Properties

Label 1472.4.a.bi.1.8
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 155x^{7} + 342x^{6} + 7139x^{5} - 8520x^{4} - 113229x^{3} + 12582x^{2} + 530388x + 301320 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 736)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(5.85314\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.85314 q^{3} +4.56877 q^{5} -17.3356 q^{7} -12.1533 q^{9} +69.1391 q^{11} -44.7989 q^{13} +17.6041 q^{15} -67.7296 q^{17} +93.8206 q^{19} -66.7965 q^{21} +23.0000 q^{23} -104.126 q^{25} -150.863 q^{27} +75.5707 q^{29} -129.384 q^{31} +266.402 q^{33} -79.2026 q^{35} +97.8395 q^{37} -172.616 q^{39} +293.173 q^{41} -162.107 q^{43} -55.5259 q^{45} -386.762 q^{47} -42.4759 q^{49} -260.971 q^{51} -660.868 q^{53} +315.881 q^{55} +361.504 q^{57} +585.664 q^{59} +32.2709 q^{61} +210.686 q^{63} -204.676 q^{65} +220.160 q^{67} +88.6221 q^{69} -610.582 q^{71} +482.525 q^{73} -401.213 q^{75} -1198.57 q^{77} -774.113 q^{79} -253.156 q^{81} -971.247 q^{83} -309.441 q^{85} +291.184 q^{87} +380.833 q^{89} +776.618 q^{91} -498.532 q^{93} +428.645 q^{95} -1721.54 q^{97} -840.271 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 14 q^{3} - 30 q^{5} - 28 q^{7} + 103 q^{9} + 40 q^{11} - 76 q^{13} - 72 q^{15} + 166 q^{17} - 148 q^{19} - 96 q^{21} + 207 q^{23} + 339 q^{25} - 326 q^{27} - 252 q^{29} + 258 q^{31} + 460 q^{33} - 276 q^{35}+ \cdots - 2024 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.85314 0.741536 0.370768 0.928725i \(-0.379094\pi\)
0.370768 + 0.928725i \(0.379094\pi\)
\(4\) 0 0
\(5\) 4.56877 0.408644 0.204322 0.978904i \(-0.434501\pi\)
0.204322 + 0.978904i \(0.434501\pi\)
\(6\) 0 0
\(7\) −17.3356 −0.936036 −0.468018 0.883719i \(-0.655032\pi\)
−0.468018 + 0.883719i \(0.655032\pi\)
\(8\) 0 0
\(9\) −12.1533 −0.450124
\(10\) 0 0
\(11\) 69.1391 1.89511 0.947556 0.319591i \(-0.103546\pi\)
0.947556 + 0.319591i \(0.103546\pi\)
\(12\) 0 0
\(13\) −44.7989 −0.955768 −0.477884 0.878423i \(-0.658596\pi\)
−0.477884 + 0.878423i \(0.658596\pi\)
\(14\) 0 0
\(15\) 17.6041 0.303024
\(16\) 0 0
\(17\) −67.7296 −0.966285 −0.483142 0.875542i \(-0.660505\pi\)
−0.483142 + 0.875542i \(0.660505\pi\)
\(18\) 0 0
\(19\) 93.8206 1.13284 0.566419 0.824117i \(-0.308328\pi\)
0.566419 + 0.824117i \(0.308328\pi\)
\(20\) 0 0
\(21\) −66.7965 −0.694105
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −104.126 −0.833010
\(26\) 0 0
\(27\) −150.863 −1.07532
\(28\) 0 0
\(29\) 75.5707 0.483901 0.241951 0.970289i \(-0.422213\pi\)
0.241951 + 0.970289i \(0.422213\pi\)
\(30\) 0 0
\(31\) −129.384 −0.749612 −0.374806 0.927103i \(-0.622291\pi\)
−0.374806 + 0.927103i \(0.622291\pi\)
\(32\) 0 0
\(33\) 266.402 1.40529
\(34\) 0 0
\(35\) −79.2026 −0.382505
\(36\) 0 0
\(37\) 97.8395 0.434722 0.217361 0.976091i \(-0.430255\pi\)
0.217361 + 0.976091i \(0.430255\pi\)
\(38\) 0 0
\(39\) −172.616 −0.708737
\(40\) 0 0
\(41\) 293.173 1.11673 0.558365 0.829595i \(-0.311429\pi\)
0.558365 + 0.829595i \(0.311429\pi\)
\(42\) 0 0
\(43\) −162.107 −0.574909 −0.287455 0.957794i \(-0.592809\pi\)
−0.287455 + 0.957794i \(0.592809\pi\)
\(44\) 0 0
\(45\) −55.5259 −0.183940
\(46\) 0 0
\(47\) −386.762 −1.20032 −0.600160 0.799880i \(-0.704897\pi\)
−0.600160 + 0.799880i \(0.704897\pi\)
\(48\) 0 0
\(49\) −42.4759 −0.123837
\(50\) 0 0
\(51\) −260.971 −0.716535
\(52\) 0 0
\(53\) −660.868 −1.71278 −0.856389 0.516331i \(-0.827298\pi\)
−0.856389 + 0.516331i \(0.827298\pi\)
\(54\) 0 0
\(55\) 315.881 0.774425
\(56\) 0 0
\(57\) 361.504 0.840041
\(58\) 0 0
\(59\) 585.664 1.29232 0.646161 0.763201i \(-0.276373\pi\)
0.646161 + 0.763201i \(0.276373\pi\)
\(60\) 0 0
\(61\) 32.2709 0.0677354 0.0338677 0.999426i \(-0.489218\pi\)
0.0338677 + 0.999426i \(0.489218\pi\)
\(62\) 0 0
\(63\) 210.686 0.421332
\(64\) 0 0
\(65\) −204.676 −0.390569
\(66\) 0 0
\(67\) 220.160 0.401445 0.200723 0.979648i \(-0.435671\pi\)
0.200723 + 0.979648i \(0.435671\pi\)
\(68\) 0 0
\(69\) 88.6221 0.154621
\(70\) 0 0
\(71\) −610.582 −1.02060 −0.510301 0.859996i \(-0.670466\pi\)
−0.510301 + 0.859996i \(0.670466\pi\)
\(72\) 0 0
\(73\) 482.525 0.773634 0.386817 0.922157i \(-0.373575\pi\)
0.386817 + 0.922157i \(0.373575\pi\)
