Properties

Label 1472.4.a.y.1.3
Level $1472$
Weight $4$
Character 1472.1
Self dual yes
Analytic conductor $86.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1472,4,Mod(1,1472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1472.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1472.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.8508115285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.334189.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.743529\) of defining polynomial
Character \(\chi\) \(=\) 1472.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.55870 q^{3} -10.0635 q^{5} +24.3381 q^{7} -24.5704 q^{9} -1.55839 q^{11} -85.6294 q^{13} +15.6860 q^{15} -35.1015 q^{17} +124.400 q^{19} -37.9359 q^{21} -23.0000 q^{23} -23.7259 q^{25} +80.3831 q^{27} -130.943 q^{29} -82.0830 q^{31} +2.42907 q^{33} -244.926 q^{35} +107.402 q^{37} +133.471 q^{39} +35.6655 q^{41} +227.986 q^{43} +247.265 q^{45} -268.071 q^{47} +249.342 q^{49} +54.7128 q^{51} -567.034 q^{53} +15.6829 q^{55} -193.902 q^{57} +422.803 q^{59} +57.0580 q^{61} -597.997 q^{63} +861.732 q^{65} +517.544 q^{67} +35.8502 q^{69} -418.494 q^{71} +586.385 q^{73} +36.9817 q^{75} -37.9282 q^{77} +595.986 q^{79} +538.108 q^{81} -346.074 q^{83} +353.244 q^{85} +204.102 q^{87} -322.588 q^{89} -2084.05 q^{91} +127.943 q^{93} -1251.90 q^{95} -1102.27 q^{97} +38.2903 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 7 q^{3} - 14 q^{5} + 16 q^{7} - 33 q^{9} - 8 q^{11} - 111 q^{13} + 10 q^{15} + 98 q^{17} - 96 q^{19} - 180 q^{21} - 92 q^{23} + 184 q^{25} + 155 q^{27} - 21 q^{29} - 193 q^{31} - 418 q^{33} + 752 q^{35}+ \cdots + 1498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.55870 −0.299973 −0.149986 0.988688i \(-0.547923\pi\)
−0.149986 + 0.988688i \(0.547923\pi\)
\(4\) 0 0
\(5\) −10.0635 −0.900107 −0.450054 0.893002i \(-0.648595\pi\)
−0.450054 + 0.893002i \(0.648595\pi\)
\(6\) 0 0
\(7\) 24.3381 1.31413 0.657066 0.753833i \(-0.271797\pi\)
0.657066 + 0.753833i \(0.271797\pi\)
\(8\) 0 0
\(9\) −24.5704 −0.910016
\(10\) 0 0
\(11\) −1.55839 −0.0427156 −0.0213578 0.999772i \(-0.506799\pi\)
−0.0213578 + 0.999772i \(0.506799\pi\)
\(12\) 0 0
\(13\) −85.6294 −1.82687 −0.913435 0.406984i \(-0.866581\pi\)
−0.913435 + 0.406984i \(0.866581\pi\)
\(14\) 0 0
\(15\) 15.6860 0.270008
\(16\) 0 0
\(17\) −35.1015 −0.500786 −0.250393 0.968144i \(-0.580560\pi\)
−0.250393 + 0.968144i \(0.580560\pi\)
\(18\) 0 0
\(19\) 124.400 1.50207 0.751033 0.660265i \(-0.229556\pi\)
0.751033 + 0.660265i \(0.229556\pi\)
\(20\) 0 0
\(21\) −37.9359 −0.394204
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −23.7259 −0.189807
\(26\) 0 0
\(27\) 80.3831 0.572953
\(28\) 0 0
\(29\) −130.943 −0.838467 −0.419234 0.907878i \(-0.637701\pi\)
−0.419234 + 0.907878i \(0.637701\pi\)
\(30\) 0 0
\(31\) −82.0830 −0.475566 −0.237783 0.971318i \(-0.576421\pi\)
−0.237783 + 0.971318i \(0.576421\pi\)
\(32\) 0 0
\(33\) 2.42907 0.0128135
\(34\) 0 0
\(35\) −244.926 −1.18286
\(36\) 0 0
\(37\) 107.402 0.477209 0.238604 0.971117i \(-0.423310\pi\)
0.238604 + 0.971117i \(0.423310\pi\)
\(38\) 0 0
\(39\) 133.471 0.548012
\(40\) 0 0
\(41\) 35.6655 0.135854 0.0679270 0.997690i \(-0.478361\pi\)
0.0679270 + 0.997690i \(0.478361\pi\)
\(42\) 0 0
\(43\) 227.986 0.808548 0.404274 0.914638i \(-0.367524\pi\)
0.404274 + 0.914638i \(0.367524\pi\)
\(44\) 0 0
\(45\) 247.265 0.819112
\(46\) 0 0
\(47\) −268.071 −0.831961 −0.415980 0.909374i \(-0.636562\pi\)
−0.415980 + 0.909374i \(0.636562\pi\)
\(48\) 0 0
\(49\) 249.342 0.726945
\(50\) 0 0
\(51\) 54.7128 0.150222
\(52\) 0 0
\(53\) −567.034 −1.46959 −0.734794 0.678291i \(-0.762721\pi\)
−0.734794 + 0.678291i \(0.762721\pi\)
\(54\) 0 0
\(55\) 15.6829 0.0384487
\(56\) 0 0
\(57\) −193.902 −0.450579
\(58\) 0 0
\(59\) 422.803 0.932955 0.466477 0.884533i \(-0.345523\pi\)
0.466477 + 0.884533i \(0.345523\pi\)
\(60\) 0 0
\(61\) 57.0580 0.119763 0.0598814 0.998206i \(-0.480928\pi\)
0.0598814 + 0.998206i \(0.480928\pi\)
\(62\) 0 0
