239\) −4979.92 −1.34780 −0.673900 0.738822i \(-0.735382\pi\)
−0.673900 + 0.738822i \(0.735382\pi\)
\(240\) 0 0
\(241\) 2153.46 0.575588 0.287794 0.957692i \(-0.407078\pi\)
0.287794 + 0.957692i \(0.407078\pi\)
\(242\) 0 0
\(243\) −2886.98 −0.762140
\(244\) 0 0
\(245\) −285.777 −0.0745209
\(246\) 0 0
\(247\) 1295.08 0.333618
\(248\) 0 0
\(249\) −5686.47 −1.44725
\(250\) 0 0
\(251\) −3030.37 −0.762053 −0.381027 0.924564i \(-0.624429\pi\)
−0.381027 + 0.924564i \(0.624429\pi\)
\(252\) 0 0
\(253\) −326.585 −0.0811550
\(254\) 0 0
\(255\) −316.517 −0.0777296
\(256\) 0 0
\(257\) 5813.04 1.41092 0.705462 0.708747i \(-0.250739\pi\)
0.705462 + 0.708747i \(0.250739\pi\)
\(258\) 0 0
\(259\) 2205.90 0.529221
\(260\) 0 0
\(261\) −952.840 −0.225974
\(262\) 0 0
\(263\) 3238.30 0.759247 0.379623 0.925141i \(-0.376054\pi\)
0.379623 + 0.925141i \(0.376054\pi\)
\(264\) 0 0
\(265\) 538.609 0.124855
\(266\) 0 0
\(267\) −8066.41 −1.84890
\(268\) 0 0
\(269\) 1884.90 0.427227 0.213614 0.976918i \(-0.431477\pi\)
0.213614 + 0.976918i \(0.431477\pi\)
\(270\) 0 0
\(271\) 8743.27 1.95984 0.979919 0.199397i \(-0.0638984\pi\)
0.979919 + 0.199397i \(0.0638984\pi\)
\(272\) 0 0
\(273\) −2393.36 −0.530597
\(274\) 0 0
\(275\) −1745.18 −0.382684
\(276\) 0 0
\(277\) −3108.71 −0.674312 −0.337156 0.941449i \(-0.609465\pi\)
−0.337156 + 0.941449i \(0.609465\pi\)
\(278\) 0 0
\(279\) 208.674 0.0447778
\(280\) 0 0
\(281\) −6270.05 −1.33110 −0.665551 0.746352i \(-0.731803\pi\)
−0.665551 + 0.746352i \(0.731803\pi\)
\(282\) 0 0
\(283\) −2274.38 −0.477730 −0.238865 0.971053i \(-0.576775\pi\)
−0.238865 + 0.971053i \(0.576775\pi\)
\(284\) 0 0
\(285\) −689.590 −0.143326
\(286\) 0 0
\(287\) −5768.70 −1.18647
\(288\) 0 0
\(289\) −3650.18 −0.742963
\(290\) 0 0
\(291\) −3729.01 −0.751196
\(292\) 0 0
\(293\) 5526.41 1.10190 0.550950 0.834538i \(-0.314266\pi\)
0.550950 + 0.834538i \(0.314266\pi\)
\(294\) 0 0
\(295\) 785.071 0.154944
\(296\) 0 0
\(297\) −1408.90 −0.275261
\(298\) 0 0
\(299\) −384.731 −0.0744133
\(300\) 0 0
\(301\) 2866.14 0.548842
\(302\) 0 0
\(303\) −2470.73 −0.468449
\(304\) 0 0
\(305\) −345.068 −0.0647821
\(306\) 0 0
\(307\) −3569.23 −0.663539 −0.331770 0.943360i \(-0.607646\pi\)
−0.331770 + 0.943360i \(0.607646\pi\)
\(308\) 0 0
\(309\) −6199.72 −1.14139
\(310\) 0 0
\(311\) −3991.96 −0.727856 −0.363928 0.931427i \(-0.618565\pi\)
−0.363928 + 0.931427i \(0.618565\pi\)
\(312\) 0 0
\(313\) −1750.31 −0.316081 −0.158040 0.987433i \(-0.550518\pi\)
−0.158040 + 0.987433i \(0.550518\pi\)
\(314\) 0 0
\(315\) 365.989 0.0654640
\(316\) 0 0
\(317\) −8794.63 −1.55822 −0.779110 0.626888i \(-0.784328\pi\)
−0.779110 + 0.626888i \(0.784328\pi\)
\(318\) 0 0
\(319\) −1243.76 −0.218298
\(320\) 0 0
\(321\) 1342.71 0.233466
\(322\) 0 0
\(323\) 2751.29 0.473951
\(324\) 0 0
\(325\) −2055.90 −0.350894
\(326\) 0 0
\(327\) 4044.20 0.683930
\(328\) 0 0
\(329\) −1975.19 −0.330990
\(330\) 0 0
\(331\) 1026.21 0.170410 0.0852052 0.996363i \(-0.472845\pi\)
