Properties

Label 1472.4.a.bf.1.1
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.362907\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.41777 q^{3} -7.80430 q^{5} +27.0572 q^{7} -7.48328 q^{9} +35.2507 q^{11} -58.1812 q^{13} +34.4776 q^{15} +98.3726 q^{17} -35.3289 q^{19} -119.533 q^{21} +23.0000 q^{23} -64.0928 q^{25} +152.339 q^{27} +235.531 q^{29} +55.0241 q^{31} -155.730 q^{33} -211.163 q^{35} -401.458 q^{37} +257.031 q^{39} -59.2600 q^{41} +11.2341 q^{43} +58.4018 q^{45} +103.224 q^{47} +389.093 q^{49} -434.588 q^{51} +351.594 q^{53} -275.107 q^{55} +156.075 q^{57} -547.016 q^{59} -478.070 q^{61} -202.477 q^{63} +454.063 q^{65} +14.3681 q^{67} -101.609 q^{69} -843.177 q^{71} +118.935 q^{73} +283.148 q^{75} +953.786 q^{77} +388.400 q^{79} -470.952 q^{81} -62.9800 q^{83} -767.730 q^{85} -1040.52 q^{87} +678.372 q^{89} -1574.22 q^{91} -243.084 q^{93} +275.717 q^{95} +421.192 q^{97} -263.791 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{3} - 14 q^{5} - 16 q^{7} - 33 q^{9} + 8 q^{11} - 111 q^{13} - 10 q^{15} + 98 q^{17} + 96 q^{19} - 180 q^{21} + 92 q^{23} + 184 q^{25} - 155 q^{27} - 21 q^{29} + 193 q^{31} - 418 q^{33} - 752 q^{35}+ \cdots - 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.41777 −0.850201 −0.425100 0.905146i \(-0.639761\pi\)
−0.425100 + 0.905146i \(0.639761\pi\)
\(4\) 0 0
\(5\) −7.80430 −0.698038 −0.349019 0.937116i \(-0.613485\pi\)
−0.349019 + 0.937116i \(0.613485\pi\)
\(6\) 0 0
\(7\) 27.0572 1.46095 0.730476 0.682938i \(-0.239298\pi\)
0.730476 + 0.682938i \(0.239298\pi\)
\(8\) 0 0
\(9\) −7.48328 −0.277158
\(10\) 0 0
\(11\) 35.2507 0.966226 0.483113 0.875558i \(-0.339506\pi\)
0.483113 + 0.875558i \(0.339506\pi\)
\(12\) 0 0
\(13\) −58.1812 −1.24127 −0.620637 0.784098i \(-0.713126\pi\)
−0.620637 + 0.784098i \(0.713126\pi\)
\(14\) 0 0
\(15\) 34.4776 0.593473
\(16\) 0 0
\(17\) 98.3726 1.40346 0.701731 0.712442i \(-0.252411\pi\)
0.701731 + 0.712442i \(0.252411\pi\)
\(18\) 0 0
\(19\) −35.3289 −0.426579 −0.213289 0.976989i \(-0.568418\pi\)
−0.213289 + 0.976989i \(0.568418\pi\)
\(20\) 0 0
\(21\) −119.533 −1.24210
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −64.0928 −0.512743
\(26\) 0 0
\(27\) 152.339 1.08584
\(28\) 0 0
\(29\) 235.531 1.50817 0.754087 0.656774i \(-0.228080\pi\)
0.754087 + 0.656774i \(0.228080\pi\)
\(30\) 0 0
\(31\) 55.0241 0.318794 0.159397 0.987215i \(-0.449045\pi\)
0.159397 + 0.987215i \(0.449045\pi\)
\(32\) 0 0
\(33\) −155.730 −0.821486
\(34\) 0 0
\(35\) −211.163 −1.01980
\(36\) 0 0
\(37\) −401.458 −1.78377 −0.891883 0.452266i \(-0.850616\pi\)
−0.891883 + 0.452266i \(0.850616\pi\)
\(38\) 0 0
\(39\) 257.031 1.05533
\(40\) 0 0
\(41\) −59.2600 −0.225728 −0.112864 0.993610i \(-0.536002\pi\)
−0.112864 + 0.993610i \(0.536002\pi\)
\(42\) 0 0
\(43\) 11.2341 0.0398416 0.0199208 0.999802i \(-0.493659\pi\)
0.0199208 + 0.999802i \(0.493659\pi\)
\(44\) 0 0
\(45\) 58.4018 0.193467
\(46\) 0 0
\(47\) 103.224 0.320355 0.160178 0.987088i \(-0.448793\pi\)
0.160178 + 0.987088i \(0.448793\pi\)
\(48\) 0 0
\(49\) 389.093 1.13438
\(50\) 0 0
\(51\) −434.588 −1.19323
\(52\) 0 0
\(53\) 351.594 0.911229 0.455614 0.890177i \(-0.349420\pi\)
0.455614 + 0.890177i \(0.349420\pi\)
\(54\) 0 0
\(55\) −275.107 −0.674463
\(56\) 0 0
\(57\) 156.075 0.362678
\(58\) 0 0
\(59\) −547.016 −1.20704 −0.603520 0.797347i \(-0.706236\pi\)
−0.603520 + 0.797347i \(0.706236\pi\)
\(60\) 0 0
\(61\) −478.070 −1.00345 −0.501726 0.865026i \(-0.667302\pi\)
−0.501726 + 0.865026i \(0.667302\pi\)
\(62\) 0 0
\(63\) −202.477 −0.404915
\(64\) 0 0
\(65\) 454.063 0.866456
\(66\) 0 0
\(67\) 14.3681 0.0261992 0.0130996 0.999914i \(-0.495830\pi\)
0.0130996 + 0.999914i \(0.495830\pi\)
\(68\) 0 0
\(69\) −101.609 −0.177279
\(70\) 0 0
\(71\) −843.177 −1.40939 −0.704695 0.709510i \(-0.748916\pi\)
−0.704695 + 0.709510i \(0.748916\pi\)
\(72\) 0 0
\(73\) 118.935 0.190689 0.0953445 0.995444i \(-0.469605\pi\)
0.0953445 + 0.995444i \(0.469605\pi\)
\(74\) 0 0
\(75\) 283.148 0.435934
\(76\) 0 0
\(77\) 953.786 1.41161
\(78\) 0 0
\(79\) 388.400 0.553145 0.276572 0.960993i \(-0.410801\pi\)
0.276572 + 0.960993i \(0.410801\pi\)
\(80\) 0 0
\(81\) −470.952 −0.646025
\(82\) 0 0
