Properties

Label 1472.4.a.p.1.1
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.841083\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.13366 q^{3} -14.8525 q^{5} +19.8565 q^{7} +10.6218 q^{9} -55.2128 q^{11} +1.83551 q^{13} +91.1001 q^{15} -130.231 q^{17} -17.3027 q^{19} -121.793 q^{21} +23.0000 q^{23} +95.5963 q^{25} +100.458 q^{27} -77.6495 q^{29} -206.274 q^{31} +338.657 q^{33} -294.918 q^{35} +251.748 q^{37} -11.2584 q^{39} -157.141 q^{41} -336.389 q^{43} -157.760 q^{45} -488.790 q^{47} +51.2805 q^{49} +798.794 q^{51} -562.510 q^{53} +820.047 q^{55} +106.129 q^{57} -125.362 q^{59} -163.153 q^{61} +210.912 q^{63} -27.2618 q^{65} -769.127 q^{67} -141.074 q^{69} -113.905 q^{71} -747.272 q^{73} -586.356 q^{75} -1096.33 q^{77} -1112.03 q^{79} -902.966 q^{81} -988.932 q^{83} +1934.26 q^{85} +476.276 q^{87} +1381.04 q^{89} +36.4467 q^{91} +1265.22 q^{93} +256.988 q^{95} +1182.04 q^{97} -586.460 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{3} + 10 q^{5} + 46 q^{7} - 31 q^{9} - 64 q^{11} + 44 q^{13} + 134 q^{15} - 88 q^{17} - 94 q^{19} + 6 q^{21} + 69 q^{23} + 181 q^{25} + 20 q^{27} - 308 q^{29} + 140 q^{31} + 510 q^{33} + 192 q^{35}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.13366 −1.18042 −0.590212 0.807248i \(-0.700956\pi\)
−0.590212 + 0.807248i \(0.700956\pi\)
\(4\) 0 0
\(5\) −14.8525 −1.32845 −0.664223 0.747534i \(-0.731238\pi\)
−0.664223 + 0.747534i \(0.731238\pi\)
\(6\) 0 0
\(7\) 19.8565 1.07215 0.536075 0.844170i \(-0.319906\pi\)
0.536075 + 0.844170i \(0.319906\pi\)
\(8\) 0 0
\(9\) 10.6218 0.393401
\(10\) 0 0
\(11\) −55.2128 −1.51339 −0.756695 0.653768i \(-0.773187\pi\)
−0.756695 + 0.653768i \(0.773187\pi\)
\(12\) 0 0
\(13\) 1.83551 0.0391598 0.0195799 0.999808i \(-0.493767\pi\)
0.0195799 + 0.999808i \(0.493767\pi\)
\(14\) 0 0
\(15\) 91.1001 1.56813
\(16\) 0 0
\(17\) −130.231 −1.85798 −0.928991 0.370103i \(-0.879322\pi\)
−0.928991 + 0.370103i \(0.879322\pi\)
\(18\) 0 0
\(19\) −17.3027 −0.208921 −0.104461 0.994529i \(-0.533312\pi\)
−0.104461 + 0.994529i \(0.533312\pi\)
\(20\) 0 0
\(21\) −121.793 −1.26559
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 95.5963 0.764771
\(26\) 0 0
\(27\) 100.458 0.716044
\(28\) 0 0
\(29\) −77.6495 −0.497212 −0.248606 0.968605i \(-0.579972\pi\)
−0.248606 + 0.968605i \(0.579972\pi\)
\(30\) 0 0
\(31\) −206.274 −1.19509 −0.597547 0.801834i \(-0.703858\pi\)
−0.597547 + 0.801834i \(0.703858\pi\)
\(32\) 0 0
\(33\) 338.657 1.78644
\(34\) 0 0
\(35\) −294.918 −1.42429
\(36\) 0 0
\(37\) 251.748 1.11857 0.559286 0.828975i \(-0.311075\pi\)
0.559286 + 0.828975i \(0.311075\pi\)
\(38\) 0 0
\(39\) −11.2584 −0.0462252
\(40\) 0 0
\(41\) −157.141 −0.598568 −0.299284 0.954164i \(-0.596748\pi\)
−0.299284 + 0.954164i \(0.596748\pi\)
\(42\) 0 0
\(43\) −336.389 −1.19300 −0.596498 0.802615i \(-0.703442\pi\)
−0.596498 + 0.802615i \(0.703442\pi\)
\(44\) 0 0
\(45\) −157.760 −0.522612
\(46\) 0 0
\(47\) −488.790 −1.51696 −0.758482 0.651694i \(-0.774059\pi\)
−0.758482 + 0.651694i \(0.774059\pi\)
\(48\) 0 0
\(49\) 51.2805 0.149506
\(50\) 0 0
\(51\) 798.794 2.19321
\(52\) 0 0
\(53\) −562.510 −1.45786 −0.728931 0.684588i \(-0.759982\pi\)
−0.728931 + 0.684588i \(0.759982\pi\)
\(54\) 0 0
\(55\) 820.047 2.01046
\(56\) 0 0
\(57\) 106.129 0.246616
\(58\) 0 0
\(59\) −125.362 −0.276622 −0.138311 0.990389i \(-0.544167\pi\)
−0.138311 + 0.990389i \(0.544167\pi\)
\(60\) 0 0
\(61\) −163.153 −0.342452 −0.171226 0.985232i \(-0.554773\pi\)
−0.171226 + 0.985232i \(0.554773\pi\)
\(62\) 0 0
\(63\) 210.912 0.421785
\(64\) 0 0
\(65\) −27.2618 −0.0520217
\(66\) 0 0
\(67\) −769.127 −1.40245 −0.701223 0.712942i \(-0.747362\pi\)
−0.701223 + 0.712942i \(0.747362\pi\)
\(68\) 0 0
\(69\) −141.074 −0.246135
\(70\) 0 0
\(71\) −113.905 −0.190394 −0.0951972 0.995458i \(-0.530348\pi\)
−0.0951972 + 0.995458i \(0.530348\pi\)
\(72\) 0 0
\(73\) −747.272 −1.19810 −0.599052 0.800710i \(-0.704456\pi\)
−0.599052 + 0.800710i \(0.704456\pi\)
\(74\) 0 0
\(75\) −586.356 −0.902753
\(76\) 0 0
\(77\) −1096.33 −1.62258
\(78\) 0 0
\(79\) −1112.03 −1.58370 −0.791852 0.610713i \(-0.790883\pi\)
−0.791852 + 0.610713i \(0.790883\pi\)
\(80\) 0 0