\(63\) −597.997 −1.19588
\(64\) 0 0
\(65\) 861.732 1.64438
\(66\) 0 0
\(67\) 517.544 0.943702 0.471851 0.881678i \(-0.343586\pi\)
0.471851 + 0.881678i \(0.343586\pi\)
\(68\) 0 0
\(69\) 35.8502 0.0625486
\(70\) 0 0
\(71\) −418.494 −0.699523 −0.349761 0.936839i \(-0.613737\pi\)
−0.349761 + 0.936839i \(0.613737\pi\)
\(72\) 0 0
\(73\) 586.385 0.940154 0.470077 0.882625i \(-0.344226\pi\)
0.470077 + 0.882625i \(0.344226\pi\)
\(74\) 0 0
\(75\) 36.9817 0.0569370
\(76\) 0 0
\(77\) −37.9282 −0.0561340
\(78\) 0 0
\(79\) 595.986 0.848781 0.424390 0.905479i \(-0.360488\pi\)
0.424390 + 0.905479i \(0.360488\pi\)
\(80\) 0 0
\(81\) 538.108 0.738146
\(82\) 0 0
\(83\) −346.074 −0.457669 −0.228835 0.973465i \(-0.573492\pi\)
−0.228835 + 0.973465i \(0.573492\pi\)
\(84\) 0 0
\(85\) 353.244 0.450761
\(86\) 0 0
\(87\) 204.102 0.251517
\(88\) 0 0
\(89\) −322.588 −0.384206 −0.192103 0.981375i \(-0.561531\pi\)
−0.192103 + 0.981375i \(0.561531\pi\)
\(90\) 0 0
\(91\) −2084.05 −2.40075
\(92\) 0 0
\(93\) 127.943 0.142657
\(94\) 0 0
\(95\) −1251.90 −1.35202
\(96\) 0 0
\(97\) −1102.27 −1.15380 −0.576900 0.816815i \(-0.695738\pi\)
−0.576900 + 0.816815i \(0.695738\pi\)
\(98\) 0 0
\(99\) 38.2903 0.0388719
\(100\) 0 0
\(101\) 281.413 0.277244 0.138622 0.990345i \(-0.455733\pi\)
0.138622 + 0.990345i \(0.455733\pi\)
\(102\) 0 0
\(103\) 606.665 0.580354 0.290177 0.956973i \(-0.406286\pi\)
0.290177 + 0.956973i \(0.406286\pi\)
\(104\) 0 0
\(105\) 381.768 0.354826
\(106\) 0 0
\(107\) −758.318 −0.685135 −0.342567 0.939493i \(-0.611296\pi\)
−0.342567 + 0.939493i \(0.611296\pi\)
\(108\) 0 0
\(109\) −1730.34 −1.52052 −0.760261 0.649618i \(-0.774929\pi\)
−0.760261 + 0.649618i \(0.774929\pi\)
\(110\) 0 0
\(111\) −167.407 −0.143150
\(112\) 0 0
\(113\) 1712.46 1.42561 0.712807 0.701361i \(-0.247424\pi\)
0.712807 + 0.701361i \(0.247424\pi\)
\(114\) 0 0
\(115\) 231.461 0.187685
\(116\) 0 0
\(117\) 2103.95 1.66248
\(118\) 0 0
\(119\) −854.303 −0.658099
\(120\) 0 0
\(121\) −1328.57 −0.998175
\(122\) 0 0
\(123\) −55.5920 −0.0407525
\(124\) 0 0
\(125\) 1496.70 1.07095
\(126\) 0 0
\(127\) 1008.43 0.704594 0.352297 0.935888i \(-0.385401\pi\)
0.352297 + 0.935888i \(0.385401\pi\)
\(128\) 0 0
\(129\) −355.363 −0.242542
\(130\) 0 0
\(131\) 338.615 0.225839 0.112920 0.993604i \(-0.463980\pi\)
0.112920 + 0.993604i \(0.463980\pi\)
\(132\) 0 0
\(133\) 3027.65 1.97391
\(134\) 0 0
\(135\) −808.935 −0.515719
\(136\) 0 0
\(137\) 341.454 0.212937 0.106469 0.994316i \(-0.466046\pi\)
0.106469 + 0.994316i \(0.466046\pi\)
\(138\) 0 0
\(139\) 510.426 0.311466 0.155733 0.987799i \(-0.450226\pi\)
0.155733 + 0.987799i \(0.450226\pi\)
\(140\) 0 0
\(141\) 417.843 0.249566
\(142\) 0 0
\(143\) 133.444 0.0780360
\(144\) 0 0
\(145\) 1317.75 0.754710
\(146\) 0 0
\(147\) −388.651 −0.218064
\(148\) 0 0
\(149\) 1989.54 1.09389 0.546944 0.837169i \(-0.315791\pi\)
0.546944 + 0.837169i \(0.315791\pi\)
\(150\) 0 0
\(151\) 607.109 0.327191 0.163596 0.986527i \(-0.447691\pi\)
0.163596 + 0.986527i \(0.447691\pi\)
\(152\) 0 0
\(153\) 862.459 0.455723
\(154\) 0 0
\(155\) 826.043 0.428060
\(156\) 0 0
\(157\) −1119.43 −0.569045 −0.284523 0.958669i \(-0.591835\pi\)
−0.284523 + 0.958669i \(0.591835\pi\)
\(158\) 0 0
\(159\) 883.839 0.440836
\(160\) 0 0
\(161\) −559.776 −0.274016
\(162\) 0 0
\(163\) 2794.13 1.34266 0.671328 0.741160i \(-0.265724\pi\)
0.671328 + 0.741160i \(0.265724\pi\)
\(164\) 0 0
\(165\) −24.4449 −0.0115335
\(166\) 0 0
\(167\) 2676.11 1.24002 0.620010 0.784594i \(-0.287129\pi\)
0.620010 + 0.784594i \(0.287129\pi\)
\(168\) 0 0
\(169\) 5135.39 2.33746
\(170\) 0 0
\(171\) −3056.55 −1.36690
\(172\) 0 0
\(173\) 60.7346 0.0266911 0.0133456 0.999911i \(-0.495752\pi\)
0.0133456 + 0.999911i \(0.495752\pi\)
\(174\) 0 0
\(175\) −577.443 −0.249432
\(176\) 0 0
\(177\) −659.026 −0.279861
\(178\) 0 0
\(179\) 862.735 0.360245 0.180123 0.983644i \(-0.442351\pi\)
0.180123 + 0.983644i \(0.442351\pi\)
\(180\) 0 0
\(181\) −766.840 −0.314910 −0.157455 0.987526i \(-0.550329\pi\)