\(83\) −62.9800 −0.0832886 −0.0416443 0.999132i \(-0.513260\pi\)
−0.0416443 + 0.999132i \(0.513260\pi\)
\(84\) 0 0
\(85\) −767.730 −0.979671
\(86\) 0 0
\(87\) −1040.52 −1.28225
\(88\) 0 0
\(89\) 678.372 0.807947 0.403974 0.914771i \(-0.367629\pi\)
0.403974 + 0.914771i \(0.367629\pi\)
\(90\) 0 0
\(91\) −1574.22 −1.81344
\(92\) 0 0
\(93\) −243.084 −0.271039
\(94\) 0 0
\(95\) 275.717 0.297768
\(96\) 0 0
\(97\) 421.192 0.440882 0.220441 0.975400i \(-0.429250\pi\)
0.220441 + 0.975400i \(0.429250\pi\)
\(98\) 0 0
\(99\) −263.791 −0.267798
\(100\) 0 0
\(101\) 1.65795 0.00163339 0.000816695 1.00000i \(-0.499740\pi\)
0.000816695 1.00000i \(0.499740\pi\)
\(102\) 0 0
\(103\) −1057.63 −1.01176 −0.505879 0.862604i \(-0.668832\pi\)
−0.505879 + 0.862604i \(0.668832\pi\)
\(104\) 0 0
\(105\) 932.869 0.867035
\(106\) 0 0
\(107\) −155.626 −0.140607 −0.0703036 0.997526i \(-0.522397\pi\)
−0.0703036 + 0.997526i \(0.522397\pi\)
\(108\) 0 0
\(109\) 1815.84 1.59565 0.797826 0.602888i \(-0.205983\pi\)
0.797826 + 0.602888i \(0.205983\pi\)
\(110\) 0 0
\(111\) 1773.55 1.51656
\(112\) 0 0
\(113\) 485.235 0.403956 0.201978 0.979390i \(-0.435263\pi\)
0.201978 + 0.979390i \(0.435263\pi\)
\(114\) 0 0
\(115\) −179.499 −0.145551
\(116\) 0 0
\(117\) 435.386 0.344029
\(118\) 0 0
\(119\) 2661.69 2.05039
\(120\) 0 0
\(121\) −88.3874 −0.0664068
\(122\) 0 0
\(123\) 261.797 0.191914
\(124\) 0 0
\(125\) 1475.74 1.05595
\(126\) 0 0
\(127\) −2468.34 −1.72464 −0.862322 0.506360i \(-0.830991\pi\)
−0.862322 + 0.506360i \(0.830991\pi\)
\(128\) 0 0
\(129\) −49.6298 −0.0338734
\(130\) 0 0
\(131\) 1071.51 0.714647 0.357323 0.933981i \(-0.383689\pi\)
0.357323 + 0.933981i \(0.383689\pi\)
\(132\) 0 0
\(133\) −955.901 −0.623212
\(134\) 0 0
\(135\) −1188.90 −0.757959
\(136\) 0 0
\(137\) 241.497 0.150602 0.0753009 0.997161i \(-0.476008\pi\)
0.0753009 + 0.997161i \(0.476008\pi\)
\(138\) 0 0
\(139\) 2659.19 1.62266 0.811329 0.584590i \(-0.198745\pi\)
0.811329 + 0.584590i \(0.198745\pi\)
\(140\) 0 0
\(141\) −456.018 −0.272366
\(142\) 0 0
\(143\) −2050.93 −1.19935
\(144\) 0 0
\(145\) −1838.16 −1.05276
\(146\) 0 0
\(147\) −1718.93 −0.964453
\(148\) 0 0
\(149\) 182.051 0.100095 0.0500477 0.998747i \(-0.484063\pi\)
0.0500477 + 0.998747i \(0.484063\pi\)
\(150\) 0 0
\(151\) 3377.13 1.82005 0.910023 0.414557i \(-0.136063\pi\)
0.910023 + 0.414557i \(0.136063\pi\)
\(152\) 0 0
\(153\) −736.150 −0.388981
\(154\) 0 0
\(155\) −429.425 −0.222531
\(156\) 0 0
\(157\) 2843.19 1.44530 0.722648 0.691216i \(-0.242925\pi\)
0.722648 + 0.691216i \(0.242925\pi\)
\(158\) 0 0
\(159\) −1553.26 −0.774728
\(160\) 0 0
\(161\) 622.316 0.304630
\(162\) 0 0
\(163\) 2135.85 1.02633 0.513167 0.858289i \(-0.328472\pi\)
0.513167 + 0.858289i \(0.328472\pi\)
\(164\) 0 0
\(165\) 1215.36 0.573429
\(166\) 0 0
\(167\) −796.566 −0.369103 −0.184551 0.982823i \(-0.559083\pi\)
−0.184551 + 0.982823i \(0.559083\pi\)
\(168\) 0 0
\(169\) 1188.05 0.540759
\(170\) 0 0
\(171\) 264.376 0.118230
\(172\) 0 0
\(173\) 4456.05 1.95831 0.979154 0.203121i \(-0.0651085\pi\)
0.979154 + 0.203121i \(0.0651085\pi\)
\(174\) 0 0
\(175\) −1734.17 −0.749093
\(176\) 0 0
\(177\) 2416.59 1.02623
\(178\) 0 0
\(179\) −693.459 −0.289562 −0.144781 0.989464i \(-0.546248\pi\)
−0.144781 + 0.989464i \(0.546248\pi\)
\(180\) 0 0
\(181\) 974.743 0.400288 0.200144 0.979767i \(-0.435859\pi\)
0.200144 + 0.979767i \(0.435859\pi\)
\(182\) 0 0
\(183\) 2112.01 0.853136
\(184\) 0 0
\(185\) 3133.10 1.24514
\(186\) 0 0
\(187\) 3467.70 1.35606
\(188\) 0 0
\(189\) 4121.88 1.58636
\(190\) 0 0
\(191\) 775.067 0.293623 0.146811 0.989165i \(-0.453099\pi\)
0.146811 + 0.989165i \(0.453099\pi\)
\(192\) 0 0
\(193\) 2021.09 0.753789 0.376895 0.926256i \(-0.376992\pi\)
0.376895 + 0.926256i \(0.376992\pi\)
\(194\) 0 0
\(195\) −2005.95 −0.736662
\(196\) 0 0
\(197\) −566.907 −0.205028 −0.102514 0.994732i \(-0.532689\pi\)
−0.102514 + 0.994732i \(0.532689\pi\)
\(198\) 0 0
\(199\) 1724.07 0.614150 0.307075 0.951685i \(-0.400650\pi\)
0.307075 + 0.951685i \(0.400650\pi\)
\(200\) 0 0
\(201\) −63.4751 −0.0222746
\(202\) 0 0
\(203\) 6372.82 2.20337
\(204\) 0 0
\(205\) 462.483 0.157567
\(206\) 0 0
\(207\) −172.115 −0.0577915