0.0852052 + 0.996363i \(0.472845\pi\)
\(332\) 0 0
\(333\) −1032.18 −0.169859
\(334\) 0 0
\(335\) 1448.53 0.236244
\(336\) 0 0
\(337\) 9712.53 1.56996 0.784978 0.619523i \(-0.212674\pi\)
0.784978 + 0.619523i \(0.212674\pi\)
\(338\) 0 0
\(339\) −4167.38 −0.667672
\(340\) 0 0
\(341\) 272.386 0.0432567
\(342\) 0 0
\(343\) 3383.33 0.532603
\(344\) 0 0
\(345\) 204.858 0.0319687
\(346\) 0 0
\(347\) −7413.55 −1.14692 −0.573458 0.819235i \(-0.694399\pi\)
−0.573458 + 0.819235i \(0.694399\pi\)
\(348\) 0 0
\(349\) −10049.2 −1.54132 −0.770659 0.637248i \(-0.780073\pi\)
−0.770659 + 0.637248i \(0.780073\pi\)
\(350\) 0 0
\(351\) −1659.74 −0.252394
\(352\) 0 0
\(353\) 8742.65 1.31820 0.659099 0.752056i \(-0.270938\pi\)
0.659099 + 0.752056i \(0.270938\pi\)
\(354\) 0 0
\(355\) −22.4902 −0.00336240
\(356\) 0 0
\(357\) −5084.52 −0.753785
\(358\) 0 0
\(359\) −2347.49 −0.345114 −0.172557 0.985000i \(-0.555203\pi\)
−0.172557 + 0.985000i \(0.555203\pi\)
\(360\) 0 0
\(361\) −864.801 −0.126083
\(362\) 0 0
\(363\) −6950.78 −1.00502
\(364\) 0 0
\(365\) −26.8181 −0.00384582
\(366\) 0 0
\(367\) −2505.57 −0.356376 −0.178188 0.983996i \(-0.557023\pi\)
−0.178188 + 0.983996i \(0.557023\pi\)
\(368\) 0 0
\(369\) 2699.27 0.380808
\(370\) 0 0
\(371\) 8652.22 1.21078
\(372\) 0 0
\(373\) 6462.76 0.897129 0.448564 0.893751i \(-0.351935\pi\)
0.448564 + 0.893751i \(0.351935\pi\)
\(374\) 0 0
\(375\) 2208.06 0.304064
\(376\) 0 0
\(377\) −1465.20 −0.200164
\(378\) 0 0
\(379\) 6909.79 0.936497 0.468248 0.883597i \(-0.344885\pi\)
0.468248 + 0.883597i \(0.344885\pi\)
\(380\) 0 0
\(381\) −8104.99 −1.08985
\(382\) 0 0
\(383\) 4482.58 0.598039 0.299019 0.954247i \(-0.403340\pi\)
0.299019 + 0.954247i \(0.403340\pi\)
\(384\) 0 0
\(385\) 477.732 0.0632402
\(386\) 0 0
\(387\) −1341.11 −0.176156
\(388\) 0 0
\(389\) −12178.5 −1.58733 −0.793667 0.608352i \(-0.791831\pi\)
−0.793667 + 0.608352i \(0.791831\pi\)
\(390\) 0 0
\(391\) −817.333 −0.105714
\(392\) 0 0
\(393\) −484.972 −0.0622484
\(394\) 0 0
\(395\) −1092.19 −0.139125
\(396\) 0 0
\(397\) −5727.55 −0.724075 −0.362037 0.932164i \(-0.617919\pi\)
−0.362037 + 0.932164i \(0.617919\pi\)
\(398\) 0 0
\(399\) −11077.6 −1.38990
\(400\) 0 0
\(401\) 2982.55 0.371425 0.185712 0.982604i \(-0.440541\pi\)
0.185712 + 0.982604i \(0.440541\pi\)
\(402\) 0 0
\(403\) 320.883 0.0396633
\(404\) 0 0
\(405\) 1308.82 0.160582
\(406\) 0 0
\(407\) −1347.32 −0.164089
\(408\) 0 0
\(409\) 7957.98 0.962095 0.481047 0.876695i \(-0.340257\pi\)
0.481047 + 0.876695i \(0.340257\pi\)
\(410\) 0 0
\(411\) 8711.17 1.04548
\(412\) 0 0
\(413\) 12611.4 1.50258
\(414\) 0 0
\(415\) 1337.15 0.158164
\(416\) 0 0
\(417\) 8479.96 0.995841
\(418\) 0 0
\(419\) 2621.06 0.305602 0.152801 0.988257i \(-0.451171\pi\)
0.152801 + 0.988257i \(0.451171\pi\)
\(420\) 0 0
\(421\) 2.56163 0.000296547 0 0.000148274 1.00000i \(-0.499953\pi\)
0.000148274 1.00000i \(0.499953\pi\)
\(422\) 0 0
\(423\) 924.223 0.106235
\(424\) 0 0
\(425\) −4367.60 −0.498493