\(74\) 0 0
\(75\) −401.213 −0.617707
\(76\) 0 0
\(77\) −1198.57 −1.77389
\(78\) 0 0
\(79\) −774.113 −1.10246 −0.551231 0.834353i \(-0.685842\pi\)
−0.551231 + 0.834353i \(0.685842\pi\)
\(80\) 0 0
\(81\) −253.156 −0.347265
\(82\) 0 0
\(83\) −971.247 −1.28444 −0.642218 0.766522i \(-0.721986\pi\)
−0.642218 + 0.766522i \(0.721986\pi\)
\(84\) 0 0
\(85\) −309.441 −0.394866
\(86\) 0 0
\(87\) 291.184 0.358830
\(88\) 0 0
\(89\) 380.833 0.453576 0.226788 0.973944i \(-0.427178\pi\)
0.226788 + 0.973944i \(0.427178\pi\)
\(90\) 0 0
\(91\) 776.618 0.894633
\(92\) 0 0
\(93\) −498.532 −0.555864
\(94\) 0 0
\(95\) 428.645 0.462927
\(96\) 0 0
\(97\) −1721.54 −1.80202 −0.901008 0.433802i \(-0.857172\pi\)
−0.901008 + 0.433802i \(0.857172\pi\)
\(98\) 0 0
\(99\) −840.271 −0.853035
\(100\) 0 0
\(101\) −1337.08 −1.31727 −0.658634 0.752464i \(-0.728865\pi\)
−0.658634 + 0.752464i \(0.728865\pi\)
\(102\) 0 0
\(103\) −11.5831 −0.0110807 −0.00554036 0.999985i \(-0.501764\pi\)
−0.00554036 + 0.999985i \(0.501764\pi\)
\(104\) 0 0
\(105\) −305.178 −0.283641
\(106\) 0 0
\(107\) −2050.49 −1.85260 −0.926299 0.376790i \(-0.877028\pi\)
−0.926299 + 0.376790i \(0.877028\pi\)
\(108\) 0 0
\(109\) −483.687 −0.425035 −0.212517 0.977157i \(-0.568166\pi\)
−0.212517 + 0.977157i \(0.568166\pi\)
\(110\) 0 0
\(111\) 376.989 0.322362
\(112\) 0 0
\(113\) 1413.48 1.17671 0.588357 0.808602i \(-0.299775\pi\)
0.588357 + 0.808602i \(0.299775\pi\)
\(114\) 0 0
\(115\) 105.082 0.0852081
\(116\) 0 0
\(117\) 544.457 0.430214
\(118\) 0 0
\(119\) 1174.14 0.904477
\(120\) 0 0
\(121\) 3449.21 2.59145
\(122\) 0 0
\(123\) 1129.64 0.828096
\(124\) 0 0
\(125\) −1046.83 −0.749048
\(126\) 0 0
\(127\) −231.190 −0.161534 −0.0807669 0.996733i \(-0.525737\pi\)
−0.0807669 + 0.996733i \(0.525737\pi\)
\(128\) 0 0
\(129\) −624.620 −0.426316
\(130\) 0 0
\(131\) 164.235 0.109536 0.0547682 0.998499i \(-0.482558\pi\)
0.0547682 + 0.998499i \(0.482558\pi\)
\(132\) 0 0
\(133\) −1626.44 −1.06038
\(134\) 0 0
\(135\) −689.260 −0.439422
\(136\) 0 0
\(137\) −2151.89 −1.34196 −0.670978 0.741477i \(-0.734126\pi\)
−0.670978 + 0.741477i \(0.734126\pi\)
\(138\) 0 0
\(139\) −601.833 −0.367243 −0.183622 0.982997i \(-0.558782\pi\)
−0.183622 + 0.982997i \(0.558782\pi\)
\(140\) 0 0
\(141\) −1490.25 −0.890082
\(142\) 0 0
\(143\) −3097.36 −1.81129
\(144\) 0 0
\(145\) 345.266 0.197743
\(146\) 0 0
\(147\) −163.666 −0.0918293
\(148\) 0 0
\(149\) −1153.20 −0.634053 −0.317027 0.948417i \(-0.602684\pi\)
−0.317027 + 0.948417i \(0.602684\pi\)
\(150\) 0 0
\(151\) −104.145 −0.0561270 −0.0280635 0.999606i \(-0.508934\pi\)
−0.0280635 + 0.999606i \(0.508934\pi\)
\(152\) 0 0
\(153\) 823.141 0.434948
\(154\) 0 0
\(155\) −591.124 −0.306324
\(156\) 0 0
\(157\) 2177.29 1.10679 0.553396 0.832918i \(-0.313331\pi\)
0.553396 + 0.832918i \(0.313331\pi\)
\(158\) 0 0
\(159\) −2546.42 −1.27009
\(160\) 0 0
\(161\) −398.719 −0.195177
\(162\) 0 0
\(163\) −1646.44 −0.791158 −0.395579 0.918432i \(-0.629456\pi\)
−0.395579 + 0.918432i \(0.629456\pi\)
\(164\) 0 0
\(165\) 1217.13 0.574264
\(166\) 0 0
\(167\) 3040.31 1.40878 0.704389 0.709814i \(-0.251221\pi\)
0.704389 + 0.709814i \(0.251221\pi\)
\(168\) 0 0
\(169\) −190.056 −0.0865072
\(170\) 0 0
\(171\) −1140.23 −0.509918
\(172\) 0 0
\(173\) 3578.59 1.57269 0.786343 0.617790i \(-0.211972\pi\)
0.786343 + 0.617790i \(0.211972\pi\)
\(174\) 0 0
\(175\) 1805.09 0.779728
\(176\) 0 0
\(177\) 2256.64 0.958304
\(178\) 0 0
\(179\) 1864.08 0.778367 0.389183 0.921160i \(-0.372757\pi\)
0.389183 + 0.921160i \(0.372757\pi\)
\(180\) 0 0
\(181\) 2320.20 0.952812 0.476406 0.879225i \(-0.341939\pi\)
0.476406 + 0.879225i \(0.341939\pi\)
\(182\) 0 0
\(183\) 124.344 0.0502283
\(184\) 0 0
\(185\) 447.007 0.177646
\(186\) 0 0
\(187\) −4682.76 −1.83122
\(188\) 0 0
\(189\) 2615.31 1.00654
\(190\) 0 0
\(191\) −3430.77 −1.29970 −0.649848 0.760064i \(-0.725167\pi\)
−0.649848 + 0.760064i \(0.725167\pi\)
\(192\) 0 0
\(193\) 3154.29 1.17643 0.588214 0.808705i \(-0.299831\pi\)
0.588214 + 0.808705i \(0.299831\pi\)
\(194\) 0 0
\(195\) −788.645 −0.289621
\(196\) 0 0
\(197\) −5061.75 −1.83063 −0.915316 0.402735i \(-0.868060\pi\)