\(81\) −902.966 −1.23864
\(82\) 0 0
\(83\) −988.932 −1.30782 −0.653912 0.756570i \(-0.726873\pi\)
−0.653912 + 0.756570i \(0.726873\pi\)
\(84\) 0 0
\(85\) 1934.26 2.46823
\(86\) 0 0
\(87\) 476.276 0.586921
\(88\) 0 0
\(89\) 1381.04 1.64483 0.822413 0.568891i \(-0.192627\pi\)
0.822413 + 0.568891i \(0.192627\pi\)
\(90\) 0 0
\(91\) 36.4467 0.0419852
\(92\) 0 0
\(93\) 1265.22 1.41072
\(94\) 0 0
\(95\) 256.988 0.277541
\(96\) 0 0
\(97\) 1182.04 1.23730 0.618651 0.785666i \(-0.287680\pi\)
0.618651 + 0.785666i \(0.287680\pi\)
\(98\) 0 0
\(99\) −586.460 −0.595368
\(100\) 0 0
\(101\) −136.284 −0.134265 −0.0671324 0.997744i \(-0.521385\pi\)
−0.0671324 + 0.997744i \(0.521385\pi\)
\(102\) 0 0
\(103\) 776.639 0.742956 0.371478 0.928442i \(-0.378851\pi\)
0.371478 + 0.928442i \(0.378851\pi\)
\(104\) 0 0
\(105\) 1808.93 1.68127
\(106\) 0 0
\(107\) −73.6862 −0.0665749 −0.0332874 0.999446i \(-0.510598\pi\)
−0.0332874 + 0.999446i \(0.510598\pi\)
\(108\) 0 0
\(109\) 407.725 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(110\) 0 0
\(111\) −1544.14 −1.32039
\(112\) 0 0
\(113\) −1609.37 −1.33980 −0.669899 0.742452i \(-0.733663\pi\)
−0.669899 + 0.742452i \(0.733663\pi\)
\(114\) 0 0
\(115\) −341.607 −0.277000
\(116\) 0 0
\(117\) 19.4964 0.0154055
\(118\) 0 0
\(119\) −2585.93 −1.99203
\(120\) 0 0
\(121\) 1717.45 1.29035
\(122\) 0 0
\(123\) 963.849 0.706564
\(124\) 0 0
\(125\) 436.718 0.312490
\(126\) 0 0
\(127\) 244.033 0.170507 0.0852536 0.996359i \(-0.472830\pi\)
0.0852536 + 0.996359i \(0.472830\pi\)
\(128\) 0 0
\(129\) 2063.30 1.40824
\(130\) 0 0
\(131\) −511.050 −0.340845 −0.170422 0.985371i \(-0.554513\pi\)
−0.170422 + 0.985371i \(0.554513\pi\)
\(132\) 0 0
\(133\) −343.570 −0.223995
\(134\) 0 0
\(135\) −1492.05 −0.951227
\(136\) 0 0
\(137\) 1468.41 0.915729 0.457865 0.889022i \(-0.348614\pi\)
0.457865 + 0.889022i \(0.348614\pi\)
\(138\) 0 0
\(139\) −212.472 −0.129652 −0.0648259 0.997897i \(-0.520649\pi\)
−0.0648259 + 0.997897i \(0.520649\pi\)
\(140\) 0 0
\(141\) 2998.07 1.79066
\(142\) 0 0
\(143\) −101.343 −0.0592641
\(144\) 0 0
\(145\) 1153.29 0.660520
\(146\) 0 0
\(147\) −314.537 −0.176480
\(148\) 0 0
\(149\) 1632.09 0.897357 0.448678 0.893693i \(-0.351895\pi\)
0.448678 + 0.893693i \(0.351895\pi\)
\(150\) 0 0
\(151\) −376.006 −0.202642 −0.101321 0.994854i \(-0.532307\pi\)
−0.101321 + 0.994854i \(0.532307\pi\)
\(152\) 0 0
\(153\) −1383.29 −0.730931
\(154\) 0 0
\(155\) 3063.68 1.58762
\(156\) 0 0
\(157\) 3693.99 1.87779 0.938894 0.344207i \(-0.111852\pi\)
0.938894 + 0.344207i \(0.111852\pi\)
\(158\) 0 0
\(159\) 3450.24 1.72089
\(160\) 0 0
\(161\) 456.699 0.223559
\(162\) 0 0
\(163\) −421.000 −0.202302 −0.101151 0.994871i \(-0.532253\pi\)
−0.101151 + 0.994871i \(0.532253\pi\)
\(164\) 0 0
\(165\) −5029.89 −2.37319
\(166\) 0 0
\(167\) −1922.49 −0.890820 −0.445410 0.895327i \(-0.646942\pi\)
−0.445410 + 0.895327i \(0.646942\pi\)
\(168\) 0 0
\(169\) −2193.63 −0.998467
\(170\) 0 0
\(171\) −183.786 −0.0821898
\(172\) 0 0
\(173\) 4106.18 1.80455 0.902274 0.431163i \(-0.141897\pi\)
0.902274 + 0.431163i \(0.141897\pi\)
\(174\) 0 0
\(175\) 1898.21 0.819949
\(176\) 0 0
\(177\) 768.926 0.326531
\(178\) 0 0
\(179\) 3547.01 1.48110 0.740548 0.672004i \(-0.234566\pi\)
0.740548 + 0.672004i \(0.234566\pi\)
\(180\) 0 0
\(181\) 2538.65 1.04252 0.521260 0.853398i \(-0.325462\pi\)
0.521260 + 0.853398i \(0.325462\pi\)
\(182\) 0 0
\(183\) 1000.72 0.404238
\(184\) 0 0
\(185\) −3739.09 −1.48596
\(186\) 0 0
\(187\) 7190.42 2.81185
\(188\) 0 0
\(189\) 1994.75 0.767707
\(190\) 0 0
\(191\) −2916.89 −1.10502 −0.552509 0.833507i \(-0.686330\pi\)
−0.552509 + 0.833507i \(0.686330\pi\)
\(192\) 0 0
\(193\) −897.820 −0.334852 −0.167426 0.985885i \(-0.553546\pi\)
−0.167426 + 0.985885i \(0.553546\pi\)
\(194\) 0 0
\(195\) 167.215 0.0614077
\(196\) 0 0
\(197\) −1708.26 −0.617811 −0.308906 0.951093i \(-0.599963\pi\)
−0.308906 + 0.951093i \(0.599963\pi\)
\(198\) 0 0
\(199\) 5485.06 1.95390 0.976949 0.213472i \(-0.0684773\pi\)
0.976949 + 0.213472i \(0.0684773\pi\)
\(200\) 0 0
\(201\) 4717.57 1.65548
\(202\) 0 0
\(203\) −1541.85 −0.533086
\(204\) 0 0
\(205\) 2333.93 0.795165
\(206\) 0 0
\(207\) 244.302 0.0820297