−0.157455 + 0.987526i \(0.550329\pi\)
\(182\) 0 0
\(183\) −88.9365 −0.0359256
\(184\) 0 0
\(185\) −1080.84 −0.429539
\(186\) 0 0
\(187\) 54.7018 0.0213914
\(188\) 0 0
\(189\) 1956.37 0.752936
\(190\) 0 0
\(191\) 3786.27 1.43437 0.717186 0.696882i \(-0.245430\pi\)
0.717186 + 0.696882i \(0.245430\pi\)
\(192\) 0 0
\(193\) 2713.36 1.01198 0.505990 0.862539i \(-0.331127\pi\)
0.505990 + 0.862539i \(0.331127\pi\)
\(194\) 0 0
\(195\) −1343.18 −0.493269
\(196\) 0 0
\(197\) 5275.02 1.90777 0.953883 0.300180i \(-0.0970467\pi\)
0.953883 + 0.300180i \(0.0970467\pi\)
\(198\) 0 0
\(199\) 2689.93 0.958212 0.479106 0.877757i \(-0.340961\pi\)
0.479106 + 0.877757i \(0.340961\pi\)
\(200\) 0 0
\(201\) −806.697 −0.283085
\(202\) 0 0
\(203\) −3186.91 −1.10186
\(204\) 0 0
\(205\) −358.920 −0.122283
\(206\) 0 0
\(207\) 565.120 0.189752
\(208\) 0 0
\(209\) −193.863 −0.0641617
\(210\) 0 0
\(211\) 2900.32 0.946285 0.473143 0.880986i \(-0.343120\pi\)
0.473143 + 0.880986i \(0.343120\pi\)
\(212\) 0 0
\(213\) 652.309 0.209838
\(214\) 0 0
\(215\) −2294.34 −0.727780
\(216\) 0 0
\(217\) −1997.74 −0.624957
\(218\) 0 0
\(219\) −914.002 −0.282021
\(220\) 0 0
\(221\) 3005.72 0.914871
\(222\) 0 0
\(223\) 6307.92 1.89421 0.947106 0.320920i \(-0.103992\pi\)
0.947106 + 0.320920i \(0.103992\pi\)
\(224\) 0 0
\(225\) 582.956 0.172728
\(226\) 0 0
\(227\) 5454.59 1.59486 0.797431 0.603410i \(-0.206192\pi\)
0.797431 + 0.603410i \(0.206192\pi\)
\(228\) 0 0
\(229\) −1535.31 −0.443039 −0.221520 0.975156i \(-0.571102\pi\)
−0.221520 + 0.975156i \(0.571102\pi\)
\(230\) 0 0
\(231\) 59.1189 0.0168387
\(232\) 0 0
\(233\) −2808.98 −0.789795 −0.394897 0.918725i \(-0.629220\pi\)
−0.394897 + 0.918725i \(0.629220\pi\)
\(234\) 0 0
\(235\) 2697.73 0.748854
\(236\) 0 0
\(237\) −928.966 −0.254611
\(238\) 0 0
\(239\) −3051.86 −0.825978 −0.412989 0.910736i \(-0.635515\pi\)
−0.412989 + 0.910736i \(0.635515\pi\)
\(240\) 0 0
\(241\) 994.590 0.265839 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(242\) 0 0
\(243\) −3009.09 −0.794377
\(244\) 0 0
\(245\) −2509.25 −0.654328
\(246\) 0 0
\(247\) −10652.3 −2.74408
\(248\) 0 0
\(249\) 539.427 0.137288
\(250\) 0 0
\(251\) −6960.36 −1.75034 −0.875168 0.483820i \(-0.839249\pi\)
−0.875168 + 0.483820i \(0.839249\pi\)
\(252\) 0 0
\(253\) 35.8430 0.00890683
\(254\) 0 0
\(255\) −550.603 −0.135216
\(256\) 0 0
\(257\) 528.738 0.128334 0.0641669 0.997939i \(-0.479561\pi\)
0.0641669 + 0.997939i \(0.479561\pi\)
\(258\) 0 0
\(259\) 2613.95 0.627116
\(260\) 0 0
\(261\) 3217.33 0.763019
\(262\) 0 0
\(263\) −620.103 −0.145389 −0.0726943 0.997354i \(-0.523160\pi\)
−0.0726943 + 0.997354i \(0.523160\pi\)
\(264\) 0 0
\(265\) 5706.35 1.32279
\(266\) 0 0
\(267\) 502.820 0.115251
\(268\) 0 0
\(269\) 2448.16 0.554895 0.277448 0.960741i \(-0.410512\pi\)
0.277448 + 0.960741i \(0.410512\pi\)
\(270\) 0 0
\(271\) −904.980 −0.202855 −0.101427 0.994843i \(-0.532341\pi\)
−0.101427 + 0.994843i \(0.532341\pi\)
\(272\) 0 0
\(273\) 3248.43 0.720160
\(274\) 0 0
\(275\) 36.9742 0.00810774
\(276\) 0 0
\(277\) −5045.12 −1.09434 −0.547169 0.837022i \(-0.684295\pi\)
−0.547169 + 0.837022i \(0.684295\pi\)
\(278\) 0 0
\(279\) 2016.82 0.432773
\(280\) 0 0
\(281\) 3192.77 0.677811 0.338905 0.940820i \(-0.389943\pi\)
0.338905 + 0.940820i \(0.389943\pi\)
\(282\) 0 0
\(283\) −239.398 −0.0502853 −0.0251426 0.999684i \(-0.508004\pi\)
−0.0251426 + 0.999684i \(0.508004\pi\)
\(284\) 0 0
\(285\) 1951.34 0.405569
\(286\) 0 0
\(287\) 868.030 0.178530
\(288\) 0 0
\(289\) −3680.89 −0.749213
\(290\) 0 0
\(291\) 1718.11 0.346108
\(292\) 0 0
\(293\) −4584.70 −0.914134 −0.457067 0.889432i \(-0.651100\pi\)
−0.457067 + 0.889432i \(0.651100\pi\)
\(294\) 0 0
\(295\) −4254.88 −0.839759
\(296\) 0 0
\(297\) −125.268 −0.0244741
\(298\) 0 0
\(299\) 1969.48 0.380929
\(300\) 0 0
\(301\) 5548.75 1.06254
\(302\) 0 0
\(303\) −438.640 −0.0831657
\(304\) 0 0
\(305\) −574.203 −0.107799
\(306\) 0 0
\(307\) −483.762 −0.0899340 −0.0449670 0.998988i \(-0.514318\pi\)