−0.915316 + 0.402735i \(0.868060\pi\)
\(198\) 0 0
\(199\) −4327.35 −1.54149 −0.770747 0.637141i \(-0.780117\pi\)
−0.770747 + 0.637141i \(0.780117\pi\)
\(200\) 0 0
\(201\) 848.307 0.297686
\(202\) 0 0
\(203\) −1310.07 −0.452949
\(204\) 0 0
\(205\) 1339.44 0.456344
\(206\) 0 0
\(207\) −279.527 −0.0938573
\(208\) 0 0
\(209\) 6486.67 2.14685
\(210\) 0 0
\(211\) 57.9032 0.0188920 0.00944602 0.999955i \(-0.496993\pi\)
0.00944602 + 0.999955i \(0.496993\pi\)
\(212\) 0 0
\(213\) −2352.65 −0.756813
\(214\) 0 0
\(215\) −740.631 −0.234933
\(216\) 0 0
\(217\) 2242.94 0.701664
\(218\) 0 0
\(219\) 1859.23 0.573678
\(220\) 0 0
\(221\) 3034.21 0.923544
\(222\) 0 0
\(223\) 1399.57 0.420279 0.210140 0.977671i \(-0.432608\pi\)
0.210140 + 0.977671i \(0.432608\pi\)
\(224\) 0 0
\(225\) 1265.48 0.374958
\(226\) 0 0
\(227\) 3998.15 1.16902 0.584508 0.811388i \(-0.301287\pi\)
0.584508 + 0.811388i \(0.301287\pi\)
\(228\) 0 0
\(229\) 4795.02 1.38368 0.691842 0.722049i \(-0.256799\pi\)
0.691842 + 0.722049i \(0.256799\pi\)
\(230\) 0 0
\(231\) −4618.25 −1.31541
\(232\) 0 0
\(233\) −6055.21 −1.70253 −0.851266 0.524735i \(-0.824164\pi\)
−0.851266 + 0.524735i \(0.824164\pi\)
\(234\) 0 0
\(235\) −1767.03 −0.490504
\(236\) 0 0
\(237\) −2982.76 −0.817515
\(238\) 0 0
\(239\) −3833.06 −1.03741 −0.518703 0.854954i \(-0.673585\pi\)
−0.518703 + 0.854954i \(0.673585\pi\)
\(240\) 0 0
\(241\) 935.932 0.250160 0.125080 0.992147i \(-0.460081\pi\)
0.125080 + 0.992147i \(0.460081\pi\)
\(242\) 0 0
\(243\) 3097.86 0.817810
\(244\) 0 0
\(245\) −194.063 −0.0506050
\(246\) 0 0
\(247\) −4203.06 −1.08273
\(248\) 0 0
\(249\) −3742.35 −0.952456
\(250\) 0 0
\(251\) −2398.48 −0.603149 −0.301575 0.953443i \(-0.597512\pi\)
−0.301575 + 0.953443i \(0.597512\pi\)
\(252\) 0 0
\(253\) 1590.20 0.395158
\(254\) 0 0
\(255\) −1192.32 −0.292808
\(256\) 0 0
\(257\) −5905.80 −1.43344 −0.716719 0.697362i \(-0.754357\pi\)
−0.716719 + 0.697362i \(0.754357\pi\)
\(258\) 0 0
\(259\) −1696.11 −0.406916
\(260\) 0 0
\(261\) −918.437 −0.217815
\(262\) 0 0
\(263\) −4247.46 −0.995853 −0.497927 0.867219i \(-0.665905\pi\)
−0.497927 + 0.867219i \(0.665905\pi\)
\(264\) 0 0
\(265\) −3019.36 −0.699916
\(266\) 0 0
\(267\) 1467.40 0.336343
\(268\) 0 0
\(269\) 4464.06 1.01182 0.505908 0.862587i \(-0.331158\pi\)
0.505908 + 0.862587i \(0.331158\pi\)
\(270\) 0 0
\(271\) 5218.04 1.16964 0.584822 0.811162i \(-0.301164\pi\)
0.584822 + 0.811162i \(0.301164\pi\)
\(272\) 0 0
\(273\) 2992.41 0.663403
\(274\) 0 0
\(275\) −7199.20 −1.57865
\(276\) 0 0
\(277\) −501.732 −0.108831 −0.0544155 0.998518i \(-0.517330\pi\)
−0.0544155 + 0.998518i \(0.517330\pi\)
\(278\) 0 0
\(279\) 1572.44 0.337418
\(280\) 0 0
\(281\) −4957.48 −1.05245 −0.526225 0.850345i \(-0.676393\pi\)
−0.526225 + 0.850345i \(0.676393\pi\)
\(282\) 0 0
\(283\) 2390.56 0.502135 0.251067 0.967970i \(-0.419218\pi\)
0.251067 + 0.967970i \(0.419218\pi\)
\(284\) 0 0
\(285\) 1651.63 0.343277
\(286\) 0 0
\(287\) −5082.34 −1.04530
\(288\) 0 0
\(289\) −325.701 −0.0662938
\(290\) 0 0
\(291\) −6633.32 −1.33626
\(292\) 0 0
\(293\) −6814.51 −1.35873 −0.679365 0.733801i \(-0.737745\pi\)
−0.679365 + 0.733801i \(0.737745\pi\)
\(294\) 0 0
\(295\) 2675.77 0.528099
\(296\) 0 0
\(297\) −10430.5 −2.03785
\(298\) 0 0
\(299\) −1030.38 −0.199291
\(300\) 0 0
\(301\) 2810.23 0.538136
\(302\) 0 0
\(303\) −5151.94 −0.976802
\(304\) 0 0
\(305\) 147.438 0.0276796
\(306\) 0 0
\(307\) −6029.97 −1.12101 −0.560503 0.828153i \(-0.689392\pi\)
−0.560503 + 0.828153i \(0.689392\pi\)
\(308\) 0 0
\(309\) −44.6312 −0.00821676
\(310\) 0 0
\(311\) 6221.73 1.13441 0.567206 0.823576i \(-0.308024\pi\)
0.567206 + 0.823576i \(0.308024\pi\)
\(312\) 0 0
\(313\) −6078.62 −1.09771 −0.548856 0.835917i \(-0.684936\pi\)
−0.548856 + 0.835917i \(0.684936\pi\)
\(314\) 0 0
\(315\) 962.576 0.172175
\(316\) 0 0
\(317\) 2804.08 0.496822 0.248411 0.968655i \(-0.420092\pi\)
0.248411 + 0.968655i \(0.420092\pi\)
\(318\) 0 0
\(319\) 5224.89 0.917046
\(320\) 0 0
\(321\) −7900.80 −1.37377
\(322\) 0 0
\(323\) −6354.43 −1.09464
\(324\) 0 0
\(325\) 4664.75 0.796165
\(326\) 0 0
\(327\) −1863.71 −0.315179
\(328\) 0 0
\(329\) 6704.77 1.12354
\(330\) 0 0