\(208\) 0 0
\(209\) 955.329 0.316179
\(210\) 0 0
\(211\) −2018.90 −0.658707 −0.329353 0.944207i \(-0.606831\pi\)
−0.329353 + 0.944207i \(0.606831\pi\)
\(212\) 0 0
\(213\) 698.653 0.224746
\(214\) 0 0
\(215\) 4996.21 1.58483
\(216\) 0 0
\(217\) −4095.88 −1.28132
\(218\) 0 0
\(219\) 4583.52 1.41427
\(220\) 0 0
\(221\) −239.040 −0.0727582
\(222\) 0 0
\(223\) 1408.84 0.423061 0.211531 0.977371i \(-0.432155\pi\)
0.211531 + 0.977371i \(0.432155\pi\)
\(224\) 0 0
\(225\) 1015.41 0.300861
\(226\) 0 0
\(227\) −4218.53 −1.23345 −0.616725 0.787178i \(-0.711541\pi\)
−0.616725 + 0.787178i \(0.711541\pi\)
\(228\) 0 0
\(229\) −3145.64 −0.907727 −0.453864 0.891071i \(-0.649955\pi\)
−0.453864 + 0.891071i \(0.649955\pi\)
\(230\) 0 0
\(231\) 6724.54 1.91533
\(232\) 0 0
\(233\) −2725.56 −0.766340 −0.383170 0.923678i \(-0.625168\pi\)
−0.383170 + 0.923678i \(0.625168\pi\)
\(234\) 0 0
\(235\) 7259.75 2.01521
\(236\) 0 0
\(237\) 6820.79 1.86944
\(238\) 0 0
\(239\) −253.806 −0.0686917 −0.0343459 0.999410i \(-0.510935\pi\)
−0.0343459 + 0.999410i \(0.510935\pi\)
\(240\) 0 0
\(241\) 546.857 0.146167 0.0730833 0.997326i \(-0.476716\pi\)
0.0730833 + 0.997326i \(0.476716\pi\)
\(242\) 0 0
\(243\) 2826.12 0.746072
\(244\) 0 0
\(245\) −761.643 −0.198611
\(246\) 0 0
\(247\) −31.7591 −0.00818132
\(248\) 0 0
\(249\) 6065.78 1.54379
\(250\) 0 0
\(251\) −1293.39 −0.325250 −0.162625 0.986688i \(-0.551996\pi\)
−0.162625 + 0.986688i \(0.551996\pi\)
\(252\) 0 0
\(253\) −1269.89 −0.315564
\(254\) 0 0
\(255\) −11864.1 −2.91356
\(256\) 0 0
\(257\) 4457.95 1.08202 0.541010 0.841016i \(-0.318042\pi\)
0.541010 + 0.841016i \(0.318042\pi\)
\(258\) 0 0
\(259\) 4998.84 1.19928
\(260\) 0 0
\(261\) −824.779 −0.195604
\(262\) 0 0
\(263\) −7213.46 −1.69126 −0.845629 0.533771i \(-0.820775\pi\)
−0.845629 + 0.533771i \(0.820775\pi\)
\(264\) 0 0
\(265\) 8354.67 1.93669
\(266\) 0 0
\(267\) −8470.81 −1.94159
\(268\) 0 0
\(269\) −6970.90 −1.58001 −0.790006 0.613099i \(-0.789923\pi\)
−0.790006 + 0.613099i \(0.789923\pi\)
\(270\) 0 0
\(271\) 5950.25 1.33377 0.666886 0.745160i \(-0.267627\pi\)
0.666886 + 0.745160i \(0.267627\pi\)
\(272\) 0 0
\(273\) −223.552 −0.0495603
\(274\) 0 0
\(275\) −5278.14 −1.15740
\(276\) 0 0
\(277\) 318.533 0.0690932 0.0345466 0.999403i \(-0.489001\pi\)
0.0345466 + 0.999403i \(0.489001\pi\)
\(278\) 0 0
\(279\) −2191.01 −0.470151
\(280\) 0 0
\(281\) −5155.42 −1.09447 −0.547236 0.836978i \(-0.684320\pi\)
−0.547236 + 0.836978i \(0.684320\pi\)
\(282\) 0 0
\(283\) −7996.15 −1.67958 −0.839791 0.542910i \(-0.817322\pi\)
−0.839791 + 0.542910i \(0.817322\pi\)
\(284\) 0 0
\(285\) −1576.28 −0.327616
\(286\) 0 0
\(287\) −3120.27 −0.641755
\(288\) 0 0
\(289\) 12047.1 2.45209
\(290\) 0 0
\(291\) −7250.25 −1.46054
\(292\) 0 0
\(293\) −3089.70 −0.616048 −0.308024 0.951379i \(-0.599668\pi\)
−0.308024 + 0.951379i \(0.599668\pi\)
\(294\) 0 0
\(295\) 1861.93 0.367477
\(296\) 0 0
\(297\) −5546.58 −1.08365
\(298\) 0 0
\(299\) 42.2166 0.00816539
\(300\) 0 0
\(301\) −6679.51 −1.27907
\(302\) 0 0
\(303\) 835.919 0.158489
\(304\) 0 0
\(305\) 2423.22 0.454929
\(306\) 0 0
\(307\) −9221.38 −1.71431 −0.857153 0.515062i \(-0.827769\pi\)
−0.857153 + 0.515062i \(0.827769\pi\)
\(308\) 0 0
\(309\) −4763.64 −0.877003
\(310\) 0 0
\(311\) 325.204 0.0592946 0.0296473 0.999560i \(-0.490562\pi\)
0.0296473 + 0.999560i \(0.490562\pi\)
\(312\) 0 0
\(313\) −7771.70 −1.40346 −0.701729 0.712444i \(-0.747588\pi\)
−0.701729 + 0.712444i \(0.747588\pi\)
\(314\) 0 0
\(315\) −3132.57 −0.560318
\(316\) 0 0
\(317\) 3888.41 0.688943 0.344472 0.938797i \(-0.388058\pi\)
0.344472 + 0.938797i \(0.388058\pi\)
\(318\) 0 0
\(319\) 4287.25 0.752476
\(320\) 0 0
\(321\) 451.966 0.0785865
\(322\) 0 0
\(323\) 2253.35 0.388172
\(324\) 0 0
\(325\) 175.468 0.0299483
\(326\) 0 0
\(327\) −2500.85 −0.422927
\(328\) 0 0
\(329\) −9705.66 −1.62641
\(330\) 0 0
\(331\) 7587.98 1.26004 0.630020 0.776579i \(-0.283047\pi\)
0.630020 + 0.776579i \(0.283047\pi\)
\(332\) 0 0
\(333\) 2674.02 0.440047
\(334\) 0 0
\(335\) 11423.4 1.86307
\(336\) 0 0
\(337\) 10567.0 1.70807 0.854036 0.520215i \(-0.174148\pi\)
0.854036 + 0.520215i \(0.174148\pi\)
\(338\) 0 0