\(208\) 0 0
\(209\) −1245.37 −0.412172
\(210\) 0 0
\(211\) 2757.94 0.899832 0.449916 0.893071i \(-0.351454\pi\)
0.449916 + 0.893071i \(0.351454\pi\)
\(212\) 0 0
\(213\) 3724.97 1.19827
\(214\) 0 0
\(215\) −87.6745 −0.0278109
\(216\) 0 0
\(217\) 1488.80 0.465743
\(218\) 0 0
\(219\) −525.428 −0.162124
\(220\) 0 0
\(221\) −5723.43 −1.74208
\(222\) 0 0
\(223\) 4257.81 1.27858 0.639292 0.768964i \(-0.279227\pi\)
0.639292 + 0.768964i \(0.279227\pi\)
\(224\) 0 0
\(225\) 479.624 0.142111
\(226\) 0 0
\(227\) 4320.03 1.26313 0.631564 0.775324i \(-0.282413\pi\)
0.631564 + 0.775324i \(0.282413\pi\)
\(228\) 0 0
\(229\) −1057.27 −0.305094 −0.152547 0.988296i \(-0.548747\pi\)
−0.152547 + 0.988296i \(0.548747\pi\)
\(230\) 0 0
\(231\) −4213.61 −1.20015
\(232\) 0 0
\(233\) −3194.98 −0.898327 −0.449163 0.893450i \(-0.648278\pi\)
−0.449163 + 0.893450i \(0.648278\pi\)
\(234\) 0 0
\(235\) −805.588 −0.223620
\(236\) 0 0
\(237\) −1715.86 −0.470284
\(238\) 0 0
\(239\) −131.327 −0.0355433 −0.0177717 0.999842i \(-0.505657\pi\)
−0.0177717 + 0.999842i \(0.505657\pi\)
\(240\) 0 0
\(241\) 2429.45 0.649356 0.324678 0.945825i \(-0.394744\pi\)
0.324678 + 0.945825i \(0.394744\pi\)
\(242\) 0 0
\(243\) −2032.60 −0.536590
\(244\) 0 0
\(245\) −3036.60 −0.791842
\(246\) 0 0
\(247\) 2055.47 0.529501
\(248\) 0 0
\(249\) 278.232 0.0708121
\(250\) 0 0
\(251\) 689.940 0.173501 0.0867503 0.996230i \(-0.472352\pi\)
0.0867503 + 0.996230i \(0.472352\pi\)
\(252\) 0 0
\(253\) 810.766 0.201472
\(254\) 0 0
\(255\) 3391.66 0.832917
\(256\) 0 0
\(257\) −7466.72 −1.81230 −0.906151 0.422955i \(-0.860993\pi\)
−0.906151 + 0.422955i \(0.860993\pi\)
\(258\) 0 0
\(259\) −10862.3 −2.60600
\(260\) 0 0
\(261\) −1762.55 −0.418003
\(262\) 0 0
\(263\) 1688.09 0.395786 0.197893 0.980224i \(-0.436590\pi\)
0.197893 + 0.980224i \(0.436590\pi\)
\(264\) 0 0
\(265\) −2743.95 −0.636072
\(266\) 0 0
\(267\) −2996.89 −0.686917
\(268\) 0 0
\(269\) 3665.13 0.830731 0.415365 0.909655i \(-0.363654\pi\)
0.415365 + 0.909655i \(0.363654\pi\)
\(270\) 0 0
\(271\) −289.699 −0.0649371 −0.0324686 0.999473i \(-0.510337\pi\)
−0.0324686 + 0.999473i \(0.510337\pi\)
\(272\) 0 0
\(273\) 6954.55 1.54179
\(274\) 0 0
\(275\) −2259.32 −0.495425
\(276\) 0 0
\(277\) −0.383938 −8.32802e−5 0 −4.16401e−5 1.00000i \(-0.500013\pi\)
−4.16401e−5 1.00000i \(0.500013\pi\)
\(278\) 0 0
\(279\) −411.761 −0.0883565
\(280\) 0 0
\(281\) −3507.39 −0.744602 −0.372301 0.928112i \(-0.621431\pi\)
−0.372301 + 0.928112i \(0.621431\pi\)
\(282\) 0 0
\(283\) 4231.65 0.888854 0.444427 0.895815i \(-0.353407\pi\)
0.444427 + 0.895815i \(0.353407\pi\)
\(284\) 0 0
\(285\) −1218.06 −0.253163
\(286\) 0 0
\(287\) −1603.41 −0.329778
\(288\) 0 0
\(289\) 4764.17 0.969707
\(290\) 0 0
\(291\) −1860.73 −0.374839
\(292\) 0 0
\(293\) 1066.58 0.212663 0.106331 0.994331i \(-0.466090\pi\)
0.106331 + 0.994331i \(0.466090\pi\)
\(294\) 0 0
\(295\) 4269.08 0.842561
\(296\) 0 0
\(297\) 5370.07 1.04917
\(298\) 0 0
\(299\) −1338.17 −0.258823
\(300\) 0 0
\(301\) 303.964 0.0582067
\(302\) 0 0
\(303\) −7.32446 −0.00138871
\(304\) 0 0
\(305\) 3731.00 0.700448
\(306\) 0 0
\(307\) −2744.52 −0.510222 −0.255111 0.966912i \(-0.582112\pi\)
−0.255111 + 0.966912i \(0.582112\pi\)
\(308\) 0 0
\(309\) 4672.36 0.860198
\(310\) 0 0
\(311\) −2719.23 −0.495798 −0.247899 0.968786i \(-0.579740\pi\)
−0.247899 + 0.968786i \(0.579740\pi\)
\(312\) 0 0
\(313\) 5919.04 1.06890 0.534448 0.845202i \(-0.320520\pi\)
0.534448 + 0.845202i \(0.320520\pi\)
\(314\) 0 0
\(315\) 1580.19 0.282646
\(316\) 0 0
\(317\) −1327.55 −0.235213 −0.117606 0.993060i \(-0.537522\pi\)
−0.117606 + 0.993060i \(0.537522\pi\)
\(318\) 0 0
\(319\) 8302.64 1.45724
\(320\) 0 0
\(321\) 687.522 0.119544
\(322\) 0 0
\(323\) −3475.39 −0.598688
\(324\) 0 0
\(325\) 3729.00 0.636454
\(326\) 0 0
\(327\) −8021.98 −1.35663
\(328\) 0 0
\(329\) 2792.94 0.468024
\(330\) 0 0
\(331\) 3236.92 0.537514 0.268757 0.963208i \(-0.413387\pi\)
0.268757 + 0.963208i \(0.413387\pi\)
\(332\) 0 0
\(333\) 3004.22 0.494386
\(334\) 0 0
\(335\) −112.133 −0.0182880
\(336\) 0 0
\(337\) 12263.3 1.98226 0.991132 0.132878i \(-0.0424220\pi\)
0.991132 + 0.132878i \(0.0424220\pi\)
\(338\) 0 0