−0.0449670 + 0.998988i \(0.514318\pi\)
\(308\) 0 0
\(309\) −945.611 −0.174090
\(310\) 0 0
\(311\) 1131.39 0.206286 0.103143 0.994667i \(-0.467110\pi\)
0.103143 + 0.994667i \(0.467110\pi\)
\(312\) 0 0
\(313\) 8678.30 1.56718 0.783589 0.621280i \(-0.213387\pi\)
0.783589 + 0.621280i \(0.213387\pi\)
\(314\) 0 0
\(315\) 6017.95 1.07642
\(316\) 0 0
\(317\) −5835.70 −1.03396 −0.516981 0.855997i \(-0.672944\pi\)
−0.516981 + 0.855997i \(0.672944\pi\)
\(318\) 0 0
\(319\) 204.061 0.0358157
\(320\) 0 0
\(321\) 1181.99 0.205522
\(322\) 0 0
\(323\) −4366.61 −0.752213
\(324\) 0 0
\(325\) 2031.64 0.346754
\(326\) 0 0
\(327\) 2697.09 0.456115
\(328\) 0 0
\(329\) −6524.33 −1.09331
\(330\) 0 0
\(331\) 4804.86 0.797882 0.398941 0.916977i \(-0.369378\pi\)
0.398941 + 0.916977i \(0.369378\pi\)
\(332\) 0 0
\(333\) −2638.91 −0.434268
\(334\) 0 0
\(335\) −5208.30 −0.849433
\(336\) 0 0
\(337\) 308.081 0.0497989 0.0248995 0.999690i \(-0.492073\pi\)
0.0248995 + 0.999690i \(0.492073\pi\)
\(338\) 0 0
\(339\) −2669.21 −0.427645
\(340\) 0 0
\(341\) 127.917 0.0203141
\(342\) 0 0
\(343\) −2279.45 −0.358831
\(344\) 0 0
\(345\) −360.779 −0.0563005
\(346\) 0 0
\(347\) −2133.10 −0.330003 −0.165001 0.986293i \(-0.552763\pi\)
−0.165001 + 0.986293i \(0.552763\pi\)
\(348\) 0 0
\(349\) 10534.3 1.61573 0.807864 0.589369i \(-0.200624\pi\)
0.807864 + 0.589369i \(0.200624\pi\)
\(350\) 0 0
\(351\) −6883.15 −1.04671
\(352\) 0 0
\(353\) 3551.48 0.535485 0.267742 0.963491i \(-0.413722\pi\)
0.267742 + 0.963491i \(0.413722\pi\)
\(354\) 0 0
\(355\) 4211.52 0.629645
\(356\) 0 0
\(357\) 1331.61 0.197412
\(358\) 0 0
\(359\) 11547.3 1.69761 0.848804 0.528707i \(-0.177323\pi\)
0.848804 + 0.528707i \(0.177323\pi\)
\(360\) 0 0
\(361\) 8616.28 1.25620
\(362\) 0 0
\(363\) 2070.85 0.299425
\(364\) 0 0
\(365\) −5901.09 −0.846239
\(366\) 0 0
\(367\) −7553.39 −1.07434 −0.537171 0.843473i \(-0.680507\pi\)
−0.537171 + 0.843473i \(0.680507\pi\)
\(368\) 0 0
\(369\) −876.317 −0.123629
\(370\) 0 0
\(371\) −13800.5 −1.93123
\(372\) 0 0
\(373\) 7766.30 1.07808 0.539040 0.842280i \(-0.318787\pi\)
0.539040 + 0.842280i \(0.318787\pi\)
\(374\) 0 0
\(375\) −2332.92 −0.321257
\(376\) 0 0
\(377\) 11212.6 1.53177
\(378\) 0 0
\(379\) 1196.96 0.162226 0.0811132 0.996705i \(-0.474152\pi\)
0.0811132 + 0.996705i \(0.474152\pi\)
\(380\) 0 0
\(381\) −1571.84 −0.211359
\(382\) 0 0
\(383\) 489.495 0.0653055 0.0326528 0.999467i \(-0.489604\pi\)
0.0326528 + 0.999467i \(0.489604\pi\)
\(384\) 0 0
\(385\) 381.691 0.0505266
\(386\) 0 0
\(387\) −5601.72 −0.735792
\(388\) 0 0
\(389\) −4892.37 −0.637668 −0.318834 0.947810i \(-0.603291\pi\)
−0.318834 + 0.947810i \(0.603291\pi\)
\(390\) 0 0
\(391\) 807.334 0.104421
\(392\) 0 0
\(393\) −527.801 −0.0677456
\(394\) 0 0
\(395\) −5997.71 −0.763993
\(396\) 0 0
\(397\) −9231.40 −1.16703 −0.583515 0.812102i \(-0.698323\pi\)
−0.583515 + 0.812102i \(0.698323\pi\)
\(398\) 0 0
\(399\) −4719.21 −0.592120
\(400\) 0 0
\(401\) −4350.38 −0.541765 −0.270883 0.962612i \(-0.587315\pi\)
−0.270883 + 0.962612i \(0.587315\pi\)
\(402\) 0 0
\(403\) 7028.72 0.868798
\(404\) 0 0
\(405\) −5415.26 −0.664410
\(406\) 0 0
\(407\) −167.374 −0.0203843
\(408\) 0 0
\(409\) −2058.13 −0.248822 −0.124411 0.992231i \(-0.539704\pi\)
−0.124411 + 0.992231i \(0.539704\pi\)
\(410\) 0 0
\(411\) −532.226 −0.0638753
\(412\) 0 0
\(413\) 10290.2 1.22603
\(414\) 0 0
\(415\) 3482.72 0.411951
\(416\) 0 0
\(417\) −795.603 −0.0934313
\(418\) 0 0
\(419\) 15060.4 1.75596 0.877982 0.478694i \(-0.158890\pi\)
0.877982 + 0.478694i \(0.158890\pi\)
\(420\) 0 0
\(421\) −1109.01 −0.128385 −0.0641923 0.997938i \(-0.520447\pi\)
−0.0641923 + 0.997938i \(0.520447\pi\)
\(422\) 0 0
\(423\) 6586.62 0.757098
\(424\) 0 0
\(425\) 832.815 0.0950528
\(426\) 0 0
\(427\) 1388.68 0.157384
\(428\) 0 0
\(429\) −208.000 −0.0234087
\(430\) 0 0
\(431\) −7453.68 −0.833019 −0.416509 0.909131i \(-0.636747\pi\)
−0.416509 + 0.909131i \(0.636747\pi\)
\(432\) 0 0
\(433\) −3360.65 −0.372985 −0.186493 0.982456i \(-0.559712\pi\)