\(339\) 9871.36 1.58153
\(340\) 0 0
\(341\) 11389.0 1.80864
\(342\) 0 0
\(343\) −5792.53 −0.911857
\(344\) 0 0
\(345\) 2095.30 0.326978
\(346\) 0 0
\(347\) 7634.31 1.18107 0.590535 0.807012i \(-0.298917\pi\)
0.590535 + 0.807012i \(0.298917\pi\)
\(348\) 0 0
\(349\) 1494.92 0.229287 0.114644 0.993407i \(-0.463427\pi\)
0.114644 + 0.993407i \(0.463427\pi\)
\(350\) 0 0
\(351\) 184.392 0.0280402
\(352\) 0 0
\(353\) 1352.12 0.203870 0.101935 0.994791i \(-0.467497\pi\)
0.101935 + 0.994791i \(0.467497\pi\)
\(354\) 0 0
\(355\) 1691.77 0.252929
\(356\) 0 0
\(357\) 15861.2 2.35145
\(358\) 0 0
\(359\) 3598.20 0.528985 0.264492 0.964388i \(-0.414796\pi\)
0.264492 + 0.964388i \(0.414796\pi\)
\(360\) 0 0
\(361\) −6559.62 −0.956352
\(362\) 0 0
\(363\) −10534.3 −1.52316
\(364\) 0 0
\(365\) 11098.9 1.59162
\(366\) 0 0
\(367\) −5389.41 −0.766553 −0.383277 0.923634i \(-0.625204\pi\)
−0.383277 + 0.923634i \(0.625204\pi\)
\(368\) 0 0
\(369\) −1669.12 −0.235477
\(370\) 0 0
\(371\) −11169.5 −1.56305
\(372\) 0 0
\(373\) −11554.0 −1.60387 −0.801934 0.597412i \(-0.796196\pi\)
−0.801934 + 0.597412i \(0.796196\pi\)
\(374\) 0 0
\(375\) −2678.68 −0.368870
\(376\) 0 0
\(377\) −142.526 −0.0194707
\(378\) 0 0
\(379\) 899.535 0.121916 0.0609578 0.998140i \(-0.480584\pi\)
0.0609578 + 0.998140i \(0.480584\pi\)
\(380\) 0 0
\(381\) −1496.81 −0.201271
\(382\) 0 0
\(383\) 7099.99 0.947239 0.473619 0.880730i \(-0.342947\pi\)
0.473619 + 0.880730i \(0.342947\pi\)
\(384\) 0 0
\(385\) 16283.3 2.15551
\(386\) 0 0
\(387\) −3573.06 −0.469325
\(388\) 0 0
\(389\) −7471.47 −0.973826 −0.486913 0.873450i \(-0.661877\pi\)
−0.486913 + 0.873450i \(0.661877\pi\)
\(390\) 0 0
\(391\) −2995.32 −0.387416
\(392\) 0 0
\(393\) 3134.61 0.402341
\(394\) 0 0
\(395\) 16516.3 2.10387
\(396\) 0 0
\(397\) 2610.90 0.330069 0.165034 0.986288i \(-0.447226\pi\)
0.165034 + 0.986288i \(0.447226\pi\)
\(398\) 0 0
\(399\) 2107.34 0.264409
\(400\) 0 0
\(401\) −3698.53 −0.460588 −0.230294 0.973121i \(-0.573969\pi\)
−0.230294 + 0.973121i \(0.573969\pi\)
\(402\) 0 0
\(403\) −378.617 −0.0467997
\(404\) 0 0
\(405\) 13411.3 1.64546
\(406\) 0 0
\(407\) −13899.7 −1.69284
\(408\) 0 0
\(409\) 12905.9 1.56028 0.780140 0.625605i \(-0.215148\pi\)
0.780140 + 0.625605i \(0.215148\pi\)
\(410\) 0 0
\(411\) −9006.74 −1.08095
\(412\) 0 0
\(413\) −2489.24 −0.296580
\(414\) 0 0
\(415\) 14688.1 1.73737
\(416\) 0 0
\(417\) 1303.23 0.153044
\(418\) 0 0
\(419\) 12776.2 1.48963 0.744817 0.667268i \(-0.232537\pi\)
0.744817 + 0.667268i \(0.232537\pi\)
\(420\) 0 0
\(421\) 1425.67 0.165043 0.0825213 0.996589i \(-0.473703\pi\)
0.0825213 + 0.996589i \(0.473703\pi\)
\(422\) 0 0
\(423\) −5191.84 −0.596775
\(424\) 0 0
\(425\) −12449.6 −1.42093
\(426\) 0 0
\(427\) −3239.64 −0.367160
\(428\) 0 0
\(429\) 621.606 0.0699567
\(430\) 0 0
\(431\) −115.735 −0.0129344 −0.00646721 0.999979i \(-0.502059\pi\)
−0.00646721 + 0.999979i \(0.502059\pi\)
\(432\) 0 0
\(433\) −1530.96 −0.169915 −0.0849575 0.996385i \(-0.527075\pi\)
−0.0849575 + 0.996385i \(0.527075\pi\)
\(434\) 0 0
\(435\) −7073.88 −0.779693
\(436\) 0 0
\(437\) −397.961 −0.0435631
\(438\) 0 0
\(439\) 11952.2 1.29942 0.649712 0.760181i \(-0.274890\pi\)
0.649712 + 0.760181i \(0.274890\pi\)
\(440\) 0 0
\(441\) 544.692 0.0588157
\(442\) 0 0
\(443\) 2081.30 0.223218 0.111609 0.993752i \(-0.464400\pi\)
0.111609 + 0.993752i \(0.464400\pi\)
\(444\) 0 0
\(445\) −20511.8 −2.18506
\(446\) 0 0
\(447\) −10010.7 −1.05926
\(448\) 0 0
\(449\) −3242.73 −0.340832 −0.170416 0.985372i \(-0.554511\pi\)
−0.170416 + 0.985372i \(0.554511\pi\)
\(450\) 0 0
\(451\) 8676.19 0.905866
\(452\) 0 0
\(453\) 2306.30 0.239204
\(454\) 0 0
\(455\) −541.324 −0.0557751
\(456\) 0 0
\(457\) 16412.2 1.67994 0.839970 0.542633i \(-0.182573\pi\)
0.839970 + 0.542633i \(0.182573\pi\)
\(458\) 0 0
\(459\) −13082.8 −1.33040
\(460\) 0 0
\(461\) 2985.88 0.301662 0.150831 0.988560i \(-0.451805\pi\)
0.150831 + 0.988560i \(0.451805\pi\)
\(462\) 0 0
\(463\) 7994.42 0.802445 0.401223 0.915981i \(-0.368585\pi\)
0.401223 + 0.915981i \(0.368585\pi\)
\(464\) 0 0
\(465\) −18791.6 −1.87406
\(466\) 0 0
\(467\) 621.345 0.0615684 0.0307842 0.999526i \(-0.490200\pi\)