\(339\) −2143.66 −0.343444
\(340\) 0 0
\(341\) 1939.64 0.308028
\(342\) 0 0
\(343\) 1247.15 0.196326
\(344\) 0 0
\(345\) 792.986 0.123748
\(346\) 0 0
\(347\) −10377.8 −1.60551 −0.802753 0.596311i \(-0.796632\pi\)
−0.802753 + 0.596311i \(0.796632\pi\)
\(348\) 0 0
\(349\) −4837.57 −0.741975 −0.370987 0.928638i \(-0.620981\pi\)
−0.370987 + 0.928638i \(0.620981\pi\)
\(350\) 0 0
\(351\) −8863.28 −1.34783
\(352\) 0 0
\(353\) 6761.01 1.01941 0.509706 0.860349i \(-0.329754\pi\)
0.509706 + 0.860349i \(0.329754\pi\)
\(354\) 0 0
\(355\) 6580.41 0.983809
\(356\) 0 0
\(357\) −11758.7 −1.74325
\(358\) 0 0
\(359\) −4539.67 −0.667394 −0.333697 0.942680i \(-0.608296\pi\)
−0.333697 + 0.942680i \(0.608296\pi\)
\(360\) 0 0
\(361\) −5610.87 −0.818030
\(362\) 0 0
\(363\) 390.476 0.0564591
\(364\) 0 0
\(365\) −928.206 −0.133108
\(366\) 0 0
\(367\) 9564.79 1.36043 0.680215 0.733012i \(-0.261886\pi\)
0.680215 + 0.733012i \(0.261886\pi\)
\(368\) 0 0
\(369\) 443.459 0.0625625
\(370\) 0 0
\(371\) 9513.15 1.33126
\(372\) 0 0
\(373\) 5028.99 0.698100 0.349050 0.937104i \(-0.386504\pi\)
0.349050 + 0.937104i \(0.386504\pi\)
\(374\) 0 0
\(375\) −6519.48 −0.897772
\(376\) 0 0
\(377\) −13703.5 −1.87206
\(378\) 0 0
\(379\) 560.190 0.0759235 0.0379618 0.999279i \(-0.487913\pi\)
0.0379618 + 0.999279i \(0.487913\pi\)
\(380\) 0 0
\(381\) 10904.6 1.46629
\(382\) 0 0
\(383\) −5273.52 −0.703563 −0.351781 0.936082i \(-0.614424\pi\)
−0.351781 + 0.936082i \(0.614424\pi\)
\(384\) 0 0
\(385\) −7443.64 −0.985358
\(386\) 0 0
\(387\) −84.0681 −0.0110424
\(388\) 0 0
\(389\) 9371.31 1.22145 0.610725 0.791843i \(-0.290878\pi\)
0.610725 + 0.791843i \(0.290878\pi\)
\(390\) 0 0
\(391\) 2262.57 0.292642
\(392\) 0 0
\(393\) −4733.71 −0.607593
\(394\) 0 0
\(395\) −3031.19 −0.386116
\(396\) 0 0
\(397\) −6200.86 −0.783909 −0.391955 0.919985i \(-0.628201\pi\)
−0.391955 + 0.919985i \(0.628201\pi\)
\(398\) 0 0
\(399\) 4222.95 0.529855
\(400\) 0 0
\(401\) 2600.97 0.323906 0.161953 0.986798i \(-0.448221\pi\)
0.161953 + 0.986798i \(0.448221\pi\)
\(402\) 0 0
\(403\) −3201.37 −0.395711
\(404\) 0 0
\(405\) 3675.45 0.450950
\(406\) 0 0
\(407\) −14151.7 −1.72352
\(408\) 0 0
\(409\) 6260.14 0.756831 0.378416 0.925636i \(-0.376469\pi\)
0.378416 + 0.925636i \(0.376469\pi\)
\(410\) 0 0
\(411\) −1066.88 −0.128042
\(412\) 0 0
\(413\) −14800.7 −1.76343
\(414\) 0 0
\(415\) 491.515 0.0581387
\(416\) 0 0
\(417\) −11747.7 −1.37959
\(418\) 0 0
\(419\) −6352.30 −0.740645 −0.370322 0.928903i \(-0.620753\pi\)
−0.370322 + 0.928903i \(0.620753\pi\)
\(420\) 0 0
\(421\) −3405.54 −0.394242 −0.197121 0.980379i \(-0.563159\pi\)
−0.197121 + 0.980379i \(0.563159\pi\)
\(422\) 0 0
\(423\) −772.450 −0.0887892
\(424\) 0 0
\(425\) −6304.98 −0.719615
\(426\) 0 0
\(427\) −12935.2 −1.46600
\(428\) 0 0
\(429\) 9060.53 1.01969
\(430\) 0 0
\(431\) 17077.6 1.90858 0.954290 0.298881i \(-0.0966135\pi\)
0.954290 + 0.298881i \(0.0966135\pi\)
\(432\) 0 0
\(433\) 15884.5 1.76296 0.881480 0.472222i \(-0.156548\pi\)
0.881480 + 0.472222i \(0.156548\pi\)
\(434\) 0 0
\(435\) 8120.56 0.895060
\(436\) 0 0
\(437\) −812.564 −0.0889479
\(438\) 0 0
\(439\) 5977.96 0.649914 0.324957 0.945729i \(-0.394650\pi\)
0.324957 + 0.945729i \(0.394650\pi\)
\(440\) 0 0
\(441\) −2911.69 −0.314404
\(442\) 0 0
\(443\) −1747.71 −0.187440 −0.0937202 0.995599i \(-0.529876\pi\)
−0.0937202 + 0.995599i \(0.529876\pi\)
\(444\) 0 0
\(445\) −5294.22 −0.563978
\(446\) 0 0
\(447\) −804.261 −0.0851012
\(448\) 0 0
\(449\) 10320.1 1.08472 0.542358 0.840148i \(-0.317532\pi\)
0.542358 + 0.840148i \(0.317532\pi\)
\(450\) 0 0
\(451\) −2088.96 −0.218105
\(452\) 0 0
\(453\) −14919.4 −1.54741
\(454\) 0 0
\(455\) 12285.7 1.26585
\(456\) 0 0
\(457\) −11934.9 −1.22164 −0.610821 0.791769i \(-0.709161\pi\)
−0.610821 + 0.791769i \(0.709161\pi\)
\(458\) 0 0
\(459\) 14986.0 1.52394
\(460\) 0 0
\(461\) 5673.34 0.573175 0.286588 0.958054i \(-0.407479\pi\)
0.286588 + 0.958054i \(0.407479\pi\)
\(462\) 0 0
\(463\) 7559.91 0.758831 0.379416 0.925226i \(-0.376125\pi\)
0.379416 + 0.925226i \(0.376125\pi\)
\(464\) 0 0
\(465\) 1897.10 0.189196
\(466\) 0 0
\(467\) 1203.47 0.119250 0.0596252 0.998221i \(-0.481009\pi\)