−0.186493 + 0.982456i \(0.559712\pi\)
\(434\) 0 0
\(435\) −2053.98 −0.226392
\(436\) 0 0
\(437\) −2861.19 −0.313202
\(438\) 0 0
\(439\) 11073.4 1.20389 0.601943 0.798539i \(-0.294393\pi\)
0.601943 + 0.798539i \(0.294393\pi\)
\(440\) 0 0
\(441\) −6126.45 −0.661532
\(442\) 0 0
\(443\) 15911.1 1.70646 0.853229 0.521536i \(-0.174641\pi\)
0.853229 + 0.521536i \(0.174641\pi\)
\(444\) 0 0
\(445\) 3246.37 0.345826
\(446\) 0 0
\(447\) −3101.10 −0.328136
\(448\) 0 0
\(449\) −14842.1 −1.56001 −0.780003 0.625776i \(-0.784783\pi\)
−0.780003 + 0.625776i \(0.784783\pi\)
\(450\) 0 0
\(451\) −55.5807 −0.00580309
\(452\) 0 0
\(453\) −946.304 −0.0981484
\(454\) 0 0
\(455\) 20972.9 2.16093
\(456\) 0 0
\(457\) 14903.8 1.52554 0.762771 0.646669i \(-0.223839\pi\)
0.762771 + 0.646669i \(0.223839\pi\)
\(458\) 0 0
\(459\) −2821.56 −0.286927
\(460\) 0 0
\(461\) −9271.90 −0.936736 −0.468368 0.883533i \(-0.655158\pi\)
−0.468368 + 0.883533i \(0.655158\pi\)
\(462\) 0 0
\(463\) −6157.42 −0.618055 −0.309028 0.951053i \(-0.600004\pi\)
−0.309028 + 0.951053i \(0.600004\pi\)
\(464\) 0 0
\(465\) −1287.56 −0.128406
\(466\) 0 0
\(467\) −3030.18 −0.300257 −0.150129 0.988666i \(-0.547969\pi\)
−0.150129 + 0.988666i \(0.547969\pi\)
\(468\) 0 0
\(469\) 12596.0 1.24015
\(470\) 0 0
\(471\) 1744.86 0.170698
\(472\) 0 0
\(473\) −355.291 −0.0345376
\(474\) 0 0
\(475\) −2951.50 −0.285103
\(476\) 0 0
\(477\) 13932.3 1.33735
\(478\) 0 0
\(479\) −11390.0 −1.08648 −0.543240 0.839577i \(-0.682803\pi\)
−0.543240 + 0.839577i \(0.682803\pi\)
\(480\) 0 0
\(481\) −9196.74 −0.871799
\(482\) 0 0
\(483\) 872.525 0.0821972
\(484\) 0 0
\(485\) 11092.7 1.03854
\(486\) 0 0
\(487\) −6027.22 −0.560820 −0.280410 0.959880i \(-0.590470\pi\)
−0.280410 + 0.959880i \(0.590470\pi\)
\(488\) 0 0
\(489\) −4355.22 −0.402760
\(490\) 0 0
\(491\) −6253.16 −0.574748 −0.287374 0.957818i \(-0.592782\pi\)
−0.287374 + 0.957818i \(0.592782\pi\)
\(492\) 0 0
\(493\) 4596.30 0.419892
\(494\) 0 0
\(495\) −385.335 −0.0349889
\(496\) 0 0
\(497\) −10185.3 −0.919266
\(498\) 0 0
\(499\) 12372.4 1.10995 0.554973 0.831868i \(-0.312729\pi\)
0.554973 + 0.831868i \(0.312729\pi\)
\(500\) 0 0
\(501\) −4171.26 −0.371972
\(502\) 0 0
\(503\) 15826.3 1.40290 0.701450 0.712719i \(-0.252537\pi\)
0.701450 + 0.712719i \(0.252537\pi\)
\(504\) 0 0
\(505\) −2832.00 −0.249549
\(506\) 0 0
\(507\) −8004.56 −0.701173
\(508\) 0 0
\(509\) −1293.91 −0.112675 −0.0563373 0.998412i \(-0.517942\pi\)
−0.0563373 + 0.998412i \(0.517942\pi\)
\(510\) 0 0
\(511\) 14271.5 1.23549
\(512\) 0 0
\(513\) 9999.63 0.860613
\(514\) 0 0
\(515\) −6105.18 −0.522381
\(516\) 0 0
\(517\) 417.759 0.0355377
\(518\) 0 0
\(519\) −94.6672 −0.00800661
\(520\) 0 0
\(521\) −16165.7 −1.35937 −0.679684 0.733505i \(-0.737883\pi\)
−0.679684 + 0.733505i \(0.737883\pi\)
\(522\) 0 0
\(523\) −19513.2 −1.63146 −0.815729 0.578435i \(-0.803664\pi\)
−0.815729 + 0.578435i \(0.803664\pi\)
\(524\) 0 0
\(525\) 900.063 0.0748228
\(526\) 0 0
\(527\) 2881.24 0.238157
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −10388.5 −0.849004
\(532\) 0 0
\(533\) −3054.02 −0.248188
\(534\) 0 0
\(535\) 7631.34 0.616694
\(536\) 0 0
\(537\) −1344.75 −0.108064
\(538\) 0 0
\(539\) −388.572 −0.0310519
\(540\) 0 0
\(541\) 3124.23 0.248283 0.124141 0.992265i \(-0.460382\pi\)
0.124141 + 0.992265i \(0.460382\pi\)
\(542\) 0 0
\(543\) 1195.28 0.0944645
\(544\) 0 0
\(545\) 17413.3 1.36863
\(546\) 0 0
\(547\) 1818.46 0.142142 0.0710709 0.997471i \(-0.477358\pi\)
0.0710709 + 0.997471i \(0.477358\pi\)
\(548\) 0 0
\(549\) −1401.94 −0.108986
\(550\) 0 0
\(551\) −16289.3 −1.25943
\(552\) 0 0
\(553\) 14505.2 1.11541
\(554\) 0 0
\(555\) 1684.70 0.128850
\(556\) 0 0
\(557\) −20165.9 −1.53404 −0.767018 0.641626i \(-0.778260\pi\)
−0.767018 + 0.641626i \(0.778260\pi\)
\(558\) 0 0
\(559\) −19522.3 −1.47711
\(560\) 0 0
\(561\) −85.2639 −0.00641683
\(562\) 0 0
\(563\) 3770.72 0.282268 0.141134 0.989991i \(-0.454925\pi\)
0.141134 + 0.989991i \(0.454925\pi\)
\(564\) 0 0