\(331\) −6477.58 −1.07565 −0.537825 0.843056i \(-0.680754\pi\)
−0.537825 + 0.843056i \(0.680754\pi\)
\(332\) 0 0
\(333\) −1189.08 −0.195679
\(334\) 0 0
\(335\) 1005.86 0.164048
\(336\) 0 0
\(337\) 3007.54 0.486146 0.243073 0.970008i \(-0.421845\pi\)
0.243073 + 0.970008i \(0.421845\pi\)
\(338\) 0 0
\(339\) 5446.31 0.872576
\(340\) 0 0
\(341\) −8945.46 −1.42060
\(342\) 0 0
\(343\) 6682.47 1.05195
\(344\) 0 0
\(345\) 404.895 0.0631849
\(346\) 0 0
\(347\) −7350.65 −1.13719 −0.568593 0.822619i \(-0.692512\pi\)
−0.568593 + 0.822619i \(0.692512\pi\)
\(348\) 0 0
\(349\) 7719.57 1.18401 0.592004 0.805935i \(-0.298337\pi\)
0.592004 + 0.805935i \(0.298337\pi\)
\(350\) 0 0
\(351\) 6758.51 1.02776
\(352\) 0 0
\(353\) 1123.52 0.169402 0.0847009 0.996406i \(-0.473007\pi\)
0.0847009 + 0.996406i \(0.473007\pi\)
\(354\) 0 0
\(355\) −2789.61 −0.417062
\(356\) 0 0
\(357\) 4524.10 0.670703
\(358\) 0 0
\(359\) 1813.36 0.266590 0.133295 0.991076i \(-0.457444\pi\)
0.133295 + 0.991076i \(0.457444\pi\)
\(360\) 0 0
\(361\) 1943.31 0.283323
\(362\) 0 0
\(363\) 13290.3 1.92165
\(364\) 0 0
\(365\) 2204.55 0.316141
\(366\) 0 0
\(367\) −7864.31 −1.11857 −0.559283 0.828977i \(-0.688923\pi\)
−0.559283 + 0.828977i \(0.688923\pi\)
\(368\) 0 0
\(369\) −3563.03 −0.502667
\(370\) 0 0
\(371\) 11456.6 1.60322
\(372\) 0 0
\(373\) 8820.93 1.22448 0.612239 0.790673i \(-0.290269\pi\)
0.612239 + 0.790673i \(0.290269\pi\)
\(374\) 0 0
\(375\) −4033.56 −0.555446
\(376\) 0 0
\(377\) −3385.49 −0.462497
\(378\) 0 0
\(379\) −765.994 −0.103817 −0.0519083 0.998652i \(-0.516530\pi\)
−0.0519083 + 0.998652i \(0.516530\pi\)
\(380\) 0 0
\(381\) −890.806 −0.119783
\(382\) 0 0
\(383\) −4943.43 −0.659524 −0.329762 0.944064i \(-0.606968\pi\)
−0.329762 + 0.944064i \(0.606968\pi\)
\(384\) 0 0
\(385\) −5476.00 −0.724890
\(386\) 0 0
\(387\) 1970.14 0.258780
\(388\) 0 0
\(389\) 11427.9 1.48951 0.744753 0.667341i \(-0.232567\pi\)
0.744753 + 0.667341i \(0.232567\pi\)
\(390\) 0 0
\(391\) −1557.78 −0.201484
\(392\) 0 0
\(393\) 632.819 0.0812252
\(394\) 0 0
\(395\) −3536.75 −0.450514
\(396\) 0 0
\(397\) −5848.52 −0.739368 −0.369684 0.929158i \(-0.620534\pi\)
−0.369684 + 0.929158i \(0.620534\pi\)
\(398\) 0 0
\(399\) −6266.89 −0.786309
\(400\) 0 0
\(401\) 1397.62 0.174049 0.0870247 0.996206i \(-0.472264\pi\)
0.0870247 + 0.996206i \(0.472264\pi\)
\(402\) 0 0
\(403\) 5796.24 0.716455
\(404\) 0 0
\(405\) −1156.61 −0.141907
\(406\) 0 0
\(407\) 6764.54 0.823847
\(408\) 0 0
\(409\) 107.129 0.0129515 0.00647577 0.999979i \(-0.497939\pi\)
0.00647577 + 0.999979i \(0.497939\pi\)
\(410\) 0 0
\(411\) −8291.51 −0.995109
\(412\) 0 0
\(413\) −10152.9 −1.20966
\(414\) 0 0
\(415\) −4437.41 −0.524877
\(416\) 0 0
\(417\) −2318.94 −0.272324
\(418\) 0 0
\(419\) −6219.42 −0.725152 −0.362576 0.931954i \(-0.618103\pi\)
−0.362576 + 0.931954i \(0.618103\pi\)
\(420\) 0 0
\(421\) 15866.6 1.83679 0.918395 0.395665i \(-0.129486\pi\)
0.918395 + 0.395665i \(0.129486\pi\)
\(422\) 0 0
\(423\) 4700.46 0.540293
\(424\) 0 0
\(425\) 7052.43 0.804925
\(426\) 0 0
\(427\) −559.436 −0.0634028
\(428\) 0 0
\(429\) −11934.5 −1.34313
\(430\) 0 0
\(431\) 9482.26 1.05973 0.529866 0.848081i \(-0.322242\pi\)
0.529866 + 0.848081i \(0.322242\pi\)
\(432\) 0 0
\(433\) −547.564 −0.0607719 −0.0303860 0.999538i \(-0.509674\pi\)
−0.0303860 + 0.999538i \(0.509674\pi\)
\(434\) 0 0
\(435\) 1330.36 0.146634
\(436\) 0 0
\(437\) 2157.87 0.236213
\(438\) 0 0
\(439\) −3952.22 −0.429679 −0.214840 0.976649i \(-0.568923\pi\)
−0.214840 + 0.976649i \(0.568923\pi\)
\(440\) 0 0
\(441\) 516.225 0.0557418
\(442\) 0 0
\(443\) 2920.17 0.313186 0.156593 0.987663i \(-0.449949\pi\)
0.156593 + 0.987663i \(0.449949\pi\)
\(444\) 0 0
\(445\) 1739.94 0.185351
\(446\) 0 0
\(447\) −4443.44 −0.470174
\(448\) 0 0
\(449\) 13672.2 1.43704 0.718521 0.695506i \(-0.244820\pi\)
0.718521 + 0.695506i \(0.244820\pi\)
\(450\) 0 0
\(451\) 20269.7 2.11633
\(452\) 0 0
\(453\) −401.284 −0.0416202
\(454\) 0 0
\(455\) 3548.19 0.365586
\(456\) 0 0
\(457\) −2770.01 −0.283535 −0.141767 0.989900i \(-0.545279\pi\)
−0.141767 + 0.989900i \(0.545279\pi\)
\(458\) 0 0
\(459\) 10217.9 1.03906
\(460\) 0 0