0.0596252 + 0.998221i \(0.481009\pi\)
\(468\) 0 0
\(469\) 388.761 0.0382758
\(470\) 0 0
\(471\) −12560.6 −1.22879
\(472\) 0 0
\(473\) 396.011 0.0384960
\(474\) 0 0
\(475\) 2264.33 0.218725
\(476\) 0 0
\(477\) −2631.07 −0.252555
\(478\) 0 0
\(479\) −7928.98 −0.756335 −0.378167 0.925737i \(-0.623446\pi\)
−0.378167 + 0.925737i \(0.623446\pi\)
\(480\) 0 0
\(481\) 23357.3 2.21414
\(482\) 0 0
\(483\) −2749.25 −0.258996
\(484\) 0 0
\(485\) −3287.11 −0.307753
\(486\) 0 0
\(487\) −748.445 −0.0696412 −0.0348206 0.999394i \(-0.511086\pi\)
−0.0348206 + 0.999394i \(0.511086\pi\)
\(488\) 0 0
\(489\) −9435.70 −0.872591
\(490\) 0 0
\(491\) −2201.18 −0.202318 −0.101159 0.994870i \(-0.532255\pi\)
−0.101159 + 0.994870i \(0.532255\pi\)
\(492\) 0 0
\(493\) 23169.8 2.11667
\(494\) 0 0
\(495\) 2058.70 0.186933
\(496\) 0 0
\(497\) −22814.0 −2.05905
\(498\) 0 0
\(499\) −12268.4 −1.10062 −0.550308 0.834961i \(-0.685490\pi\)
−0.550308 + 0.834961i \(0.685490\pi\)
\(500\) 0 0
\(501\) 3519.05 0.313811
\(502\) 0 0
\(503\) −10161.0 −0.900711 −0.450356 0.892849i \(-0.648703\pi\)
−0.450356 + 0.892849i \(0.648703\pi\)
\(504\) 0 0
\(505\) −12.9392 −0.00114017
\(506\) 0 0
\(507\) −5248.52 −0.459754
\(508\) 0 0
\(509\) −18108.1 −1.57687 −0.788434 0.615119i \(-0.789108\pi\)
−0.788434 + 0.615119i \(0.789108\pi\)
\(510\) 0 0
\(511\) 3218.05 0.278588
\(512\) 0 0
\(513\) −5381.98 −0.463197
\(514\) 0 0
\(515\) 8254.04 0.706246
\(516\) 0 0
\(517\) 3638.70 0.309536
\(518\) 0 0
\(519\) −19685.8 −1.66495
\(520\) 0 0
\(521\) −10987.7 −0.923950 −0.461975 0.886893i \(-0.652859\pi\)
−0.461975 + 0.886893i \(0.652859\pi\)
\(522\) 0 0
\(523\) 20489.8 1.71311 0.856553 0.516059i \(-0.172601\pi\)
0.856553 + 0.516059i \(0.172601\pi\)
\(524\) 0 0
\(525\) 7661.19 0.636879
\(526\) 0 0
\(527\) 5412.87 0.447416
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 4093.47 0.334542
\(532\) 0 0
\(533\) 3447.82 0.280190
\(534\) 0 0
\(535\) 1214.55 0.0981491
\(536\) 0 0
\(537\) 3063.54 0.246186
\(538\) 0 0
\(539\) 13715.8 1.09607
\(540\) 0 0
\(541\) −1261.91 −0.100284 −0.0501420 0.998742i \(-0.515967\pi\)
−0.0501420 + 0.998742i \(0.515967\pi\)
\(542\) 0 0
\(543\) −4306.20 −0.340325
\(544\) 0 0
\(545\) −14171.4 −1.11383
\(546\) 0 0
\(547\) −5337.23 −0.417191 −0.208596 0.978002i \(-0.566889\pi\)
−0.208596 + 0.978002i \(0.566889\pi\)
\(548\) 0 0
\(549\) 3577.53 0.278115
\(550\) 0 0
\(551\) −8321.05 −0.643355
\(552\) 0 0
\(553\) 10509.0 0.808118
\(554\) 0 0
\(555\) −13841.3 −1.05862
\(556\) 0 0
\(557\) 10891.2 0.828503 0.414251 0.910163i \(-0.364043\pi\)
0.414251 + 0.910163i \(0.364043\pi\)
\(558\) 0 0
\(559\) −653.615 −0.0494543
\(560\) 0 0
\(561\) −15319.5 −1.15293
\(562\) 0 0
\(563\) 19620.8 1.46877 0.734385 0.678733i \(-0.237471\pi\)
0.734385 + 0.678733i \(0.237471\pi\)
\(564\) 0 0
\(565\) −3786.92 −0.281977
\(566\) 0 0
\(567\) −12742.7 −0.943812
\(568\) 0 0
\(569\) 25207.8 1.85723 0.928617 0.371041i \(-0.120999\pi\)
0.928617 + 0.371041i \(0.120999\pi\)
\(570\) 0 0
\(571\) 18889.0 1.38438 0.692190 0.721715i \(-0.256646\pi\)
0.692190 + 0.721715i \(0.256646\pi\)
\(572\) 0 0
\(573\) −3424.07 −0.249638
\(574\) 0 0
\(575\) −1474.14 −0.106914
\(576\) 0 0
\(577\) −8214.44 −0.592672 −0.296336 0.955084i \(-0.595765\pi\)
−0.296336 + 0.955084i \(0.595765\pi\)
\(578\) 0 0
\(579\) −8928.72 −0.640872
\(580\) 0 0
\(581\) −1704.06 −0.121681
\(582\) 0 0
\(583\) 12393.9 0.880453
\(584\) 0 0
\(585\) −3397.88 −0.240146
\(586\) 0 0
\(587\) 3022.88 0.212551 0.106276 0.994337i \(-0.466107\pi\)
0.106276 + 0.994337i \(0.466107\pi\)
\(588\) 0 0
\(589\) −1943.94 −0.135991
\(590\) 0 0
\(591\) 2504.47 0.174315
\(592\) 0 0
\(593\) −16386.9 −1.13479 −0.567394 0.823446i \(-0.692048\pi\)
−0.567394 + 0.823446i \(0.692048\pi\)
\(594\) 0 0
\(595\) −20772.6 −1.43125
\(596\) 0 0
\(597\) −7616.53 −0.522151
\(598\) 0 0
\(599\) 4768.20 0.325247 0.162624 0.986688i \(-0.448004\pi\)
0.162624 + 0.986688i \(0.448004\pi\)
\(600\) 0 0
\(601\) 1849.74 0.125545 0.0627725 0.998028i \(-0.480006\pi\)
0.0627725 + 0.998028i \(0.480006\pi\)
\(602\) 0 0
\(603\) −107.521 −0.00726132
\(604\) 0 0
\(605\) 689.802 0.0463545
\(606\) 0 0
\(607\) −18350.2 −1.22704 −0.613519 0.789680i \(-0.710246\pi\)