\(426\) 0 0
\(427\) −5543.17 −0.628227
\(428\) 0 0
\(429\) 1461.81 0.164515
\(430\) 0 0
\(431\) −8453.37 −0.944744 −0.472372 0.881399i \(-0.656602\pi\)
−0.472372 + 0.881399i \(0.656602\pi\)
\(432\) 0 0
\(433\) −11383.7 −1.26343 −0.631717 0.775199i \(-0.717650\pi\)
−0.631717 + 0.775199i \(0.717650\pi\)
\(434\) 0 0
\(435\) 780.177 0.0859922
\(436\) 0 0
\(437\) −1780.71 −0.194927
\(438\) 0 0
\(439\) 17958.4 1.95241 0.976207 0.216839i \(-0.0695748\pi\)
0.976207 + 0.216839i \(0.0695748\pi\)
\(440\) 0 0
\(441\) 2148.07 0.231948
\(442\) 0 0
\(443\) −135.469 −0.0145289 −0.00726446 0.999974i \(-0.502312\pi\)
−0.00726446 + 0.999974i \(0.502312\pi\)
\(444\) 0 0
\(445\) 1896.78 0.202059
\(446\) 0 0
\(447\) −14565.1 −1.54117
\(448\) 0 0
\(449\) −807.866 −0.0849121 −0.0424561 0.999098i \(-0.513518\pi\)
−0.0424561 + 0.999098i \(0.513518\pi\)
\(450\) 0 0
\(451\) 3523.40 0.367872
\(452\) 0 0
\(453\) 12806.5 1.32826
\(454\) 0 0
\(455\) 562.789 0.0579867
\(456\) 0 0
\(457\) −7610.73 −0.779026 −0.389513 0.921021i \(-0.627357\pi\)
−0.389513 + 0.921021i \(0.627357\pi\)
\(458\) 0 0
\(459\) −3526.00 −0.358561
\(460\) 0 0
\(461\) 18801.7 1.89953 0.949765 0.312964i \(-0.101322\pi\)
0.949765 + 0.312964i \(0.101322\pi\)
\(462\) 0 0
\(463\) −11011.6 −1.10530 −0.552651 0.833413i \(-0.686384\pi\)
−0.552651 + 0.833413i \(0.686384\pi\)
\(464\) 0 0
\(465\) −170.861 −0.0170397
\(466\) 0 0
\(467\) −8572.93 −0.849481 −0.424741 0.905315i \(-0.639635\pi\)
−0.424741 + 0.905315i \(0.639635\pi\)
\(468\) 0 0
\(469\) 23269.2 2.29098
\(470\) 0 0
\(471\) −14092.8 −1.37869
\(472\) 0 0
\(473\) −1750.57 −0.170172
\(474\) 0 0
\(475\) −9515.62 −0.919172
\(476\) 0 0
\(477\) −4048.51 −0.388613
\(478\) 0 0
\(479\) 8679.82 0.827957 0.413978 0.910287i \(-0.364139\pi\)
0.413978 + 0.910287i \(0.364139\pi\)
\(480\) 0 0
\(481\) −1587.20 −0.150458
\(482\) 0 0
\(483\) 3290.84 0.310017
\(484\) 0 0
\(485\) 876.860 0.0820952
\(486\) 0 0
\(487\) 2238.51 0.208289 0.104144 0.994562i \(-0.466790\pi\)
0.104144 + 0.994562i \(0.466790\pi\)
\(488\) 0 0
\(489\) −13902.5 −1.28567
\(490\) 0 0
\(491\) 13646.4 1.25428 0.627142 0.778905i \(-0.284225\pi\)
0.627142 + 0.778905i \(0.284225\pi\)
\(492\) 0 0
\(493\) −3112.71 −0.284360
\(494\) 0 0
\(495\) −223.538 −0.0202976
\(496\) 0 0
\(497\) −361.282 −0.0326070
\(498\) 0 0
\(499\) 11961.9 1.07313 0.536563 0.843860i \(-0.319722\pi\)
0.536563 + 0.843860i \(0.319722\pi\)
\(500\) 0 0
\(501\) −10868.5 −0.969197
\(502\) 0 0
\(503\) −3138.63 −0.278219 −0.139110 0.990277i \(-0.544424\pi\)
−0.139110 + 0.990277i \(0.544424\pi\)
\(504\) 0 0
\(505\) 580.983 0.0511949
\(506\) 0 0
\(507\) −11799.4 −1.03359
\(508\) 0 0
\(509\) 3777.32 0.328933 0.164466 0.986383i \(-0.447410\pi\)
0.164466 + 0.986383i \(0.447410\pi\)
\(510\) 0 0
\(511\) −430.807 −0.0372950
\(512\) 0 0
\(513\) −7682.04 −0.661150
\(514\) 0 0
\(515\) 1457.84 0.124738
\(516\) 0 0
\(517\) 1206.40 0.102626
\(518\) 0 0
\(519\) −1272.65 −0.107636
\(520\) 0 0