\(565\) −17233.3 −1.28320
\(566\) 0 0
\(567\) 13096.5 0.970022
\(568\) 0 0
\(569\) −23371.9 −1.72197 −0.860986 0.508629i \(-0.830152\pi\)
−0.860986 + 0.508629i \(0.830152\pi\)
\(570\) 0 0
\(571\) −5535.00 −0.405661 −0.202830 0.979214i \(-0.565014\pi\)
−0.202830 + 0.979214i \(0.565014\pi\)
\(572\) 0 0
\(573\) −5901.67 −0.430272
\(574\) 0 0
\(575\) 545.696 0.0395776
\(576\) 0 0
\(577\) 8409.03 0.606711 0.303356 0.952877i \(-0.401893\pi\)
0.303356 + 0.952877i \(0.401893\pi\)
\(578\) 0 0
\(579\) −4229.33 −0.303567
\(580\) 0 0
\(581\) −8422.78 −0.601438
\(582\) 0 0
\(583\) 883.660 0.0627744
\(584\) 0 0
\(585\) −21173.1 −1.49641
\(586\) 0 0
\(587\) −22796.7 −1.60293 −0.801467 0.598039i \(-0.795947\pi\)
−0.801467 + 0.598039i \(0.795947\pi\)
\(588\) 0 0
\(589\) −10211.1 −0.714331
\(590\) 0 0
\(591\) −8222.20 −0.572278
\(592\) 0 0
\(593\) −22303.3 −1.54450 −0.772249 0.635320i \(-0.780868\pi\)
−0.772249 + 0.635320i \(0.780868\pi\)
\(594\) 0 0
\(595\) 8597.28 0.592360
\(596\) 0 0
\(597\) −4192.81 −0.287437
\(598\) 0 0
\(599\) 2650.30 0.180782 0.0903910 0.995906i \(-0.471188\pi\)
0.0903910 + 0.995906i \(0.471188\pi\)
\(600\) 0 0
\(601\) 16837.0 1.14275 0.571376 0.820688i \(-0.306410\pi\)
0.571376 + 0.820688i \(0.306410\pi\)
\(602\) 0 0
\(603\) −12716.3 −0.858784
\(604\) 0 0
\(605\) 13370.1 0.898465
\(606\) 0 0
\(607\) −18425.8 −1.23209 −0.616046 0.787711i \(-0.711266\pi\)
−0.616046 + 0.787711i \(0.711266\pi\)
\(608\) 0 0
\(609\) 4967.44 0.330527
\(610\) 0 0
\(611\) 22954.7 1.51988
\(612\) 0 0
\(613\) 15686.0 1.03352 0.516762 0.856129i \(-0.327137\pi\)
0.516762 + 0.856129i \(0.327137\pi\)
\(614\) 0 0
\(615\) 559.450 0.0366816
\(616\) 0 0
\(617\) −19489.5 −1.27167 −0.635833 0.771827i \(-0.719343\pi\)
−0.635833 + 0.771827i \(0.719343\pi\)
\(618\) 0 0
\(619\) −7827.43 −0.508257 −0.254128 0.967171i \(-0.581789\pi\)
−0.254128 + 0.967171i \(0.581789\pi\)
\(620\) 0 0
\(621\) −1848.81 −0.119469
\(622\) 0 0
\(623\) −7851.18 −0.504897
\(624\) 0 0
\(625\) −12096.3 −0.774166
\(626\) 0 0
\(627\) 302.175 0.0192468
\(628\) 0 0
\(629\) −3769.96 −0.238979
\(630\) 0 0
\(631\) 30686.2 1.93597 0.967986 0.251003i \(-0.0807603\pi\)
0.967986 + 0.251003i \(0.0807603\pi\)
\(632\) 0 0
\(633\) −4520.74 −0.283860
\(634\) 0 0
\(635\) −10148.3 −0.634210
\(636\) 0 0
\(637\) −21351.0 −1.32803
\(638\) 0 0
\(639\) 10282.6 0.636577
\(640\) 0 0
\(641\) −26453.5 −1.63003 −0.815016 0.579439i \(-0.803272\pi\)
−0.815016 + 0.579439i \(0.803272\pi\)
\(642\) 0 0
\(643\) 19559.5 1.19961 0.599807 0.800145i \(-0.295244\pi\)
0.599807 + 0.800145i \(0.295244\pi\)
\(644\) 0 0
\(645\) 3576.20 0.218314
\(646\) 0 0
\(647\) −7463.15 −0.453488 −0.226744 0.973954i \(-0.572808\pi\)
−0.226744 + 0.973954i \(0.572808\pi\)
\(648\) 0 0
\(649\) −658.892 −0.0398518
\(650\) 0 0
\(651\) 3113.89 0.187470
\(652\) 0 0
\(653\) −3667.38 −0.219779 −0.109890 0.993944i \(-0.535050\pi\)
−0.109890 + 0.993944i \(0.535050\pi\)
\(654\) 0 0
\(655\) −3407.65 −0.203279
\(656\) 0 0
\(657\) −14407.7 −0.855555
\(658\) 0 0
\(659\) −11117.2 −0.657155 −0.328578 0.944477i \(-0.606569\pi\)
−0.328578 + 0.944477i \(0.606569\pi\)
\(660\) 0 0
\(661\) −10886.9 −0.640622 −0.320311 0.947312i \(-0.603787\pi\)
−0.320311 + 0.947312i \(0.603787\pi\)
\(662\) 0 0
\(663\) −4685.03 −0.274436
\(664\) 0 0
\(665\) −30468.8 −1.77673
\(666\) 0 0
\(667\) 3011.69 0.174832
\(668\) 0 0
\(669\) −9832.18 −0.568212
\(670\) 0 0
\(671\) −88.9186 −0.00511574
\(672\) 0 0
\(673\) −5441.92 −0.311695 −0.155848 0.987781i \(-0.549811\pi\)
−0.155848 + 0.987781i \(0.549811\pi\)
\(674\) 0 0
\(675\) −1907.16 −0.108751
\(676\) 0 0
\(677\) −28579.1 −1.62243 −0.811215 0.584749i \(-0.801193\pi\)
−0.811215 + 0.584749i \(0.801193\pi\)
\(678\) 0 0
\(679\) −26827.1 −1.51625
\(680\) 0 0
\(681\) −8502.09 −0.478415
\(682\) 0 0
\(683\) 26971.1 1.51101 0.755504 0.655144i \(-0.227392\pi\)
0.755504 + 0.655144i \(0.227392\pi\)
\(684\) 0 0
\(685\) −3436.22 −0.191666
\(686\) 0 0
\(687\) 2393.09 0.132900
\(688\) 0 0
\(689\) 48554.8 2.68475