\(461\) −9689.50 −0.978927 −0.489463 0.872024i \(-0.662807\pi\)
−0.489463 + 0.872024i \(0.662807\pi\)
\(462\) 0 0
\(463\) −9354.03 −0.938917 −0.469458 0.882955i \(-0.655551\pi\)
−0.469458 + 0.882955i \(0.655551\pi\)
\(464\) 0 0
\(465\) −2277.68 −0.227150
\(466\) 0 0
\(467\) 10489.7 1.03941 0.519707 0.854345i \(-0.326041\pi\)
0.519707 + 0.854345i \(0.326041\pi\)
\(468\) 0 0
\(469\) −3816.62 −0.375767
\(470\) 0 0
\(471\) 8389.39 0.820727
\(472\) 0 0
\(473\) −11207.9 −1.08952
\(474\) 0 0
\(475\) −9769.20 −0.943666
\(476\) 0 0
\(477\) 8031.76 0.770962
\(478\) 0 0
\(479\) 2252.33 0.214847 0.107424 0.994213i \(-0.465740\pi\)
0.107424 + 0.994213i \(0.465740\pi\)
\(480\) 0 0
\(481\) −4383.11 −0.415494
\(482\) 0 0
\(483\) −1536.32 −0.144731
\(484\) 0 0
\(485\) −7865.31 −0.736383
\(486\) 0 0
\(487\) 17154.6 1.59620 0.798100 0.602525i \(-0.205839\pi\)
0.798100 + 0.602525i \(0.205839\pi\)
\(488\) 0 0
\(489\) −6343.94 −0.586672
\(490\) 0 0
\(491\) −17525.9 −1.61086 −0.805429 0.592692i \(-0.798065\pi\)
−0.805429 + 0.592692i \(0.798065\pi\)
\(492\) 0 0
\(493\) −5118.38 −0.467586
\(494\) 0 0
\(495\) −3839.01 −0.348587
\(496\) 0 0
\(497\) 10584.8 0.955320
\(498\) 0 0
\(499\) 2981.27 0.267455 0.133727 0.991018i \(-0.457305\pi\)
0.133727 + 0.991018i \(0.457305\pi\)
\(500\) 0 0
\(501\) 11714.7 1.04466
\(502\) 0 0
\(503\) −2766.37 −0.245222 −0.122611 0.992455i \(-0.539127\pi\)
−0.122611 + 0.992455i \(0.539127\pi\)
\(504\) 0 0
\(505\) −6108.80 −0.538293
\(506\) 0 0
\(507\) −732.313 −0.0641482
\(508\) 0 0
\(509\) 7139.63 0.621726 0.310863 0.950455i \(-0.399382\pi\)
0.310863 + 0.950455i \(0.399382\pi\)
\(510\) 0 0
\(511\) −8364.87 −0.724149
\(512\) 0 0
\(513\) −14154.1 −1.21816
\(514\) 0 0
\(515\) −52.9205 −0.00452807
\(516\) 0 0
\(517\) −26740.4 −2.27474
\(518\) 0 0
\(519\) 13788.8 1.16620
\(520\) 0 0
\(521\) 5449.24 0.458226 0.229113 0.973400i \(-0.426418\pi\)
0.229113 + 0.973400i \(0.426418\pi\)
\(522\) 0 0
\(523\) −379.720 −0.0317476 −0.0158738 0.999874i \(-0.505053\pi\)
−0.0158738 + 0.999874i \(0.505053\pi\)
\(524\) 0 0
\(525\) 6955.28 0.578196
\(526\) 0 0
\(527\) 8763.09 0.724338
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −7117.78 −0.581705
\(532\) 0 0
\(533\) −13133.8 −1.06733
\(534\) 0 0
\(535\) −9368.21 −0.757052
\(536\) 0 0
\(537\) 7182.54 0.577187
\(538\) 0 0
\(539\) −2936.75 −0.234684
\(540\) 0 0
\(541\) −18938.7 −1.50506 −0.752529 0.658559i \(-0.771166\pi\)
−0.752529 + 0.658559i \(0.771166\pi\)
\(542\) 0 0
\(543\) 8940.04 0.706545
\(544\) 0 0
\(545\) −2209.86 −0.173688
\(546\) 0 0
\(547\) 18261.2 1.42741 0.713706 0.700446i \(-0.247015\pi\)
0.713706 + 0.700446i \(0.247015\pi\)
\(548\) 0 0
\(549\) −392.199 −0.0304893
\(550\) 0 0
\(551\) 7090.09 0.548182
\(552\) 0 0
\(553\) 13419.7 1.03194
\(554\) 0 0
\(555\) 1722.38 0.131731
\(556\) 0 0
\(557\) 4344.87 0.330517 0.165259 0.986250i \(-0.447154\pi\)
0.165259 + 0.986250i \(0.447154\pi\)
\(558\) 0 0
\(559\) 7262.22 0.549480
\(560\) 0 0
\(561\) −18043.3 −1.35791
\(562\) 0 0
\(563\) 420.144 0.0314511 0.0157255 0.999876i \(-0.494994\pi\)
0.0157255 + 0.999876i \(0.494994\pi\)
\(564\) 0 0
\(565\) 6457.85 0.480856
\(566\) 0 0
\(567\) 4388.62 0.325052
\(568\) 0 0
\(569\) 21741.5 1.60185 0.800924 0.598766i \(-0.204342\pi\)
0.800924 + 0.598766i \(0.204342\pi\)
\(570\) 0 0
\(571\) 20511.9 1.50332 0.751659 0.659552i \(-0.229254\pi\)
0.751659 + 0.659552i \(0.229254\pi\)
\(572\) 0 0
\(573\) −13219.2 −0.963772
\(574\) 0 0
\(575\) −2394.90 −0.173695
\(576\) 0 0
\(577\) −12408.5 −0.895273 −0.447636 0.894216i \(-0.647734\pi\)
−0.447636 + 0.894216i \(0.647734\pi\)
\(578\) 0 0
\(579\) 12153.9 0.872365
\(580\) 0 0
\(581\) 16837.2 1.20228
\(582\) 0 0
\(583\) −45691.8 −3.24591
\(584\) 0 0
\(585\) 2487.50 0.175804
\(586\) 0 0
\(587\) 972.118 0.0683537 0.0341768 0.999416i \(-0.489119\pi\)
0.0341768 + 0.999416i \(0.489119\pi\)
\(588\) 0 0
\(589\) −12138.8 −0.849189
\(590\) 0 0
\(591\) −19503.6 −1.35748
\(592\) 0 0
\(593\) 27008.9 1.87036 0.935178 0.354177i \(-0.115239\pi\)
0.935178 + 0.354177i \(0.115239\pi\)
\(594\) 0 0
\(595\) 5364.36 0.369609
\(596\) 0 0
\(597\) −16673.9 −1.14307
\(598\) 0 0