\(521\) 8252.84 0.693980 0.346990 0.937869i \(-0.387204\pi\)
0.346990 + 0.937869i \(0.387204\pi\)
\(522\) 0 0
\(523\) 2581.34 0.215821 0.107910 0.994161i \(-0.465584\pi\)
0.107910 + 0.994161i \(0.465584\pi\)
\(524\) 0 0
\(525\) 17585.3 1.46188
\(526\) 0 0
\(527\) 681.691 0.0563471
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −5901.06 −0.482267
\(532\) 0 0
\(533\) 4150.72 0.337312
\(534\) 0 0
\(535\) −315.732 −0.0255145
\(536\) 0 0
\(537\) 28199.3 2.26609
\(538\) 0 0
\(539\) 2803.91 0.224069
\(540\) 0 0
\(541\) −13690.3 −1.08797 −0.543987 0.839094i \(-0.683086\pi\)
−0.543987 + 0.839094i \(0.683086\pi\)
\(542\) 0 0
\(543\) −1046.22 −0.0826842
\(544\) 0 0
\(545\) −950.978 −0.0747439
\(546\) 0 0
\(547\) −9978.29 −0.779965 −0.389983 0.920822i \(-0.627519\pi\)
−0.389983 + 0.920822i \(0.627519\pi\)
\(548\) 0 0
\(549\) 2593.73 0.201635
\(550\) 0 0
\(551\) −6781.62 −0.524332
\(552\) 0 0
\(553\) −17545.0 −1.34917
\(554\) 0 0
\(555\) 845.137 0.0646380
\(556\) 0 0
\(557\) 6824.80 0.519167 0.259583 0.965721i \(-0.416415\pi\)
0.259583 + 0.965721i \(0.416415\pi\)
\(558\) 0 0
\(559\) −2062.25 −0.156036
\(560\) 0 0
\(561\) 3105.51 0.233716
\(562\) 0 0
\(563\) 20979.3 1.57046 0.785232 0.619202i \(-0.212544\pi\)
0.785232 + 0.619202i \(0.212544\pi\)
\(564\) 0 0
\(565\) 979.942 0.0729672
\(566\) 0 0
\(567\) 21024.9 1.55725
\(568\) 0 0
\(569\) −6367.00 −0.469101 −0.234550 0.972104i \(-0.575362\pi\)
−0.234550 + 0.972104i \(0.575362\pi\)
\(570\) 0 0
\(571\) −26735.8 −1.95947 −0.979735 0.200296i \(-0.935810\pi\)
−0.979735 + 0.200296i \(0.935810\pi\)
\(572\) 0 0
\(573\) −2608.54 −0.190181
\(574\) 0 0
\(575\) 2826.83 0.205021
\(576\) 0 0
\(577\) 13525.1 0.975835 0.487917 0.872890i \(-0.337757\pi\)
0.487917 + 0.872890i \(0.337757\pi\)
\(578\) 0 0
\(579\) 1794.68 0.128816
\(580\) 0 0
\(581\) 21480.0 1.53380
\(582\) 0 0
\(583\) −5284.58 −0.375412
\(584\) 0 0
\(585\) −263.338 −0.0186114
\(586\) 0 0
\(587\) −1447.65 −0.101791 −0.0508953 0.998704i \(-0.516207\pi\)
−0.0508953 + 0.998704i \(0.516207\pi\)
\(588\) 0 0
\(589\) 1485.19 0.103898
\(590\) 0 0
\(591\) −26845.9 −1.86852
\(592\) 0 0
\(593\) −25979.8 −1.79909 −0.899547 0.436825i \(-0.856103\pi\)
−0.899547 + 0.436825i \(0.856103\pi\)
\(594\) 0 0
\(595\) 1195.60 0.0823781
\(596\) 0 0
\(597\) 27191.7 1.86412
\(598\) 0 0
\(599\) 12211.5 0.832966 0.416483 0.909143i \(-0.363263\pi\)
0.416483 + 0.909143i \(0.363263\pi\)
\(600\) 0 0
\(601\) 25772.1 1.74920 0.874598 0.484849i \(-0.161125\pi\)
0.874598 + 0.484849i \(0.161125\pi\)
\(602\) 0 0
\(603\) −10888.0 −0.735313
\(604\) 0 0
\(605\) 1634.45 0.109834
\(606\) 0 0
\(607\) 14255.6 0.953243 0.476621 0.879109i \(-0.341861\pi\)
0.476621 + 0.879109i \(0.341861\pi\)
\(608\) 0 0
\(609\) 12532.8 0.833913
\(610\) 0 0
\(611\) 1421.20 0.0941006
\(612\) 0 0
\(613\) −20679.7 −1.36256 −0.681278 0.732025i \(-0.738575\pi\)
−0.681278 + 0.732025i \(0.738575\pi\)
\(614\) 0 0
\(615\) −2210.13 −0.144913
\(616\) 0 0
\(617\) −13850.4 −0.903722 −0.451861 0.892088i \(-0.649240\pi\)