0.0307842 + 0.999526i \(0.490200\pi\)
\(468\) 0 0
\(469\) −15272.2 −1.50363
\(470\) 0 0
\(471\) −22657.7 −2.21659
\(472\) 0 0
\(473\) 18573.0 1.80547
\(474\) 0 0
\(475\) −1654.07 −0.159777
\(476\) 0 0
\(477\) −5974.87 −0.573524
\(478\) 0 0
\(479\) −5650.45 −0.538989 −0.269494 0.963002i \(-0.586857\pi\)
−0.269494 + 0.963002i \(0.586857\pi\)
\(480\) 0 0
\(481\) 462.085 0.0438031
\(482\) 0 0
\(483\) −2801.24 −0.263894
\(484\) 0 0
\(485\) −17556.3 −1.64369
\(486\) 0 0
\(487\) −7687.95 −0.715347 −0.357674 0.933847i \(-0.616430\pi\)
−0.357674 + 0.933847i \(0.616430\pi\)
\(488\) 0 0
\(489\) 2582.27 0.238802
\(490\) 0 0
\(491\) 5517.82 0.507160 0.253580 0.967314i \(-0.418392\pi\)
0.253580 + 0.967314i \(0.418392\pi\)
\(492\) 0 0
\(493\) 10112.4 0.923811
\(494\) 0 0
\(495\) 8710.39 0.790915
\(496\) 0 0
\(497\) −2261.75 −0.204131
\(498\) 0 0
\(499\) −14399.6 −1.29181 −0.645907 0.763416i \(-0.723521\pi\)
−0.645907 + 0.763416i \(0.723521\pi\)
\(500\) 0 0
\(501\) 11791.9 1.05155
\(502\) 0 0
\(503\) −1689.24 −0.149741 −0.0748703 0.997193i \(-0.523854\pi\)
−0.0748703 + 0.997193i \(0.523854\pi\)
\(504\) 0 0
\(505\) 2024.15 0.178364
\(506\) 0 0
\(507\) 13455.0 1.17861
\(508\) 0 0
\(509\) 4595.43 0.400175 0.200087 0.979778i \(-0.435877\pi\)
0.200087 + 0.979778i \(0.435877\pi\)
\(510\) 0 0
\(511\) −14838.2 −1.28455
\(512\) 0 0
\(513\) −1738.20 −0.149597
\(514\) 0 0
\(515\) −11535.0 −0.986978
\(516\) 0 0
\(517\) 26987.5 2.29576
\(518\) 0 0
\(519\) −25185.9 −2.13013
\(520\) 0 0
\(521\) −15259.0 −1.28313 −0.641564 0.767069i \(-0.721714\pi\)
−0.641564 + 0.767069i \(0.721714\pi\)
\(522\) 0 0
\(523\) −13742.9 −1.14901 −0.574507 0.818500i \(-0.694806\pi\)
−0.574507 + 0.818500i \(0.694806\pi\)
\(524\) 0 0
\(525\) −11643.0 −0.967887
\(526\) 0 0
\(527\) 26863.3 2.22046
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −1331.57 −0.108823
\(532\) 0 0
\(533\) −288.433 −0.0234398
\(534\) 0 0
\(535\) 1094.42 0.0884411
\(536\) 0 0
\(537\) −21756.2 −1.74832
\(538\) 0 0
\(539\) −2831.34 −0.226261
\(540\) 0 0
\(541\) −14206.6 −1.12900 −0.564501 0.825432i \(-0.690931\pi\)
−0.564501 + 0.825432i \(0.690931\pi\)
\(542\) 0 0
\(543\) −15571.2 −1.23061
\(544\) 0 0
\(545\) −6055.72 −0.475961
\(546\) 0 0
\(547\) −4893.57 −0.382512 −0.191256 0.981540i \(-0.561256\pi\)
−0.191256 + 0.981540i \(0.561256\pi\)
\(548\) 0 0
\(549\) −1732.98 −0.134721
\(550\) 0 0
\(551\) 1343.54 0.103878
\(552\) 0 0
\(553\) −22080.9 −1.69797
\(554\) 0 0
\(555\) 22934.3 1.75407
\(556\) 0 0
\(557\) 6114.45 0.465130 0.232565 0.972581i \(-0.425288\pi\)
0.232565 + 0.972581i \(0.425288\pi\)
\(558\) 0 0
\(559\) −617.444 −0.0467175
\(560\) 0 0
\(561\) −44103.6 −3.31917
\(562\) 0 0
\(563\) 283.621 0.0212312 0.0106156 0.999944i \(-0.496621\pi\)
0.0106156 + 0.999944i \(0.496621\pi\)
\(564\) 0 0
\(565\) 23903.2 1.77985
\(566\) 0 0
\(567\) −17929.7 −1.32800
\(568\) 0 0
\(569\) −22593.3 −1.66461 −0.832304 0.554319i \(-0.812979\pi\)
−0.832304 + 0.554319i \(0.812979\pi\)
\(570\) 0 0
\(571\) 4659.78 0.341516 0.170758 0.985313i \(-0.445378\pi\)
0.170758 + 0.985313i \(0.445378\pi\)
\(572\) 0 0
\(573\) 17891.2 1.30439
\(574\) 0 0
\(575\) 2198.72 0.159466
\(576\) 0 0
\(577\) −11799.6 −0.851343 −0.425672 0.904878i \(-0.639962\pi\)
−0.425672 + 0.904878i \(0.639962\pi\)
\(578\) 0 0
\(579\) 5506.93 0.395268
\(580\) 0 0
\(581\) −19636.7 −1.40218
\(582\) 0 0
\(583\) 31057.7 2.20631
\(584\) 0 0
\(585\) −289.570 −0.0204654
\(586\) 0 0
\(587\) 6391.44 0.449409 0.224704 0.974427i \(-0.427858\pi\)
0.224704 + 0.974427i \(0.427858\pi\)
\(588\) 0 0
\(589\) 3569.09 0.249681
\(590\) 0 0
\(591\) 10477.9 0.729279
\(592\) 0 0
\(593\) 25789.3 1.78590 0.892950 0.450156i \(-0.148631\pi\)
0.892950 + 0.450156i \(0.148631\pi\)
\(594\) 0 0
\(595\) 38407.5 2.64631
\(596\) 0 0
\(597\) −33643.5 −2.30643
\(598\) 0 0
\(599\) 1019.78 0.0695612 0.0347806 0.999395i \(-0.488927\pi\)
0.0347806 + 0.999395i \(0.488927\pi\)
\(600\) 0 0
\(601\) 18088.1 1.22767 0.613835 0.789435i \(-0.289626\pi\)
0.613835 + 0.789435i \(0.289626\pi\)
\(602\) 0 0
\(603\) −8169.53 −0.551723
\(604\) 0 0
\(605\) −25508.5 −1.71416
\(606\) 0 0
\(607\) −8849.82 −0.591768 −0.295884 0.955224i \(-0.595614\pi\)