\(690\) 0 0
\(691\) 27966.0 1.53962 0.769810 0.638273i \(-0.220351\pi\)
0.769810 + 0.638273i \(0.220351\pi\)
\(692\) 0 0
\(693\) 931.913 0.0510829
\(694\) 0 0
\(695\) −5136.67 −0.280353
\(696\) 0 0
\(697\) −1251.91 −0.0680338
\(698\) 0 0
\(699\) 4378.36 0.236917
\(700\) 0 0
\(701\) −2681.30 −0.144467 −0.0722336 0.997388i \(-0.523013\pi\)
−0.0722336 + 0.997388i \(0.523013\pi\)
\(702\) 0 0
\(703\) 13360.7 0.716799
\(704\) 0 0
\(705\) −4204.97 −0.224636
\(706\) 0 0
\(707\) 6849.06 0.364336
\(708\) 0 0
\(709\) −31519.3 −1.66958 −0.834790 0.550569i \(-0.814411\pi\)
−0.834790 + 0.550569i \(0.814411\pi\)
\(710\) 0 0
\(711\) −14643.6 −0.772404
\(712\) 0 0
\(713\) 1887.91 0.0991624
\(714\) 0 0
\(715\) −1342.91 −0.0702407
\(716\) 0 0
\(717\) 4756.95 0.247771
\(718\) 0 0
\(719\) −5550.14 −0.287880 −0.143940 0.989586i \(-0.545977\pi\)
−0.143940 + 0.989586i \(0.545977\pi\)
\(720\) 0 0
\(721\) 14765.1 0.762662
\(722\) 0 0
\(723\) −1550.27 −0.0797444
\(724\) 0 0
\(725\) 3106.75 0.159147
\(726\) 0 0
\(727\) 9562.34 0.487823 0.243912 0.969797i \(-0.421569\pi\)
0.243912 + 0.969797i \(0.421569\pi\)
\(728\) 0 0
\(729\) −9838.64 −0.499855
\(730\) 0 0
\(731\) −8002.65 −0.404909
\(732\) 0 0
\(733\) −15084.1 −0.760087 −0.380043 0.924969i \(-0.624091\pi\)
−0.380043 + 0.924969i \(0.624091\pi\)
\(734\) 0 0
\(735\) 3911.19 0.196281
\(736\) 0 0
\(737\) −806.534 −0.0403108
\(738\) 0 0
\(739\) 14657.3 0.729607 0.364803 0.931085i \(-0.381136\pi\)
0.364803 + 0.931085i \(0.381136\pi\)
\(740\) 0 0
\(741\) 16603.7 0.823149
\(742\) 0 0
\(743\) 25211.2 1.24483 0.622416 0.782687i \(-0.286151\pi\)
0.622416 + 0.782687i \(0.286151\pi\)
\(744\) 0 0
\(745\) −20021.7 −0.984616
\(746\) 0 0
\(747\) 8503.19 0.416487
\(748\) 0 0
\(749\) −18456.0 −0.900358
\(750\) 0 0
\(751\) 16991.7 0.825614 0.412807 0.910818i \(-0.364548\pi\)
0.412807 + 0.910818i \(0.364548\pi\)
\(752\) 0 0
\(753\) 10849.1 0.525053
\(754\) 0 0
\(755\) −6109.65 −0.294507
\(756\) 0 0
\(757\) −27649.0 −1.32750 −0.663751 0.747954i \(-0.731036\pi\)
−0.663751 + 0.747954i \(0.731036\pi\)
\(758\) 0 0
\(759\) −55.8686 −0.00267181
\(760\) 0 0
\(761\) 18471.8 0.879896 0.439948 0.898023i \(-0.354997\pi\)
0.439948 + 0.898023i \(0.354997\pi\)
\(762\) 0 0
\(763\) −42113.2 −1.99817
\(764\) 0 0
\(765\) −8679.36 −0.410200
\(766\) 0 0
\(767\) −36204.4 −1.70439
\(768\) 0 0
\(769\) −2326.91 −0.109117 −0.0545583 0.998511i \(-0.517375\pi\)
−0.0545583 + 0.998511i \(0.517375\pi\)
\(770\) 0 0
\(771\) −824.146 −0.0384966
\(772\) 0 0
\(773\) 40624.7 1.89026 0.945129 0.326698i \(-0.105936\pi\)
0.945129 + 0.326698i \(0.105936\pi\)
\(774\) 0 0
\(775\) 1947.49 0.0902659
\(776\) 0 0
\(777\) −4074.37 −0.188118
\(778\) 0 0
\(779\) 4436.78 0.204062
\(780\) 0 0
\(781\) 652.177 0.0298806
\(782\) 0 0
\(783\) −10525.6 −0.480402
\(784\) 0 0
\(785\) 11265.4 0.512202
\(786\) 0 0
\(787\) 10522.2 0.476588 0.238294 0.971193i \(-0.423412\pi\)
0.238294 + 0.971193i \(0.423412\pi\)
\(788\) 0 0
\(789\) 966.558 0.0436126
\(790\) 0 0
\(791\) 41677.9 1.87345
\(792\) 0 0
\(793\) −4885.84 −0.218791
\(794\) 0 0
\(795\) −8894.51 −0.396800
\(796\) 0 0
\(797\) 34463.9 1.53171 0.765856 0.643013i \(-0.222316\pi\)
0.765856 + 0.643013i \(0.222316\pi\)
\(798\) 0 0
\(799\) 9409.69 0.416634
\(800\) 0 0
\(801\) 7926.14 0.349634
\(802\) 0 0
\(803\) −913.817 −0.0401593
\(804\) 0 0
\(805\) 5633.31 0.246643
\(806\) 0 0
\(807\) −3815.95 −0.166453
\(808\) 0 0
\(809\) 4092.42 0.177851 0.0889257 0.996038i \(-0.471657\pi\)
0.0889257 + 0.996038i \(0.471657\pi\)
\(810\) 0 0
\(811\) 5684.59 0.246132 0.123066 0.992398i \(-0.460727\pi\)
0.123066 + 0.992398i \(0.460727\pi\)
\(812\) 0 0
\(813\) 1410.60 0.0608509
\(814\) 0 0
\(815\) −28118.7 −1.20853
\(816\) 0 0
\(817\) 28361.4 1.21449
\(818\) 0 0
\(819\) 51206.2 2.18472
\(820\) 0 0
\(821\) 4718.22 0.200569 0.100284 0.994959i \(-0.468025\pi\)
0.100284 + 0.994959i \(0.468025\pi\)
\(822\) 0 0
\(823\) −26909.4 −1.13974 −0.569868 0.821736i \(-0.693006\pi\)
−0.569868 + 0.821736i \(0.693006\pi\)