−0.613519 + 0.789680i \(0.710246\pi\)
\(608\) 0 0
\(609\) −28153.7 −1.87331
\(610\) 0 0
\(611\) −6005.67 −0.397649
\(612\) 0 0
\(613\) −13252.1 −0.873160 −0.436580 0.899666i \(-0.643810\pi\)
−0.436580 + 0.899666i \(0.643810\pi\)
\(614\) 0 0
\(615\) −2043.15 −0.133964
\(616\) 0 0
\(617\) −5203.51 −0.339523 −0.169761 0.985485i \(-0.554300\pi\)
−0.169761 + 0.985485i \(0.554300\pi\)
\(618\) 0 0
\(619\) −3974.35 −0.258066 −0.129033 0.991640i \(-0.541187\pi\)
−0.129033 + 0.991640i \(0.541187\pi\)
\(620\) 0 0
\(621\) 3503.80 0.226414
\(622\) 0 0
\(623\) 18354.9 1.18037
\(624\) 0 0
\(625\) −3505.50 −0.224352
\(626\) 0 0
\(627\) 5501.75 0.350429
\(628\) 0 0
\(629\) −39492.5 −2.50345
\(630\) 0 0
\(631\) −14357.8 −0.905827 −0.452913 0.891555i \(-0.649615\pi\)
−0.452913 + 0.891555i \(0.649615\pi\)
\(632\) 0 0
\(633\) −12184.0 −0.765038
\(634\) 0 0
\(635\) 19263.7 1.20387
\(636\) 0 0
\(637\) −22637.9 −1.40808
\(638\) 0 0
\(639\) 6309.73 0.390625
\(640\) 0 0
\(641\) 2587.81 0.159458 0.0797288 0.996817i \(-0.474595\pi\)
0.0797288 + 0.996817i \(0.474595\pi\)
\(642\) 0 0
\(643\) −18495.1 −1.13433 −0.567167 0.823603i \(-0.691960\pi\)
−0.567167 + 0.823603i \(0.691960\pi\)
\(644\) 0 0
\(645\) 387.326 0.0236449
\(646\) 0 0
\(647\) −5705.85 −0.346708 −0.173354 0.984860i \(-0.555460\pi\)
−0.173354 + 0.984860i \(0.555460\pi\)
\(648\) 0 0
\(649\) −19282.7 −1.16627
\(650\) 0 0
\(651\) −6577.18 −0.395975
\(652\) 0 0
\(653\) −17240.3 −1.03318 −0.516588 0.856234i \(-0.672798\pi\)
−0.516588 + 0.856234i \(0.672798\pi\)
\(654\) 0 0
\(655\) −8362.43 −0.498851
\(656\) 0 0
\(657\) −890.024 −0.0528511
\(658\) 0 0
\(659\) 1656.26 0.0979041 0.0489520 0.998801i \(-0.484412\pi\)
0.0489520 + 0.998801i \(0.484412\pi\)
\(660\) 0 0
\(661\) 14138.6 0.831965 0.415983 0.909373i \(-0.363438\pi\)
0.415983 + 0.909373i \(0.363438\pi\)
\(662\) 0 0
\(663\) 25284.8 1.48112
\(664\) 0 0
\(665\) 7460.14 0.435025
\(666\) 0 0
\(667\) 5417.22 0.314476
\(668\) 0 0
\(669\) −18810.1 −1.08705
\(670\) 0 0
\(671\) −16852.3 −0.969562
\(672\) 0 0
\(673\) 19008.2 1.08873 0.544363 0.838850i \(-0.316772\pi\)
0.544363 + 0.838850i \(0.316772\pi\)
\(674\) 0 0
\(675\) −9763.86 −0.556757
\(676\) 0 0
\(677\) 2957.92 0.167920 0.0839602 0.996469i \(-0.473243\pi\)
0.0839602 + 0.996469i \(0.473243\pi\)
\(678\) 0 0
\(679\) 11396.3 0.644108
\(680\) 0 0
\(681\) −19084.9 −1.07391
\(682\) 0 0
\(683\) −23345.5 −1.30789 −0.653947 0.756540i \(-0.726888\pi\)
−0.653947 + 0.756540i \(0.726888\pi\)
\(684\) 0 0
\(685\) −1884.71 −0.105126
\(686\) 0 0
\(687\) 4670.78 0.259391
\(688\) 0 0
\(689\) −20456.1 −1.13108
\(690\) 0 0
\(691\) −11901.8 −0.655234 −0.327617 0.944811i \(-0.606246\pi\)
−0.327617 + 0.944811i \(0.606246\pi\)
\(692\) 0 0
\(693\) −7137.45 −0.391240
\(694\) 0 0
\(695\) −20753.1 −1.13268
\(696\) 0 0
\(697\) −5829.56 −0.316801
\(698\) 0 0
\(699\) 14114.7 0.763758
\(700\) 0 0
\(701\) 12803.0 0.689817 0.344909 0.938636i \(-0.387910\pi\)
0.344909 + 0.938636i \(0.387910\pi\)
\(702\) 0 0
\(703\) 14183.1 0.760917
\(704\) 0 0
\(705\) 3558.91 0.190122
\(706\) 0 0
\(707\) 44.8596 0.00238631
\(708\) 0 0
\(709\) −8087.63 −0.428403 −0.214201 0.976790i \(-0.568715\pi\)
−0.214201 + 0.976790i \(0.568715\pi\)
\(710\) 0 0
\(711\) −2906.51 −0.153309
\(712\) 0 0
\(713\) 1265.56 0.0664732
\(714\) 0 0
\(715\) 16006.1 0.837193
\(716\) 0 0
\(717\) 580.174 0.0302190
\(718\) 0 0
\(719\) 34338.9 1.78112 0.890560 0.454867i \(-0.150313\pi\)
0.890560 + 0.454867i \(0.150313\pi\)
\(720\) 0 0
\(721\) −28616.4 −1.47813
\(722\) 0 0
\(723\) −10732.8 −0.552083
\(724\) 0 0
\(725\) −15095.9 −0.773305
\(726\) 0 0
\(727\) −2109.84 −0.107633 −0.0538167 0.998551i \(-0.517139\pi\)
−0.0538167 + 0.998551i \(0.517139\pi\)
\(728\) 0 0
\(729\) 21695.3 1.10223
\(730\) 0 0
\(731\) 1105.13 0.0559162
\(732\) 0 0
\(733\) −15133.9 −0.762599 −0.381299 0.924452i \(-0.624523\pi\)
−0.381299 + 0.924452i \(0.624523\pi\)
\(734\) 0 0
\(735\) 13415.0 0.673225
\(736\) 0 0
\(737\) 506.486 0.0253143
\(738\) 0 0
\(739\) −29057.4 −1.44641 −0.723204 0.690635i \(-0.757331\pi\)
−0.723204 + 0.690635i \(0.757331\pi\)
\(740\) 0 0
\(741\) −9080.62 −0.450182
\(742\) 0 0