−0.295884 + 0.955224i \(0.595614\pi\)
\(608\) 0 0
\(609\) 9457.17 0.629268
\(610\) 0 0
\(611\) −897.177 −0.0594041
\(612\) 0 0
\(613\) 9371.04 0.617443 0.308722 0.951152i \(-0.400099\pi\)
0.308722 + 0.951152i \(0.400099\pi\)
\(614\) 0 0
\(615\) −14315.6 −0.938632
\(616\) 0 0
\(617\) −12177.9 −0.794593 −0.397296 0.917690i \(-0.630051\pi\)
−0.397296 + 0.917690i \(0.630051\pi\)
\(618\) 0 0
\(619\) −10466.5 −0.679620 −0.339810 0.940494i \(-0.610363\pi\)
−0.339810 + 0.940494i \(0.610363\pi\)
\(620\) 0 0
\(621\) 2310.54 0.149306
\(622\) 0 0
\(623\) 27422.5 1.76350
\(624\) 0 0
\(625\) −18435.9 −1.17990
\(626\) 0 0
\(627\) −5859.66 −0.373226
\(628\) 0 0
\(629\) −32785.5 −2.07829
\(630\) 0 0
\(631\) −12761.0 −0.805083 −0.402542 0.915402i \(-0.631873\pi\)
−0.402542 + 0.915402i \(0.631873\pi\)
\(632\) 0 0
\(633\) 12383.3 0.777553
\(634\) 0 0
\(635\) −3624.49 −0.226510
\(636\) 0 0
\(637\) 94.1257 0.00585463
\(638\) 0 0
\(639\) −1209.87 −0.0749013
\(640\) 0 0
\(641\) −16863.9 −1.03913 −0.519567 0.854429i \(-0.673907\pi\)
−0.519567 + 0.854429i \(0.673907\pi\)
\(642\) 0 0
\(643\) −7124.46 −0.436954 −0.218477 0.975842i \(-0.570109\pi\)
−0.218477 + 0.975842i \(0.570109\pi\)
\(644\) 0 0
\(645\) −30645.1 −1.87077
\(646\) 0 0
\(647\) −4611.30 −0.280199 −0.140100 0.990137i \(-0.544742\pi\)
−0.140100 + 0.990137i \(0.544742\pi\)
\(648\) 0 0
\(649\) 6921.56 0.418637
\(650\) 0 0
\(651\) 25122.8 1.51250
\(652\) 0 0
\(653\) 24684.4 1.47929 0.739645 0.672997i \(-0.234993\pi\)
0.739645 + 0.672997i \(0.234993\pi\)
\(654\) 0 0
\(655\) 7590.37 0.452794
\(656\) 0 0
\(657\) −7937.39 −0.471335
\(658\) 0 0
\(659\) 7975.64 0.471452 0.235726 0.971820i \(-0.424253\pi\)
0.235726 + 0.971820i \(0.424253\pi\)
\(660\) 0 0
\(661\) 18826.4 1.10781 0.553903 0.832581i \(-0.313138\pi\)
0.553903 + 0.832581i \(0.313138\pi\)
\(662\) 0 0
\(663\) 1466.19 0.0858855
\(664\) 0 0
\(665\) 5102.87 0.297565
\(666\) 0 0
\(667\) −1785.94 −0.103676
\(668\) 0 0
\(669\) −8641.32 −0.499391
\(670\) 0 0
\(671\) 9008.11 0.518263
\(672\) 0 0
\(673\) 2048.53 0.117333 0.0586665 0.998278i \(-0.481315\pi\)
0.0586665 + 0.998278i \(0.481315\pi\)
\(674\) 0 0
\(675\) 9603.44 0.547610
\(676\) 0 0
\(677\) 2817.95 0.159975 0.0799873 0.996796i \(-0.474512\pi\)
0.0799873 + 0.996796i \(0.474512\pi\)
\(678\) 0 0
\(679\) 23471.2 1.32657
\(680\) 0 0
\(681\) 25875.0 1.45600
\(682\) 0 0
\(683\) 2315.98 0.129749 0.0648745 0.997893i \(-0.479335\pi\)
0.0648745 + 0.997893i \(0.479335\pi\)
\(684\) 0 0
\(685\) −21809.6 −1.21650
\(686\) 0 0
\(687\) 19294.3 1.07150
\(688\) 0 0
\(689\) −1032.49 −0.0570896
\(690\) 0 0
\(691\) −32776.9 −1.80447 −0.902236 0.431243i \(-0.858075\pi\)
−0.902236 + 0.431243i \(0.858075\pi\)
\(692\) 0 0
\(693\) −11645.0 −0.638324
\(694\) 0 0
\(695\) 3155.73 0.172235
\(696\) 0 0
\(697\) 20464.6 1.11213
\(698\) 0 0
\(699\) 16717.7 0.904606
\(700\) 0 0
\(701\) −19670.2 −1.05982 −0.529909 0.848054i \(-0.677774\pi\)
−0.529909 + 0.848054i \(0.677774\pi\)
\(702\) 0 0
\(703\) −4355.92 −0.233694
\(704\) 0 0
\(705\) −44528.8 −2.37880
\(706\) 0 0
\(707\) −2706.12 −0.143952
\(708\) 0 0
\(709\) −11162.8 −0.591297 −0.295648 0.955297i \(-0.595536\pi\)
−0.295648 + 0.955297i \(0.595536\pi\)
\(710\) 0 0
\(711\) −11811.7 −0.623030
\(712\) 0 0
\(713\) −4744.30 −0.249194
\(714\) 0 0
\(715\) 1505.20 0.0787292
\(716\) 0 0
\(717\) 1556.76 0.0810854
\(718\) 0 0
\(719\) 9864.65 0.511668 0.255834 0.966721i \(-0.417650\pi\)
0.255834 + 0.966721i \(0.417650\pi\)
\(720\) 0 0
\(721\) 15421.3 0.796561
\(722\) 0 0
\(723\) −3354.23 −0.172538
\(724\) 0 0
\(725\) −7423.01 −0.380253
\(726\) 0 0
\(727\) −14571.5 −0.743367 −0.371683 0.928360i \(-0.621219\pi\)
−0.371683 + 0.928360i \(0.621219\pi\)
\(728\) 0 0
\(729\) 7045.64 0.357956
\(730\) 0 0
\(731\) 43808.3 2.21656
\(732\) 0 0
\(733\) −4903.77 −0.247101 −0.123550 0.992338i \(-0.539428\pi\)
−0.123550 + 0.992338i \(0.539428\pi\)
\(734\) 0 0
\(735\) 4671.66 0.234445
\(736\) 0 0
\(737\) 42465.7 2.12245
\(738\) 0 0
\(739\) −21471.7 −1.06881 −0.534403 0.845230i \(-0.679464\pi\)
−0.534403 + 0.845230i \(0.679464\pi\)
\(740\) 0 0
\(741\) 194.800 0.00965743
\(742\) 0 0