\(599\) 18928.2 1.29113 0.645563 0.763707i \(-0.276623\pi\)
0.645563 + 0.763707i \(0.276623\pi\)
\(600\) 0 0
\(601\) −12364.7 −0.839212 −0.419606 0.907706i \(-0.637832\pi\)
−0.419606 + 0.907706i \(0.637832\pi\)
\(602\) 0 0
\(603\) −2675.68 −0.180700
\(604\) 0 0
\(605\) 15758.7 1.05898
\(606\) 0 0
\(607\) −220.686 −0.0147568 −0.00737838 0.999973i \(-0.502349\pi\)
−0.00737838 + 0.999973i \(0.502349\pi\)
\(608\) 0 0
\(609\) −5047.86 −0.335878
\(610\) 0 0
\(611\) 17326.5 1.14723
\(612\) 0 0
\(613\) 16105.1 1.06114 0.530569 0.847642i \(-0.321978\pi\)
0.530569 + 0.847642i \(0.321978\pi\)
\(614\) 0 0
\(615\) 5161.05 0.338396
\(616\) 0 0
\(617\) 2563.86 0.167288 0.0836442 0.996496i \(-0.473344\pi\)
0.0836442 + 0.996496i \(0.473344\pi\)
\(618\) 0 0
\(619\) −25219.9 −1.63760 −0.818798 0.574081i \(-0.805359\pi\)
−0.818798 + 0.574081i \(0.805359\pi\)
\(620\) 0 0
\(621\) −3469.85 −0.224220
\(622\) 0 0
\(623\) −6601.98 −0.424563
\(624\) 0 0
\(625\) 8233.07 0.526917
\(626\) 0 0
\(627\) 24994.0 1.59197
\(628\) 0 0
\(629\) −6626.63 −0.420065
\(630\) 0 0
\(631\) 16090.7 1.01515 0.507575 0.861607i \(-0.330542\pi\)
0.507575 + 0.861607i \(0.330542\pi\)
\(632\) 0 0
\(633\) 223.109 0.0140091
\(634\) 0 0
\(635\) −1056.25 −0.0660098
\(636\) 0 0
\(637\) 1902.88 0.118359
\(638\) 0 0
\(639\) 7420.61 0.459397
\(640\) 0 0
\(641\) 22241.7 1.37051 0.685254 0.728304i \(-0.259691\pi\)
0.685254 + 0.728304i \(0.259691\pi\)
\(642\) 0 0
\(643\) −19169.5 −1.17569 −0.587847 0.808972i \(-0.700024\pi\)
−0.587847 + 0.808972i \(0.700024\pi\)
\(644\) 0 0
\(645\) −2853.75 −0.174211
\(646\) 0 0
\(647\) 7574.09 0.460229 0.230114 0.973164i \(-0.426090\pi\)
0.230114 + 0.973164i \(0.426090\pi\)
\(648\) 0 0
\(649\) 40492.3 2.44909
\(650\) 0 0
\(651\) 8642.37 0.520309
\(652\) 0 0
\(653\) −3658.54 −0.219249 −0.109625 0.993973i \(-0.534965\pi\)
−0.109625 + 0.993973i \(0.534965\pi\)
\(654\) 0 0
\(655\) 750.352 0.0447613
\(656\) 0 0
\(657\) −5864.29 −0.348231
\(658\) 0 0
\(659\) 21866.2 1.29254 0.646272 0.763107i \(-0.276327\pi\)
0.646272 + 0.763107i \(0.276327\pi\)
\(660\) 0 0
\(661\) −20092.0 −1.18228 −0.591141 0.806568i \(-0.701322\pi\)
−0.591141 + 0.806568i \(0.701322\pi\)
\(662\) 0 0
\(663\) 11691.2 0.684842
\(664\) 0 0
\(665\) −7430.84 −0.433317
\(666\) 0 0
\(667\) 1738.13 0.100900
\(668\) 0 0
\(669\) 5392.74 0.311652
\(670\) 0 0
\(671\) 2231.18 0.128366
\(672\) 0 0
\(673\) 5414.18 0.310106 0.155053 0.987906i \(-0.450445\pi\)
0.155053 + 0.987906i \(0.450445\pi\)
\(674\) 0 0
\(675\) 15708.8 0.895752
\(676\) 0 0
\(677\) −17530.0 −0.995173 −0.497586 0.867415i \(-0.665780\pi\)
−0.497586 + 0.867415i \(0.665780\pi\)
\(678\) 0 0
\(679\) 29843.9 1.68675
\(680\) 0 0
\(681\) 15405.4 0.866868
\(682\) 0 0
\(683\) −22600.3 −1.26614 −0.633072 0.774093i \(-0.718206\pi\)
−0.633072 + 0.774093i \(0.718206\pi\)
\(684\) 0 0
\(685\) −9831.48 −0.548382
\(686\) 0 0
\(687\) 18475.9 1.02605
\(688\) 0 0
\(689\) 29606.2 1.63702
\(690\) 0 0
\(691\) −8476.98 −0.466685 −0.233343 0.972395i \(-0.574966\pi\)
−0.233343 + 0.972395i \(0.574966\pi\)
\(692\) 0 0
\(693\) 14566.6 0.798471
\(694\) 0 0
\(695\) −2749.64 −0.150072
\(696\) 0 0
\(697\) −19856.5 −1.07908
\(698\) 0 0
\(699\) −23331.5 −1.26249
\(700\) 0 0
\(701\) 14816.7 0.798316 0.399158 0.916882i \(-0.369302\pi\)
0.399158 + 0.916882i \(0.369302\pi\)
\(702\) 0 0
\(703\) 9179.37 0.492470
\(704\) 0 0
\(705\) −6808.61 −0.363726
\(706\) 0 0
\(707\) 23179.1 1.23301
\(708\) 0 0
\(709\) 5860.84 0.310449 0.155225 0.987879i \(-0.450390\pi\)
0.155225 + 0.987879i \(0.450390\pi\)
\(710\) 0 0
\(711\) 9408.06 0.496244
\(712\) 0 0
\(713\) −2975.82 −0.156305
\(714\) 0 0
\(715\) −14151.1 −0.740171
\(716\) 0 0
\(717\) −14769.3 −0.769274
\(718\) 0 0
\(719\) 24195.2 1.25498 0.627489 0.778625i \(-0.284083\pi\)
0.627489 + 0.778625i \(0.284083\pi\)
\(720\) 0 0
\(721\) 200.800 0.0103720
\(722\) 0 0
\(723\) 3606.27 0.185503
\(724\) 0 0
\(725\) −7868.90 −0.403095
\(726\) 0 0
\(727\) −11113.9 −0.566974 −0.283487 0.958976i \(-0.591491\pi\)
−0.283487 + 0.958976i \(0.591491\pi\)
\(728\) 0 0
\(729\) 18771.7 0.953701
\(730\) 0 0
\(731\) 10979.4 0.555526
\(732\) 0 0
\(733\) 14272.4 0.719184 0.359592 0.933110i \(-0.382916\pi\)