\(743\) 3088.06 0.152476 0.0762382 0.997090i \(-0.475709\pi\)
0.0762382 + 0.997090i \(0.475709\pi\)
\(744\) 0 0
\(745\) −1420.78 −0.0698704
\(746\) 0 0
\(747\) 471.297 0.0230841
\(748\) 0 0
\(749\) −4210.81 −0.205420
\(750\) 0 0
\(751\) 11655.2 0.566317 0.283159 0.959073i \(-0.408618\pi\)
0.283159 + 0.959073i \(0.408618\pi\)
\(752\) 0 0
\(753\) −3048.00 −0.147510
\(754\) 0 0
\(755\) −26356.2 −1.27046
\(756\) 0 0
\(757\) 38979.8 1.87152 0.935762 0.352633i \(-0.114713\pi\)
0.935762 + 0.352633i \(0.114713\pi\)
\(758\) 0 0
\(759\) −3581.78 −0.171292
\(760\) 0 0
\(761\) 8875.64 0.422788 0.211394 0.977401i \(-0.432200\pi\)
0.211394 + 0.977401i \(0.432200\pi\)
\(762\) 0 0
\(763\) 49131.6 2.33117
\(764\) 0 0
\(765\) 5745.13 0.271524
\(766\) 0 0
\(767\) 31826.0 1.49827
\(768\) 0 0
\(769\) 27567.7 1.29274 0.646370 0.763024i \(-0.276286\pi\)
0.646370 + 0.763024i \(0.276286\pi\)
\(770\) 0 0
\(771\) 32986.3 1.54082
\(772\) 0 0
\(773\) 5450.84 0.253626 0.126813 0.991927i \(-0.459525\pi\)
0.126813 + 0.991927i \(0.459525\pi\)
\(774\) 0 0
\(775\) −3526.65 −0.163459
\(776\) 0 0
\(777\) 47987.4 2.21562
\(778\) 0 0
\(779\) 2093.59 0.0962909
\(780\) 0 0
\(781\) −29722.6 −1.36179
\(782\) 0 0
\(783\) 35880.7 1.63764
\(784\) 0 0
\(785\) −22189.1 −1.00887
\(786\) 0 0
\(787\) 20985.1 0.950494 0.475247 0.879852i \(-0.342359\pi\)
0.475247 + 0.879852i \(0.342359\pi\)
\(788\) 0 0
\(789\) −7457.58 −0.336498
\(790\) 0 0
\(791\) 13129.1 0.590161
\(792\) 0 0
\(793\) 27814.7 1.24556
\(794\) 0 0
\(795\) 12122.1 0.540789
\(796\) 0 0
\(797\) 30421.8 1.35206 0.676032 0.736872i \(-0.263698\pi\)
0.676032 + 0.736872i \(0.263698\pi\)
\(798\) 0 0
\(799\) 10154.4 0.449607
\(800\) 0 0
\(801\) −5076.45 −0.223929
\(802\) 0 0
\(803\) 4192.55 0.184249
\(804\) 0 0
\(805\) −4856.74 −0.212643
\(806\) 0 0
\(807\) −16191.7 −0.706288
\(808\) 0 0
\(809\) −12231.4 −0.531560 −0.265780 0.964034i \(-0.585629\pi\)
−0.265780 + 0.964034i \(0.585629\pi\)
\(810\) 0 0
\(811\) 6733.52 0.291548 0.145774 0.989318i \(-0.453433\pi\)
0.145774 + 0.989318i \(0.453433\pi\)
\(812\) 0 0
\(813\) 1279.82 0.0552096
\(814\) 0 0
\(815\) −16668.8 −0.716421
\(816\) 0 0
\(817\) −396.889 −0.0169956
\(818\) 0 0
\(819\) 11780.3 0.502610
\(820\) 0 0
\(821\) 659.373 0.0280296 0.0140148 0.999902i \(-0.495539\pi\)
0.0140148 + 0.999902i \(0.495539\pi\)
\(822\) 0 0
\(823\) −37882.3 −1.60449 −0.802245 0.596995i \(-0.796361\pi\)
−0.802245 + 0.596995i \(0.796361\pi\)
\(824\) 0 0
\(825\) 9981.16 0.421211
\(826\) 0 0
\(827\) −36305.0 −1.52654 −0.763271 0.646079i \(-0.776408\pi\)
−0.763271 + 0.646079i \(0.776408\pi\)
\(828\) 0 0
\(829\) −35900.3 −1.50406 −0.752032 0.659127i \(-0.770926\pi\)
−0.752032 + 0.659127i \(0.770926\pi\)
\(830\) 0 0
\(831\) 1.69615 7.08049e−5 0
\(832\) 0 0
\(833\) 38276.1 1.59206
\(834\) 0 0
\(835\) 6216.64 0.257648
\(836\) 0 0
\(837\) 8382.34 0.346160
\(838\) 0 0
\(839\) 40349.3 1.66033 0.830163 0.557521i \(-0.188247\pi\)
0.830163 + 0.557521i \(0.188247\pi\)
\(840\) 0 0
\(841\) 31086.0 1.27459
\(842\) 0 0
\(843\) 15494.8 0.633062
\(844\) 0 0
\(845\) −9271.88 −0.377470
\(846\) 0 0
\(847\) −2391.52 −0.0970172
\(848\) 0 0
\(849\) −18694.5 −0.755704
\(850\) 0 0
\(851\) −9233.54 −0.371941
\(852\) 0 0
\(853\) −19569.0 −0.785498 −0.392749 0.919646i \(-0.628476\pi\)
−0.392749 + 0.919646i \(0.628476\pi\)
\(854\) 0 0
\(855\) −2063.27 −0.0825290
\(856\) 0 0
\(857\) 24551.4 0.978598 0.489299 0.872116i \(-0.337253\pi\)
0.489299 + 0.872116i \(0.337253\pi\)
\(858\) 0 0
\(859\) 13459.2 0.534599 0.267300 0.963613i \(-0.413869\pi\)
0.267300 + 0.963613i \(0.413869\pi\)
\(860\) 0 0
\(861\) 7083.51 0.280378
\(862\) 0 0
\(863\) 42260.5 1.66694 0.833468 0.552568i \(-0.186352\pi\)
0.833468 + 0.552568i \(0.186352\pi\)
\(864\) 0 0
\(865\) −34776.4 −1.36697
\(866\) 0 0
\(867\) −21047.0 −0.824446
\(868\) 0 0
\(869\) 13691.4 0.534463
\(870\) 0 0
\(871\) −835.954 −0.0325203
\(872\) 0 0
\(873\) −3151.90 −0.122194
\(874\) 0 0
\(875\) 39929.4 1.54270
\(876\) 0 0
\(877\) −37306.1 −1.43642 −0.718208 0.695829i \(-0.755037\pi\)
−0.718208 + 0.695829i \(0.755037\pi\)
\(878\) 0 0
\(879\) −4711.90 −0.180806
\(880\) 0 0
\(881\) −6563.30 −0.250991 −0.125496 0.992094i \(-0.540052\pi\)