−0.451861 + 0.892088i \(0.649240\pi\)
\(618\) 0 0
\(619\) 7948.31 0.516106 0.258053 0.966131i \(-0.416919\pi\)
0.258053 + 0.966131i \(0.416919\pi\)
\(620\) 0 0
\(621\) 2282.12 0.147469
\(622\) 0 0
\(623\) 30469.9 1.95947
\(624\) 0 0
\(625\) 14844.0 0.950015
\(626\) 0 0
\(627\) 6765.93 0.430949
\(628\) 0 0
\(629\) −3371.89 −0.213746
\(630\) 0 0
\(631\) −14165.9 −0.893718 −0.446859 0.894604i \(-0.647457\pi\)
−0.446859 + 0.894604i \(0.647457\pi\)
\(632\) 0 0
\(633\) 28984.1 1.81993
\(634\) 0 0
\(635\) 1905.85 0.119105
\(636\) 0 0
\(637\) 3303.13 0.205455
\(638\) 0 0
\(639\) 169.049 0.0104655
\(640\) 0 0
\(641\) 8355.41 0.514850 0.257425 0.966298i \(-0.417126\pi\)
0.257425 + 0.966298i \(0.417126\pi\)
\(642\) 0 0
\(643\) 1810.08 0.111015 0.0555073 0.998458i \(-0.482322\pi\)
0.0555073 + 0.998458i \(0.482322\pi\)
\(644\) 0 0
\(645\) 1098.09 0.0670344
\(646\) 0 0
\(647\) −3129.33 −0.190149 −0.0950746 0.995470i \(-0.530309\pi\)
−0.0950746 + 0.995470i \(0.530309\pi\)
\(648\) 0 0
\(649\) −7702.75 −0.465885
\(650\) 0 0
\(651\) −2744.70 −0.165243
\(652\) 0 0
\(653\) 27462.4 1.64577 0.822885 0.568208i \(-0.192363\pi\)
0.822885 + 0.568208i \(0.192363\pi\)
\(654\) 0 0
\(655\) 114.039 0.00680287
\(656\) 0 0
\(657\) 201.581 0.0119702
\(658\) 0 0
\(659\) −12765.1 −0.754561 −0.377281 0.926099i \(-0.623141\pi\)
−0.377281 + 0.926099i \(0.623141\pi\)
\(660\) 0 0
\(661\) −17897.1 −1.05313 −0.526564 0.850135i \(-0.676520\pi\)
−0.526564 + 0.850135i \(0.676520\pi\)
\(662\) 0 0
\(663\) 3658.43 0.214301
\(664\) 0 0
\(665\) 2604.84 0.151897
\(666\) 0 0
\(667\) 2014.63 0.116952
\(668\) 0 0
\(669\) 30379.5 1.75566
\(670\) 0 0
\(671\) 3385.65 0.194786
\(672\) 0 0
\(673\) −9158.54 −0.524570 −0.262285 0.964990i \(-0.584476\pi\)
−0.262285 + 0.964990i \(0.584476\pi\)
\(674\) 0 0
\(675\) 12195.0 0.695387
\(676\) 0 0
\(677\) −22782.7 −1.29337 −0.646684 0.762758i \(-0.723845\pi\)
−0.646684 + 0.762758i \(0.723845\pi\)
\(678\) 0 0
\(679\) 14085.9 0.796121
\(680\) 0 0
\(681\) 30840.0 1.73538
\(682\) 0 0
\(683\) 11678.9 0.654289 0.327144 0.944974i \(-0.393914\pi\)
0.327144 + 0.944974i \(0.393914\pi\)
\(684\) 0 0
\(685\) −2048.40 −0.114256
\(686\) 0 0
\(687\) −26167.9 −1.45323
\(688\) 0 0
\(689\) −6225.47 −0.344226
\(690\) 0 0
\(691\) 18799.9 1.03500 0.517498 0.855684i \(-0.326863\pi\)
0.517498 + 0.855684i \(0.326863\pi\)
\(692\) 0 0
\(693\) −3590.91 −0.196836
\(694\) 0 0
\(695\) −1994.03 −0.108831
\(696\) 0 0
\(697\) 8817.89 0.479199
\(698\) 0 0
\(699\) −1082.53 −0.0585764
\(700\) 0 0
\(701\) −14703.5 −0.792214 −0.396107 0.918204i \(-0.629639\pi\)
−0.396107 + 0.918204i \(0.629639\pi\)
\(702\) 0 0
\(703\) −7346.28 −0.394125
\(704\) 0 0
\(705\) −756.745 −0.0404265
\(706\) 0 0
\(707\) 9332.91 0.496464
\(708\) 0 0
\(709\) 20507.7 1.08629 0.543146 0.839638i \(-0.317233\pi\)
0.543146 + 0.839638i \(0.317233\pi\)
\(710\) 0 0
\(711\) 8209.57 0.433028
\(712\) 0 0
\(713\) −441.209 −0.0231745
\(714\) 0 0