0.359592 + 0.933110i \(0.382916\pi\)
\(734\) 0 0
\(735\) −747.751 −0.0375255
\(736\) 0 0
\(737\) 15221.7 0.760784
\(738\) 0 0
\(739\) −19737.9 −0.982505 −0.491253 0.871017i \(-0.663461\pi\)
−0.491253 + 0.871017i \(0.663461\pi\)
\(740\) 0 0
\(741\) −16195.0 −0.802884
\(742\) 0 0
\(743\) 8473.54 0.418390 0.209195 0.977874i \(-0.432916\pi\)
0.209195 + 0.977874i \(0.432916\pi\)
\(744\) 0 0
\(745\) −5268.72 −0.259102
\(746\) 0 0
\(747\) 11803.9 0.578155
\(748\) 0 0
\(749\) 35546.5 1.73410
\(750\) 0 0
\(751\) 4631.81 0.225056 0.112528 0.993649i \(-0.464105\pi\)
0.112528 + 0.993649i \(0.464105\pi\)
\(752\) 0 0
\(753\) −9241.66 −0.447257
\(754\) 0 0
\(755\) −475.814 −0.0229359
\(756\) 0 0
\(757\) 26389.6 1.26703 0.633517 0.773729i \(-0.281611\pi\)
0.633517 + 0.773729i \(0.281611\pi\)
\(758\) 0 0
\(759\) 6127.25 0.293024
\(760\) 0 0
\(761\) 12842.0 0.611726 0.305863 0.952076i \(-0.401055\pi\)
0.305863 + 0.952076i \(0.401055\pi\)
\(762\) 0 0
\(763\) 8385.02 0.397848
\(764\) 0 0
\(765\) 3760.75 0.177739
\(766\) 0 0
\(767\) −26237.1 −1.23516
\(768\) 0 0
\(769\) 2732.93 0.128156 0.0640779 0.997945i \(-0.479589\pi\)
0.0640779 + 0.997945i \(0.479589\pi\)
\(770\) 0 0
\(771\) −22755.9 −1.06295
\(772\) 0 0
\(773\) −27456.8 −1.27756 −0.638780 0.769390i \(-0.720560\pi\)
−0.638780 + 0.769390i \(0.720560\pi\)
\(774\) 0 0
\(775\) 13472.2 0.624434
\(776\) 0 0
\(777\) −6535.34 −0.301743
\(778\) 0 0
\(779\) 27505.7 1.26507
\(780\) 0 0
\(781\) −42215.1 −1.93415
\(782\) 0 0
\(783\) −11400.8 −0.520348
\(784\) 0 0
\(785\) 9947.54 0.452284
\(786\) 0 0
\(787\) 13435.4 0.608538 0.304269 0.952586i \(-0.401588\pi\)
0.304269 + 0.952586i \(0.401588\pi\)
\(788\) 0 0
\(789\) −16366.0 −0.738461
\(790\) 0 0
\(791\) −24503.5 −1.10145
\(792\) 0 0
\(793\) −1445.70 −0.0647393
\(794\) 0 0
\(795\) −11634.0 −0.519013
\(796\) 0 0
\(797\) 3131.89 0.139194 0.0695968 0.997575i \(-0.477829\pi\)
0.0695968 + 0.997575i \(0.477829\pi\)
\(798\) 0 0
\(799\) 26195.3 1.15985
\(800\) 0 0
\(801\) −4628.40 −0.204165
\(802\) 0 0
\(803\) 33361.3 1.46612
\(804\) 0 0
\(805\) −1821.66 −0.0797578
\(806\) 0 0
\(807\) 17200.6 0.750298
\(808\) 0 0
\(809\) 20095.9 0.873343 0.436671 0.899621i \(-0.356157\pi\)
0.436671 + 0.899621i \(0.356157\pi\)
\(810\) 0 0
\(811\) −6769.96 −0.293126 −0.146563 0.989201i \(-0.546821\pi\)
−0.146563 + 0.989201i \(0.546821\pi\)
\(812\) 0 0
\(813\) 20105.8 0.867333
\(814\) 0 0
\(815\) −7522.19 −0.323302
\(816\) 0 0
\(817\) −15209.0 −0.651279
\(818\) 0 0
\(819\) −9438.50 −0.402696
\(820\) 0 0
\(821\) −4811.60 −0.204538 −0.102269 0.994757i \(-0.532610\pi\)
−0.102269 + 0.994757i \(0.532610\pi\)
\(822\) 0 0
\(823\) 42009.3 1.77928 0.889642 0.456659i \(-0.150954\pi\)
0.889642 + 0.456659i \(0.150954\pi\)
\(824\) 0 0
\(825\) −27739.5 −1.17062
\(826\) 0 0
\(827\) 17049.0 0.716869 0.358434 0.933555i \(-0.383311\pi\)
0.358434 + 0.933555i \(0.383311\pi\)
\(828\) 0 0
\(829\) 30850.7 1.29251 0.646254 0.763122i \(-0.276335\pi\)
0.646254 + 0.763122i \(0.276335\pi\)
\(830\) 0 0
\(831\) −1933.24 −0.0807021
\(832\) 0 0
\(833\) 2876.88 0.119661
\(834\) 0 0
\(835\) 13890.5 0.575689
\(836\) 0 0
\(837\) 19519.2 0.806072
\(838\) 0 0
\(839\) 10339.1 0.425441 0.212721 0.977113i \(-0.431768\pi\)
0.212721 + 0.977113i \(0.431768\pi\)
\(840\) 0 0
\(841\) −18678.1 −0.765840
\(842\) 0 0
\(843\) −19101.8 −0.780430
\(844\) 0 0
\(845\) −868.325 −0.0353506
\(846\) 0 0
\(847\) −59794.3 −2.42569
\(848\) 0 0
\(849\) 9211.15 0.372351
\(850\) 0 0
\(851\) 2250.31 0.0906458
\(852\) 0 0
\(853\) 15576.7 0.625248 0.312624 0.949877i \(-0.398792\pi\)
0.312624 + 0.949877i \(0.398792\pi\)
\(854\) 0 0
\(855\) −5209.47 −0.208375
\(856\) 0 0
\(857\) 4703.84 0.187492 0.0937458 0.995596i \(-0.470116\pi\)
0.0937458 + 0.995596i \(0.470116\pi\)
\(858\) 0 0
\(859\) −14624.9 −0.580903 −0.290451 0.956890i \(-0.593805\pi\)
−0.290451 + 0.956890i \(0.593805\pi\)
\(860\) 0 0
\(861\) −19582.9 −0.775127
\(862\) 0 0
\(863\) 4379.13 0.172731 0.0863657 0.996264i \(-0.472475\pi\)
0.0863657 + 0.996264i \(0.472475\pi\)
\(864\) 0 0
\(865\) 16349.7 0.642668
\(866\) 0 0
\(867\) −1254.97 −0.0491593
\(868\) 0 0
\(869\) −53521.4 −2.08929