\(743\) 15170.0 0.749034 0.374517 0.927220i \(-0.377809\pi\)
0.374517 + 0.927220i \(0.377809\pi\)
\(744\) 0 0
\(745\) −24240.6 −1.19209
\(746\) 0 0
\(747\) −10504.3 −0.514499
\(748\) 0 0
\(749\) −1463.15 −0.0713782
\(750\) 0 0
\(751\) −8003.54 −0.388886 −0.194443 0.980914i \(-0.562290\pi\)
−0.194443 + 0.980914i \(0.562290\pi\)
\(752\) 0 0
\(753\) 7933.19 0.383933
\(754\) 0 0
\(755\) 5584.63 0.269199
\(756\) 0 0
\(757\) −1899.42 −0.0911963 −0.0455981 0.998960i \(-0.514519\pi\)
−0.0455981 + 0.998960i \(0.514519\pi\)
\(758\) 0 0
\(759\) 7789.10 0.372499
\(760\) 0 0
\(761\) −13058.9 −0.622058 −0.311029 0.950400i \(-0.600674\pi\)
−0.311029 + 0.950400i \(0.600674\pi\)
\(762\) 0 0
\(763\) 8095.98 0.384134
\(764\) 0 0
\(765\) 20545.3 0.971003
\(766\) 0 0
\(767\) −230.102 −0.0108325
\(768\) 0 0
\(769\) 1522.42 0.0713913 0.0356956 0.999363i \(-0.488635\pi\)
0.0356956 + 0.999363i \(0.488635\pi\)
\(770\) 0 0
\(771\) −27343.5 −1.27724
\(772\) 0 0
\(773\) −19506.8 −0.907646 −0.453823 0.891092i \(-0.649940\pi\)
−0.453823 + 0.891092i \(0.649940\pi\)
\(774\) 0 0
\(775\) −19719.0 −0.913973
\(776\) 0 0
\(777\) −30661.2 −1.41566
\(778\) 0 0
\(779\) 2718.96 0.125054
\(780\) 0 0
\(781\) 6289.00 0.288141
\(782\) 0 0
\(783\) −7800.53 −0.356026
\(784\) 0 0
\(785\) −54865.0 −2.49454
\(786\) 0 0
\(787\) −7210.38 −0.326585 −0.163292 0.986578i \(-0.552211\pi\)
−0.163292 + 0.986578i \(0.552211\pi\)
\(788\) 0 0
\(789\) 44244.9 1.99640
\(790\) 0 0
\(791\) −31956.6 −1.43647
\(792\) 0 0
\(793\) −299.467 −0.0134103
\(794\) 0 0
\(795\) −51244.7 −2.28612
\(796\) 0 0
\(797\) −38586.8 −1.71495 −0.857474 0.514528i \(-0.827967\pi\)
−0.857474 + 0.514528i \(0.827967\pi\)
\(798\) 0 0
\(799\) 63655.7 2.81849
\(800\) 0 0
\(801\) 14669.1 0.647075
\(802\) 0 0
\(803\) 41259.0 1.81320
\(804\) 0 0
\(805\) −6783.12 −0.296986
\(806\) 0 0
\(807\) 42757.2 1.86508
\(808\) 0 0
\(809\) −9927.23 −0.431425 −0.215712 0.976457i \(-0.569207\pi\)
−0.215712 + 0.976457i \(0.569207\pi\)
\(810\) 0 0
\(811\) −26808.0 −1.16074 −0.580368 0.814354i \(-0.697091\pi\)
−0.580368 + 0.814354i \(0.697091\pi\)
\(812\) 0 0
\(813\) −36496.8 −1.57442
\(814\) 0 0
\(815\) 6252.89 0.268748
\(816\) 0 0
\(817\) 5820.42 0.249242
\(818\) 0 0
\(819\) 387.130 0.0165170
\(820\) 0 0
\(821\) −18620.9 −0.791565 −0.395783 0.918344i \(-0.629527\pi\)
−0.395783 + 0.918344i \(0.629527\pi\)
\(822\) 0 0
\(823\) 29918.1 1.26717 0.633585 0.773673i \(-0.281583\pi\)
0.633585 + 0.773673i \(0.281583\pi\)
\(824\) 0 0
\(825\) 32374.3 1.36622
\(826\) 0 0
\(827\) −26360.3 −1.10839 −0.554195 0.832387i \(-0.686974\pi\)
−0.554195 + 0.832387i \(0.686974\pi\)
\(828\) 0 0
\(829\) −6260.01 −0.262267 −0.131133 0.991365i \(-0.541862\pi\)
−0.131133 + 0.991365i \(0.541862\pi\)
\(830\) 0 0
\(831\) −1953.78 −0.0815593
\(832\) 0 0
\(833\) −6678.32 −0.277779
\(834\) 0 0
\(835\) 28553.8 1.18341
\(836\) 0 0
\(837\) −20721.9 −0.855741
\(838\) 0 0
\(839\) 9837.11 0.404785 0.202393 0.979304i \(-0.435128\pi\)
0.202393 + 0.979304i \(0.435128\pi\)
\(840\) 0 0
\(841\) −18359.6 −0.752780
\(842\) 0 0
\(843\) 31621.6 1.29194
\(844\) 0 0
\(845\) 32580.9 1.32641
\(846\) 0 0
\(847\) 34102.6 1.38345
\(848\) 0 0
\(849\) 49045.7 1.98262
\(850\) 0 0
\(851\) 5790.21 0.233238
\(852\) 0 0
\(853\) −2590.82 −0.103995 −0.0519976 0.998647i \(-0.516559\pi\)
−0.0519976 + 0.998647i \(0.516559\pi\)
\(854\) 0 0
\(855\) 2729.68 0.109185
\(856\) 0 0
\(857\) 42982.0 1.71323 0.856614 0.515958i \(-0.172564\pi\)
0.856614 + 0.515958i \(0.172564\pi\)
\(858\) 0 0
\(859\) −11858.2 −0.471008 −0.235504 0.971873i \(-0.575674\pi\)
−0.235504 + 0.971873i \(0.575674\pi\)
\(860\) 0 0
\(861\) 19138.7 0.757543
\(862\) 0 0
\(863\) −9020.00 −0.355787 −0.177894 0.984050i \(-0.556928\pi\)
−0.177894 + 0.984050i \(0.556928\pi\)
\(864\) 0 0
\(865\) −60986.9 −2.39725
\(866\) 0 0
\(867\) −73893.1 −2.89451
\(868\) 0 0
\(869\) 61398.0 2.39676
\(870\) 0 0
\(871\) −1411.74 −0.0549195
\(872\) 0 0
\(873\) 12555.4 0.486755
\(874\) 0 0
\(875\) 8671.69 0.335036
\(876\) 0 0
\(877\) −35816.6 −1.37907 −0.689534 0.724253i \(-0.742185\pi\)
−0.689534 + 0.724253i \(0.742185\pi\)
\(878\) 0 0
\(879\) 18951.2 0.727198
\(880\) 0 0