\(715\) −343.739 −0.0179792
\(716\) 0 0
\(717\) −30649.0 −1.59639
\(718\) 0 0
\(719\) −13728.9 −0.712104 −0.356052 0.934466i \(-0.615877\pi\)
−0.356052 + 0.934466i \(0.615877\pi\)
\(720\) 0 0
\(721\) 23418.7 1.20965
\(722\) 0 0
\(723\) 13253.5 0.681748
\(724\) 0 0
\(725\) 10765.6 0.551483
\(726\) 0 0
\(727\) 24721.1 1.26115 0.630573 0.776130i \(-0.282820\pi\)
0.630573 + 0.776130i \(0.282820\pi\)
\(728\) 0 0
\(729\) 6650.15 0.337863
\(730\) 0 0
\(731\) −4381.10 −0.221670
\(732\) 0 0
\(733\) −20639.1 −1.04001 −0.520003 0.854165i \(-0.674069\pi\)
−0.520003 + 0.854165i \(0.674069\pi\)
\(734\) 0 0
\(735\) −1758.82 −0.0882653
\(736\) 0 0
\(737\) −14212.3 −0.710335
\(738\) 0 0
\(739\) 10399.6 0.517665 0.258833 0.965922i \(-0.416662\pi\)
0.258833 + 0.965922i \(0.416662\pi\)
\(740\) 0 0
\(741\) 7970.57 0.395150
\(742\) 0 0
\(743\) 40046.7 1.97735 0.988675 0.150074i \(-0.0479513\pi\)
0.988675 + 0.150074i \(0.0479513\pi\)
\(744\) 0 0
\(745\) 3424.92 0.168429
\(746\) 0 0
\(747\) −10050.8 −0.492289
\(748\) 0 0
\(749\) −5071.91 −0.247428
\(750\) 0 0
\(751\) −26088.7 −1.26763 −0.633815 0.773485i \(-0.718512\pi\)
−0.633815 + 0.773485i \(0.718512\pi\)
\(752\) 0 0
\(753\) −18650.5 −0.902604
\(754\) 0 0
\(755\) −3011.38 −0.145160
\(756\) 0 0
\(757\) −39040.1 −1.87442 −0.937211 0.348764i \(-0.886601\pi\)
−0.937211 + 0.348764i \(0.886601\pi\)
\(758\) 0 0
\(759\) −2009.97 −0.0961230
\(760\) 0 0
\(761\) 19459.6 0.926950 0.463475 0.886110i \(-0.346602\pi\)
0.463475 + 0.886110i \(0.346602\pi\)
\(762\) 0 0
\(763\) −15276.5 −0.724832
\(764\) 0 0
\(765\) −559.442 −0.0264401
\(766\) 0 0
\(767\) −9074.18 −0.427183
\(768\) 0 0
\(769\) 30321.5 1.42188 0.710938 0.703255i \(-0.248271\pi\)
0.710938 + 0.703255i \(0.248271\pi\)
\(770\) 0 0
\(771\) 35776.5 1.67115
\(772\) 0 0
\(773\) 5553.94 0.258423 0.129212 0.991617i \(-0.458755\pi\)
0.129212 + 0.991617i \(0.458755\pi\)
\(774\) 0 0
\(775\) −2357.70 −0.109279
\(776\) 0 0
\(777\) 13576.3 0.626829
\(778\) 0 0
\(779\) 19211.4 0.883594
\(780\) 0 0
\(781\) 220.663 0.0101100
\(782\) 0 0
\(783\) 8691.18 0.396676
\(784\) 0 0
\(785\) 3313.86 0.150671
\(786\) 0 0
\(787\) −10531.8 −0.477023 −0.238512 0.971140i \(-0.576660\pi\)
−0.238512 + 0.971140i \(0.576660\pi\)
\(788\) 0 0
\(789\) 19930.2 0.899280
\(790\) 0 0
\(791\) 15741.8 0.707602
\(792\) 0 0
\(793\) 3988.44 0.178605
\(794\) 0 0
\(795\) 3314.88 0.147883
\(796\) 0 0
\(797\) 15836.9 0.703856 0.351928 0.936027i \(-0.385526\pi\)
0.351928 + 0.936027i \(0.385526\pi\)
\(798\) 0 0
\(799\) 3019.23 0.133683
\(800\) 0 0
\(801\) −14257.3 −0.628912
\(802\) 0 0
\(803\) 263.127 0.0115636
\(804\) 0 0
\(805\) −773.827 −0.0338805
\(806\) 0 0
\(807\) 11600.6 0.506024
\(808\) 0 0
\(809\) 34948.2 1.51881 0.759404 0.650620i \(-0.225491\pi\)
0.759404 + 0.650620i \(0.225491\pi\)
\(810\) 0 0
\(811\) 30170.8 1.30634 0.653169 0.757212i \(-0.273439\pi\)
0.653169 + 0.757212i \(0.273439\pi\)
\(812\) 0 0
\(813\) 53810.6 2.32130
\(814\) 0 0
\(815\) 3269.11 0.140506