\(870\) 0 0
\(871\) −9862.94 −0.383689
\(872\) 0 0
\(873\) 20922.4 0.811131
\(874\) 0 0
\(875\) 18147.4 0.701136
\(876\) 0 0
\(877\) 36538.9 1.40688 0.703439 0.710756i \(-0.251647\pi\)
0.703439 + 0.710756i \(0.251647\pi\)
\(878\) 0 0
\(879\) −26257.2 −1.00755
\(880\) 0 0
\(881\) −45420.3 −1.73695 −0.868473 0.495736i \(-0.834898\pi\)
−0.868473 + 0.495736i \(0.834898\pi\)
\(882\) 0 0
\(883\) 182.167 0.00694272 0.00347136 0.999994i \(-0.498895\pi\)
0.00347136 + 0.999994i \(0.498895\pi\)
\(884\) 0 0
\(885\) 10310.1 0.391605
\(886\) 0 0
\(887\) 5859.88 0.221821 0.110911 0.993830i \(-0.464623\pi\)
0.110911 + 0.993830i \(0.464623\pi\)
\(888\) 0 0
\(889\) 4007.82 0.151201
\(890\) 0 0
\(891\) −17503.0 −0.658105
\(892\) 0 0
\(893\) −36286.3 −1.35977
\(894\) 0 0
\(895\) 8516.55 0.318075
\(896\) 0 0
\(897\) −3970.18 −0.147782
\(898\) 0 0
\(899\) −9777.61 −0.362738
\(900\) 0 0
\(901\) 44760.4 1.65503
\(902\) 0 0
\(903\) 10828.2 0.399047
\(904\) 0 0
\(905\) 10600.5 0.389361
\(906\) 0 0
\(907\) 22448.3 0.821810 0.410905 0.911678i \(-0.365213\pi\)
0.410905 + 0.911678i \(0.365213\pi\)
\(908\) 0 0
\(909\) 16249.9 0.592934
\(910\) 0 0
\(911\) −25185.2 −0.915943 −0.457971 0.888967i \(-0.651424\pi\)
−0.457971 + 0.888967i \(0.651424\pi\)
\(912\) 0 0
\(913\) −67151.1 −2.43415
\(914\) 0 0
\(915\) 568.100 0.0205255
\(916\) 0 0
\(917\) −2847.11 −0.102530
\(918\) 0 0
\(919\) −11581.1 −0.415697 −0.207849 0.978161i \(-0.566646\pi\)
−0.207849 + 0.978161i \(0.566646\pi\)
\(920\) 0 0
\(921\) −23234.3 −0.831266
\(922\) 0 0
\(923\) 27353.4 0.975459
\(924\) 0 0
\(925\) −10187.7 −0.362128
\(926\) 0 0
\(927\) 140.773 0.00498770
\(928\) 0 0
\(929\) 12481.0 0.440784 0.220392 0.975411i \(-0.429266\pi\)
0.220392 + 0.975411i \(0.429266\pi\)
\(930\) 0 0
\(931\) −3985.12 −0.140287
\(932\) 0 0
\(933\) 23973.2 0.841208
\(934\) 0 0
\(935\) −21394.5 −0.748315
\(936\) 0 0
\(937\) 20576.7 0.717408 0.358704 0.933451i \(-0.383219\pi\)
0.358704 + 0.933451i \(0.383219\pi\)
\(938\) 0 0
\(939\) −23421.7 −0.813993
\(940\) 0 0
\(941\) −31346.6 −1.08594 −0.542970 0.839752i \(-0.682700\pi\)
−0.542970 + 0.839752i \(0.682700\pi\)
\(942\) 0 0
\(943\) 6742.98 0.232854
\(944\) 0 0
\(945\) 11948.8 0.411315
\(946\) 0 0
\(947\) −12127.4 −0.416145 −0.208072 0.978113i \(-0.566719\pi\)
−0.208072 + 0.978113i \(0.566719\pi\)
\(948\) 0 0
\(949\) −21616.6 −0.739415
\(950\) 0 0
\(951\) 10804.5 0.368412
\(952\) 0 0
\(953\) 10646.6 0.361886 0.180943 0.983494i \(-0.442085\pi\)
0.180943 + 0.983494i \(0.442085\pi\)
\(954\) 0 0
\(955\) −15674.4 −0.531112
\(956\) 0 0
\(957\) 20132.2 0.680023
\(958\) 0 0
\(959\) 37304.3 1.25612
\(960\) 0 0
\(961\) −13050.9 −0.438082
\(962\) 0 0
\(963\) 24920.3 0.833898
\(964\) 0 0
\(965\) 14411.2 0.480740
\(966\) 0 0
\(967\) 38839.1 1.29160 0.645802 0.763505i \(-0.276523\pi\)
0.645802 + 0.763505i \(0.276523\pi\)
\(968\) 0 0
\(969\) −24484.5 −0.811719
\(970\) 0 0
\(971\) 51156.6 1.69072 0.845362 0.534195i \(-0.179385\pi\)
0.845362 + 0.534195i \(0.179385\pi\)
\(972\) 0 0
\(973\) 10433.1 0.343753
\(974\) 0 0
\(975\) 17973.9 0.590385
\(976\) 0 0
\(977\) −52839.4 −1.73028 −0.865140 0.501531i \(-0.832770\pi\)
−0.865140 + 0.501531i \(0.832770\pi\)
\(978\) 0 0
\(979\) 26330.5 0.859576
\(980\) 0 0
\(981\) 5878.41 0.191318
\(982\) 0 0
\(983\) 16728.8 0.542794 0.271397 0.962467i \(-0.412514\pi\)
0.271397 + 0.962467i \(0.412514\pi\)
\(984\) 0 0
\(985\) −23126.0 −0.748076
\(986\) 0 0
\(987\) 25834.4 0.833148
\(988\) 0 0
\(989\) −3728.46 −0.119877
\(990\) 0 0
\(991\) −41197.2 −1.32056 −0.660279 0.751021i \(-0.729562\pi\)
−0.660279 + 0.751021i \(0.729562\pi\)
\(992\) 0 0
\(993\) −24959.0 −0.797634
\(994\) 0 0
\(995\) −19770.7 −0.629922
\(996\) 0 0
\(997\) 53746.1 1.70728 0.853639 0.520866i \(-0.174391\pi\)
0.853639 + 0.520866i \(0.174391\pi\)
\(998\) 0 0
\(999\) −14760.4 −0.467465
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.bi.1.8 9
4.3 odd 2 1472.4.a.bl.1.2 9
8.3 odd 2 736.4.a.g.1.8 9
8.5 even 2 736.4.a.j.1.2 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
736.4.a.g.1.8 9 8.3 odd 2
736.4.a.j.1.2 yes 9 8.5 even 2
1472.4.a.bi.1.8 9 1.1 even 1 trivial
1472.4.a.bl.1.2 9 4.3 odd 2