\(881\) 5301.13 0.202724 0.101362 0.994850i \(-0.467680\pi\)
0.101362 + 0.994850i \(0.467680\pi\)
\(882\) 0 0
\(883\) 16117.7 0.614275 0.307138 0.951665i \(-0.400629\pi\)
0.307138 + 0.951665i \(0.400629\pi\)
\(884\) 0 0
\(885\) −11420.5 −0.433779
\(886\) 0 0
\(887\) −30081.6 −1.13871 −0.569357 0.822090i \(-0.692808\pi\)
−0.569357 + 0.822090i \(0.692808\pi\)
\(888\) 0 0
\(889\) 4845.64 0.182809
\(890\) 0 0
\(891\) 49855.3 1.87454
\(892\) 0 0
\(893\) 8457.37 0.316926
\(894\) 0 0
\(895\) −52681.9 −1.96756
\(896\) 0 0
\(897\) −258.943 −0.00963862
\(898\) 0 0
\(899\) 16017.1 0.594216
\(900\) 0 0
\(901\) 73256.2 2.70868
\(902\) 0 0
\(903\) 40969.8 1.50985
\(904\) 0 0
\(905\) −37705.2 −1.38493
\(906\) 0 0
\(907\) 3409.96 0.124836 0.0624178 0.998050i \(-0.480119\pi\)
0.0624178 + 0.998050i \(0.480119\pi\)
\(908\) 0 0
\(909\) −1447.58 −0.0528199
\(910\) 0 0
\(911\) −36180.8 −1.31583 −0.657917 0.753091i \(-0.728562\pi\)
−0.657917 + 0.753091i \(0.728562\pi\)
\(912\) 0 0
\(913\) 54601.7 1.97925
\(914\) 0 0
\(915\) −14863.2 −0.537009
\(916\) 0 0
\(917\) −10147.7 −0.365437
\(918\) 0 0
\(919\) −13302.5 −0.477486 −0.238743 0.971083i \(-0.576735\pi\)
−0.238743 + 0.971083i \(0.576735\pi\)
\(920\) 0 0
\(921\) 56560.8 2.02361
\(922\) 0 0
\(923\) −209.073 −0.00745581
\(924\) 0 0
\(925\) 24066.2 0.855451
\(926\) 0 0
\(927\) 8249.32 0.292279
\(928\) 0 0
\(929\) 19908.6 0.703101 0.351550 0.936169i \(-0.385655\pi\)
0.351550 + 0.936169i \(0.385655\pi\)
\(930\) 0 0
\(931\) −887.290 −0.0312350
\(932\) 0 0
\(933\) −1994.69 −0.0699927
\(934\) 0 0
\(935\) −106796. −3.73539
\(936\) 0 0
\(937\) 16038.2 0.559172 0.279586 0.960121i \(-0.409803\pi\)
0.279586 + 0.960121i \(0.409803\pi\)
\(938\) 0 0
\(939\) 47669.0 1.65668
\(940\) 0 0
\(941\) 30691.9 1.06326 0.531630 0.846976i \(-0.321580\pi\)
0.531630 + 0.846976i \(0.321580\pi\)
\(942\) 0 0
\(943\) −3614.24 −0.124810
\(944\) 0 0
\(945\) −29627.0 −1.01986
\(946\) 0 0
\(947\) 1181.10 0.0405288 0.0202644 0.999795i \(-0.493549\pi\)
0.0202644 + 0.999795i \(0.493549\pi\)
\(948\) 0 0
\(949\) −1371.62 −0.0469175
\(950\) 0 0
\(951\) −23850.2 −0.813245
\(952\) 0 0
\(953\) −10571.8 −0.359344 −0.179672 0.983727i \(-0.557504\pi\)
−0.179672 + 0.983727i \(0.557504\pi\)
\(954\) 0 0
\(955\) 43323.0 1.46796
\(956\) 0 0
\(957\) −26296.5 −0.888240
\(958\) 0 0
\(959\) 29157.5 0.981799
\(960\) 0 0
\(961\) 12758.0 0.428251
\(962\) 0 0
\(963\) −782.681 −0.0261906
\(964\) 0 0
\(965\) 13334.9 0.444834
\(966\) 0 0
\(967\) −48057.2 −1.59815 −0.799077 0.601228i \(-0.794678\pi\)
−0.799077 + 0.601228i \(0.794678\pi\)
\(968\) 0 0
\(969\) −13821.3 −0.458207
\(970\) 0 0
\(971\) 2506.90 0.0828529 0.0414265 0.999142i \(-0.486810\pi\)
0.0414265 + 0.999142i \(0.486810\pi\)
\(972\) 0 0
\(973\) −4218.94 −0.139006
\(974\) 0 0
\(975\) −1076.26 −0.0353517
\(976\) 0 0
\(977\) 7266.61 0.237952 0.118976 0.992897i \(-0.462039\pi\)
0.118976 + 0.992897i \(0.462039\pi\)
\(978\) 0 0
\(979\) −76250.8 −2.48926
\(980\) 0 0
\(981\) 4330.78 0.140949
\(982\) 0 0
\(983\) −1178.54 −0.0382397 −0.0191199 0.999817i \(-0.506086\pi\)
−0.0191199 + 0.999817i \(0.506086\pi\)
\(984\) 0 0
\(985\) 25372.0 0.820729
\(986\) 0 0
\(987\) 59531.2 1.91986
\(988\) 0 0
\(989\) −7736.94 −0.248757
\(990\) 0 0
\(991\) −6000.25 −0.192335 −0.0961677 0.995365i \(-0.530658\pi\)
−0.0961677 + 0.995365i \(0.530658\pi\)
\(992\) 0 0
\(993\) −46542.1 −1.48738
\(994\) 0 0
\(995\) −81466.8 −2.59565
\(996\) 0 0
\(997\) 23508.2 0.746752 0.373376 0.927680i \(-0.378200\pi\)
0.373376 + 0.927680i \(0.378200\pi\)
\(998\) 0 0
\(999\) 25290.2 0.800947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.p.1.1 3
4.3 odd 2 1472.4.a.w.1.3 3
8.3 odd 2 92.4.a.a.1.1 3
8.5 even 2 368.4.a.k.1.3 3
24.11 even 2 828.4.a.f.1.1 3
40.3 even 4 2300.4.c.b.1749.1 6
40.19 odd 2 2300.4.a.b.1.3 3
40.27 even 4 2300.4.c.b.1749.6 6
184.91 even 2 2116.4.a.a.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.4.a.a.1.1 3 8.3 odd 2
368.4.a.k.1.3 3 8.5 even 2
828.4.a.f.1.1 3 24.11 even 2
1472.4.a.p.1.1 3 1.1 even 1 trivial
1472.4.a.w.1.3 3 4.3 odd 2
2116.4.a.a.1.1 3 184.91 even 2
2300.4.a.b.1.3 3 40.19 odd 2
2300.4.c.b.1749.1 6 40.3 even 4
2300.4.c.b.1749.6 6 40.27 even 4