\(816\) 0 0
\(817\) −9545.04 −0.408738
\(818\) 0 0
\(819\) −4230.26 −0.180485
\(820\) 0 0
\(821\) 32731.1 1.39138 0.695691 0.718341i \(-0.255098\pi\)
0.695691 + 0.718341i \(0.255098\pi\)
\(822\) 0 0
\(823\) 39001.6 1.65190 0.825948 0.563747i \(-0.190641\pi\)
0.825948 + 0.563747i \(0.190641\pi\)
\(824\) 0 0
\(825\) −10740.7 −0.453266
\(826\) 0 0
\(827\) −16043.5 −0.674593 −0.337297 0.941398i \(-0.609512\pi\)
−0.337297 + 0.941398i \(0.609512\pi\)
\(828\) 0 0
\(829\) −10794.1 −0.452227 −0.226113 0.974101i \(-0.572602\pi\)
−0.226113 + 0.974101i \(0.572602\pi\)
\(830\) 0 0
\(831\) −19132.6 −0.798680
\(832\) 0 0
\(833\) 7017.25 0.291877
\(834\) 0 0
\(835\) 2555.68 0.105920
\(836\) 0 0
\(837\) −1903.39 −0.0786030
\(838\) 0 0
\(839\) 34642.7 1.42550 0.712752 0.701416i \(-0.247448\pi\)
0.712752 + 0.701416i \(0.247448\pi\)
\(840\) 0 0
\(841\) −16716.5 −0.685412
\(842\) 0 0
\(843\) −38589.1 −1.57661
\(844\) 0 0
\(845\) 2774.58 0.112957
\(846\) 0 0
\(847\) 26255.8 1.06512
\(848\) 0 0
\(849\) −13997.7 −0.565842
\(850\) 0 0
\(851\) 2182.38 0.0879094
\(852\) 0 0
\(853\) 20704.0 0.831057 0.415529 0.909580i \(-0.363597\pi\)
0.415529 + 0.909580i \(0.363597\pi\)
\(854\) 0 0
\(855\) −1218.85 −0.0487528
\(856\) 0 0
\(857\) 24088.7 0.960155 0.480078 0.877226i \(-0.340609\pi\)
0.480078 + 0.877226i \(0.340609\pi\)
\(858\) 0 0
\(859\) 6648.01 0.264060 0.132030 0.991246i \(-0.457851\pi\)
0.132030 + 0.991246i \(0.457851\pi\)
\(860\) 0 0
\(861\) −35503.6 −1.40530
\(862\) 0 0
\(863\) −12503.2 −0.493181 −0.246591 0.969120i \(-0.579310\pi\)
−0.246591 + 0.969120i \(0.579310\pi\)
\(864\) 0 0
\(865\) 299.259 0.0117631
\(866\) 0 0
\(867\) −22465.1 −0.879993
\(868\) 0 0
\(869\) 10716.1 0.418318
\(870\) 0 0
\(871\) −16742.7 −0.651326
\(872\) 0 0
\(873\) −6591.00 −0.255523
\(874\) 0 0
\(875\) −8340.70 −0.322248
\(876\) 0 0
\(877\) −9041.20 −0.348118 −0.174059 0.984735i \(-0.555688\pi\)
−0.174059 + 0.984735i \(0.555688\pi\)
\(878\) 0 0
\(879\) 34012.4 1.30513
\(880\) 0 0
\(881\) −33837.2 −1.29399 −0.646995 0.762494i \(-0.723975\pi\)
−0.646995 + 0.762494i \(0.723975\pi\)
\(882\) 0 0
\(883\) −24724.4 −0.942290 −0.471145 0.882056i \(-0.656159\pi\)
−0.471145 + 0.882056i \(0.656159\pi\)
\(884\) 0 0
\(885\) 4831.73 0.183522
\(886\) 0 0
\(887\) 9427.81 0.356882 0.178441 0.983951i \(-0.442895\pi\)
0.178441 + 0.983951i \(0.442895\pi\)
\(888\) 0 0
\(889\) 30615.6 1.15502
\(890\) 0 0
\(891\) −12841.5 −0.482837
\(892\) 0 0
\(893\) 6577.94 0.246498
\(894\) 0 0
\(895\) −6630.96 −0.247652
\(896\) 0 0
\(897\) −2367.84 −0.0881379
\(898\) 0 0
\(899\) −1680.29 −0.0623368
\(900\) 0 0
\(901\) −13225.6 −0.489020
\(902\) 0 0
\(903\) 17639.7 0.650069
\(904\) 0 0
\(905\) 246.014 0.00903622
\(906\) 0 0
\(907\) −41128.1 −1.50566 −0.752832 0.658213i \(-0.771313\pi\)
−0.752832 + 0.658213i \(0.771313\pi\)
\(908\) 0 0
\(909\) −4367.01 −0.159345
\(910\) 0 0
\(911\) 16887.9 0.614184 0.307092 0.951680i \(-0.400644\pi\)
0.307092 + 0.951680i \(0.400644\pi\)