−0.125496 + 0.992094i \(0.540052\pi\)
\(882\) 0 0
\(883\) −27904.7 −1.06350 −0.531749 0.846902i \(-0.678465\pi\)
−0.531749 + 0.846902i \(0.678465\pi\)
\(884\) 0 0
\(885\) −18859.8 −0.716346
\(886\) 0 0
\(887\) −4358.15 −0.164974 −0.0824872 0.996592i \(-0.526286\pi\)
−0.0824872 + 0.996592i \(0.526286\pi\)
\(888\) 0 0
\(889\) −66786.4 −2.51962
\(890\) 0 0
\(891\) −16601.4 −0.624206
\(892\) 0 0
\(893\) −3646.77 −0.136657
\(894\) 0 0
\(895\) 5411.96 0.202125
\(896\) 0 0
\(897\) 5911.72 0.220052
\(898\) 0 0
\(899\) 12959.9 0.480797
\(900\) 0 0
\(901\) 34587.2 1.27888
\(902\) 0 0
\(903\) −1342.85 −0.0494874
\(904\) 0 0
\(905\) −7607.19 −0.279416
\(906\) 0 0
\(907\) −52106.6 −1.90758 −0.953788 0.300481i \(-0.902853\pi\)
−0.953788 + 0.300481i \(0.902853\pi\)
\(908\) 0 0
\(909\) −12.4069 −0.000452708 0
\(910\) 0 0
\(911\) −34691.3 −1.26166 −0.630832 0.775920i \(-0.717286\pi\)
−0.630832 + 0.775920i \(0.717286\pi\)
\(912\) 0 0
\(913\) −2220.09 −0.0804757
\(914\) 0 0
\(915\) −16482.7 −0.595522
\(916\) 0 0
\(917\) 28992.2 1.04406
\(918\) 0 0
\(919\) −5838.08 −0.209555 −0.104777 0.994496i \(-0.533413\pi\)
−0.104777 + 0.994496i \(0.533413\pi\)
\(920\) 0 0
\(921\) 12124.7 0.433791
\(922\) 0 0
\(923\) 49057.0 1.74944
\(924\) 0 0
\(925\) 25730.6 0.914613
\(926\) 0 0
\(927\) 7914.52 0.280417
\(928\) 0 0
\(929\) −31619.5 −1.11669 −0.558344 0.829610i \(-0.688563\pi\)
−0.558344 + 0.829610i \(0.688563\pi\)
\(930\) 0 0
\(931\) −13746.2 −0.483903
\(932\) 0 0
\(933\) 12012.9 0.421528
\(934\) 0 0
\(935\) −27063.0 −0.946583
\(936\) 0 0
\(937\) 30060.8 1.04807 0.524036 0.851696i \(-0.324426\pi\)
0.524036 + 0.851696i \(0.324426\pi\)
\(938\) 0 0
\(939\) −26149.0 −0.908776
\(940\) 0 0
\(941\) 45847.9 1.58831 0.794155 0.607715i \(-0.207914\pi\)
0.794155 + 0.607715i \(0.207914\pi\)
\(942\) 0 0
\(943\) −1362.98 −0.0470676
\(944\) 0 0
\(945\) −32168.4 −1.10734
\(946\) 0 0
\(947\) 16769.4 0.575431 0.287716 0.957716i \(-0.407104\pi\)
0.287716 + 0.957716i \(0.407104\pi\)
\(948\) 0 0
\(949\) −6919.78 −0.236697
\(950\) 0 0
\(951\) 5864.80 0.199978
\(952\) 0 0
\(953\) −10747.1 −0.365303 −0.182652 0.983178i \(-0.558468\pi\)
−0.182652 + 0.983178i \(0.558468\pi\)
\(954\) 0 0
\(955\) −6048.86 −0.204960
\(956\) 0 0
\(957\) −36679.2 −1.23894
\(958\) 0 0
\(959\) 6534.23 0.220022
\(960\) 0 0
\(961\) −26763.3 −0.898370
\(962\) 0 0
\(963\) 1164.59 0.0389704
\(964\) 0 0
\(965\) −15773.2 −0.526174
\(966\) 0 0
\(967\) 12138.2 0.403659 0.201829 0.979421i \(-0.435311\pi\)
0.201829 + 0.979421i \(0.435311\pi\)
\(968\) 0 0
\(969\) 15353.5 0.509005
\(970\) 0 0
\(971\) 12928.1 0.427273 0.213636 0.976913i \(-0.431469\pi\)
0.213636 + 0.976913i \(0.431469\pi\)
\(972\) 0 0
\(973\) 71950.3 2.37063
\(974\) 0 0
\(975\) −16473.9 −0.541114
\(976\) 0 0
\(977\) 14735.6 0.482532 0.241266 0.970459i \(-0.422437\pi\)
0.241266 + 0.970459i \(0.422437\pi\)
\(978\) 0 0
\(979\) 23913.1 0.780660
\(980\) 0 0
\(981\) −13588.4 −0.442248
\(982\) 0 0
\(983\) −29251.2 −0.949104 −0.474552 0.880228i \(-0.657390\pi\)
−0.474552 + 0.880228i \(0.657390\pi\)
\(984\) 0 0
\(985\) 4424.32 0.143117
\(986\) 0 0
\(987\) −12338.6 −0.397914
\(988\) 0 0
\(989\) 258.385 0.00830755
\(990\) 0 0
\(991\) −47986.6 −1.53819 −0.769094 0.639136i \(-0.779292\pi\)
−0.769094 + 0.639136i \(0.779292\pi\)
\(992\) 0 0
\(993\) −14300.0 −0.456995
\(994\) 0 0
\(995\) −13455.1 −0.428700
\(996\) 0 0
\(997\) −32463.8 −1.03123 −0.515617 0.856819i \(-0.672437\pi\)
−0.515617 + 0.856819i \(0.672437\pi\)
\(998\) 0 0
\(999\) −61157.9 −1.93689
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bf.1.1 4
4.3 odd 2 1472.4.a.y.1.4 4
8.3 odd 2 23.4.a.b.1.4 4
8.5 even 2 368.4.a.l.1.4 4
24.11 even 2 207.4.a.e.1.1 4
40.3 even 4 575.4.b.g.24.2 8
40.19 odd 2 575.4.a.i.1.1 4
40.27 even 4 575.4.b.g.24.7 8
56.27 even 2 1127.4.a.c.1.4 4
184.91 even 2 529.4.a.g.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.4 4 8.3 odd 2
207.4.a.e.1.1 4 24.11 even 2
368.4.a.l.1.4 4 8.5 even 2
529.4.a.g.1.4 4 184.91 even 2
575.4.a.i.1.1 4 40.19 odd 2
575.4.b.g.24.2 8 40.3 even 4
575.4.b.g.24.7 8 40.27 even 4
1127.4.a.c.1.4 4 56.27 even 2
1472.4.a.y.1.4 4 4.3 odd 2
1472.4.a.bf.1.1 4 1.1 even 1 trivial