\(912\) 0 0
\(913\) −13119.5 −0.475566
\(914\) 0 0
\(915\) −2123.73 −0.0767303
\(916\) 0 0
\(917\) 1831.92 0.0659711
\(918\) 0 0
\(919\) −27738.7 −0.995663 −0.497831 0.867274i \(-0.665870\pi\)
−0.497831 + 0.867274i \(0.665870\pi\)
\(920\) 0 0
\(921\) −21966.9 −0.785921
\(922\) 0 0
\(923\) 259.951 0.00927018
\(924\) 0 0
\(925\) 11662.0 0.414535
\(926\) 0 0
\(927\) −10958.0 −0.388249
\(928\) 0 0
\(929\) 46867.7 1.65520 0.827600 0.561319i \(-0.189706\pi\)
0.827600 + 0.561319i \(0.189706\pi\)
\(930\) 0 0
\(931\) 15288.4 0.538192
\(932\) 0 0
\(933\) −24568.6 −0.862100
\(934\) 0 0
\(935\) −730.249 −0.0255419
\(936\) 0 0
\(937\) −17889.5 −0.623718 −0.311859 0.950128i \(-0.600952\pi\)
−0.311859 + 0.950128i \(0.600952\pi\)
\(938\) 0 0
\(939\) −10772.3 −0.374378
\(940\) 0 0
\(941\) −19697.0 −0.682363 −0.341182 0.939997i \(-0.610827\pi\)
−0.341182 + 0.939997i \(0.610827\pi\)
\(942\) 0 0
\(943\) −5707.18 −0.197085
\(944\) 0 0
\(945\) −3338.31 −0.114916
\(946\) 0 0
\(947\) 15836.0 0.543401 0.271700 0.962382i \(-0.412414\pi\)
0.271700 + 0.962382i \(0.412414\pi\)
\(948\) 0 0
\(949\) 309.975 0.0106030
\(950\) 0 0
\(951\) −54126.7 −1.84561
\(952\) 0 0
\(953\) −4023.05 −0.136746 −0.0683732 0.997660i \(-0.521781\pi\)
−0.0683732 + 0.997660i \(0.521781\pi\)
\(954\) 0 0
\(955\) 613.388 0.0207841
\(956\) 0 0
\(957\) −7654.73 −0.258560
\(958\) 0 0
\(959\) −32905.4 −1.10800
\(960\) 0 0
\(961\) −29423.0 −0.987648
\(962\) 0 0
\(963\) 2373.23 0.0794145
\(964\) 0 0
\(965\) −422.011 −0.0140777
\(966\) 0 0
\(967\) −14863.9 −0.494304 −0.247152 0.968977i \(-0.579495\pi\)
−0.247152 + 0.968977i \(0.579495\pi\)
\(968\) 0 0
\(969\) 16932.9 0.561365
\(970\) 0 0
\(971\) −32532.6 −1.07520 −0.537601 0.843199i \(-0.680669\pi\)
−0.537601 + 0.843199i \(0.680669\pi\)
\(972\) 0 0
\(973\) −32032.1 −1.05540
\(974\) 0 0
\(975\) −12653.1 −0.415612
\(976\) 0 0
\(977\) 20908.4 0.684667 0.342334 0.939578i \(-0.388783\pi\)
0.342334 + 0.939578i \(0.388783\pi\)
\(978\) 0 0
\(979\) −18610.4 −0.607548
\(980\) 0 0
\(981\) 7148.11 0.232642
\(982\) 0 0
\(983\) 43012.9 1.39562 0.697812 0.716281i \(-0.254157\pi\)
0.697812 + 0.716281i \(0.254157\pi\)
\(984\) 0 0
\(985\) 6312.71 0.204203
\(986\) 0 0
\(987\) −12156.4 −0.392037
\(988\) 0 0
\(989\) 2835.57 0.0911686
\(990\) 0 0
\(991\) −41354.1 −1.32559 −0.662794 0.748802i \(-0.730630\pi\)
−0.662794 + 0.748802i \(0.730630\pi\)
\(992\) 0 0
\(993\) 6315.85 0.201840
\(994\) 0 0
\(995\) −6394.02 −0.203723
\(996\) 0 0
\(997\) 27650.9 0.878346 0.439173 0.898402i \(-0.355271\pi\)
0.439173 + 0.898402i \(0.355271\pi\)
\(998\) 0 0
\(999\) 9414.83 0.298170
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.be.1.3 4
4.3 odd 2 1472.4.a.z.1.2 4
8.3 odd 2 184.4.a.f.1.3 4
8.5 even 2 368.4.a.m.1.2 4
24.11 even 2 1656.4.a.l.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.a.f.1.3 4 8.3 odd 2
368.4.a.m.1.2 4 8.5 even 2
1472.4.a.z.1.2 4 4.3 odd 2
1472.4.a.be.1.3 4 1.1 even 1 trivial
1656.4.a.l.1.2 4 24.11 even 2