\(824\) 0 0
\(825\) −57.6319 −0.00243210
\(826\) 0 0
\(827\) 14401.1 0.605532 0.302766 0.953065i \(-0.402090\pi\)
0.302766 + 0.953065i \(0.402090\pi\)
\(828\) 0 0
\(829\) 16061.0 0.672883 0.336442 0.941704i \(-0.390777\pi\)
0.336442 + 0.941704i \(0.390777\pi\)
\(830\) 0 0
\(831\) 7863.85 0.328272
\(832\) 0 0
\(833\) −8752.28 −0.364044
\(834\) 0 0
\(835\) −26931.0 −1.11615
\(836\) 0 0
\(837\) −6598.08 −0.272477
\(838\) 0 0
\(839\) 34894.5 1.43587 0.717934 0.696112i \(-0.245088\pi\)
0.717934 + 0.696112i \(0.245088\pi\)
\(840\) 0 0
\(841\) −7242.88 −0.296973
\(842\) 0 0
\(843\) −4976.59 −0.203325
\(844\) 0 0
\(845\) −51680.0 −2.10396
\(846\) 0 0
\(847\) −32334.9 −1.31173
\(848\) 0 0
\(849\) 373.151 0.0150842
\(850\) 0 0
\(851\) −2470.24 −0.0995049
\(852\) 0 0
\(853\) 26275.4 1.05469 0.527346 0.849651i \(-0.323187\pi\)
0.527346 + 0.849651i \(0.323187\pi\)
\(854\) 0 0
\(855\) 30759.6 1.23036
\(856\) 0 0
\(857\) 25459.0 1.01478 0.507389 0.861717i \(-0.330611\pi\)
0.507389 + 0.861717i \(0.330611\pi\)
\(858\) 0 0
\(859\) 1582.86 0.0628715 0.0314357 0.999506i \(-0.489992\pi\)
0.0314357 + 0.999506i \(0.489992\pi\)
\(860\) 0 0
\(861\) −1353.00 −0.0535542
\(862\) 0 0
\(863\) −4277.66 −0.168729 −0.0843645 0.996435i \(-0.526886\pi\)
−0.0843645 + 0.996435i \(0.526886\pi\)
\(864\) 0 0
\(865\) −611.202 −0.0240249
\(866\) 0 0
\(867\) 5737.41 0.224744
\(868\) 0 0
\(869\) −928.778 −0.0362562
\(870\) 0 0
\(871\) −44316.9 −1.72402
\(872\) 0 0
\(873\) 27083.3 1.04998
\(874\) 0 0
\(875\) 36426.9 1.40738
\(876\) 0 0
\(877\) 16453.2 0.633505 0.316753 0.948508i \(-0.397407\pi\)
0.316753 + 0.948508i \(0.397407\pi\)
\(878\) 0 0
\(879\) 7146.20 0.274215
\(880\) 0 0
\(881\) −3452.74 −0.132038 −0.0660191 0.997818i \(-0.521030\pi\)
−0.0660191 + 0.997818i \(0.521030\pi\)
\(882\) 0 0
\(883\) −21075.1 −0.803210 −0.401605 0.915813i \(-0.631548\pi\)
−0.401605 + 0.915813i \(0.631548\pi\)
\(884\) 0 0
\(885\) 6632.10 0.251905
\(886\) 0 0
\(887\) 41611.9 1.57519 0.787594 0.616195i \(-0.211327\pi\)
0.787594 + 0.616195i \(0.211327\pi\)
\(888\) 0 0
\(889\) 24543.2 0.925930
\(890\) 0 0
\(891\) −838.583 −0.0315304
\(892\) 0 0
\(893\) −33347.9 −1.24966
\(894\) 0 0
\(895\) −8682.14 −0.324259
\(896\) 0 0
\(897\) −3069.83 −0.114268
\(898\) 0 0
\(899\) 10748.2 0.398746
\(900\) 0 0
\(901\) 19903.7 0.735949
\(902\) 0 0
\(903\) −8648.85 −0.318733
\(904\) 0 0
\(905\) 7717.09 0.283453
\(906\) 0 0
\(907\) −3328.73 −0.121862 −0.0609310 0.998142i \(-0.519407\pi\)
−0.0609310 + 0.998142i \(0.519407\pi\)
\(908\) 0 0
\(909\) −6914.45 −0.252297
\(910\) 0 0
\(911\) 39768.1 1.44630 0.723149 0.690692i \(-0.242694\pi\)
0.723149 + 0.690692i \(0.242694\pi\)
\(912\) 0 0
\(913\) 539.318 0.0195496
\(914\) 0 0
\(915\) 895.013 0.0323368
\(916\) 0 0
\(917\) 8241.24 0.296783
\(918\) 0 0
\(919\) −2917.02 −0.104705 −0.0523524 0.998629i \(-0.516672\pi\)
−0.0523524 + 0.998629i \(0.516672\pi\)
\(920\) 0 0
\(921\) 754.041 0.0269777
\(922\) 0 0
\(923\) 35835.4 1.27794
\(924\) 0 0
\(925\) −2548.20 −0.0905777
\(926\) 0 0
\(927\) −14906.0 −0.528132
\(928\) 0 0
\(929\) −1564.80 −0.0552632 −0.0276316 0.999618i \(-0.508797\pi\)
−0.0276316 + 0.999618i \(0.508797\pi\)
\(930\) 0 0
\(931\) 31018.1 1.09192
\(932\) 0 0
\(933\) −1763.50 −0.0618802
\(934\) 0 0
\(935\) −550.491 −0.0192545
\(936\) 0 0
\(937\) 21786.7 0.759596 0.379798 0.925069i \(-0.375993\pi\)
0.379798 + 0.925069i \(0.375993\pi\)
\(938\) 0 0
\(939\) −13526.9 −0.470110
\(940\) 0 0
\(941\) 34207.7 1.18506 0.592530 0.805549i \(-0.298129\pi\)
0.592530 + 0.805549i \(0.298129\pi\)
\(942\) 0 0
\(943\) −820.307 −0.0283275
\(944\) 0 0
\(945\) −19687.9 −0.677723
\(946\) 0 0
\(947\) −17863.6 −0.612976 −0.306488 0.951875i \(-0.599154\pi\)
−0.306488 + 0.951875i \(0.599154\pi\)
\(948\) 0 0
\(949\) −50211.8 −1.71754
\(950\) 0 0
\(951\) 9096.14 0.310160
\(952\) 0 0
\(953\) −2205.70 −0.0749733 −0.0374867 0.999297i \(-0.511935\pi\)
−0.0374867 + 0.999297i \(0.511935\pi\)
\(954\) 0 0
\(955\) −38103.1 −1.29109
\(956\) 0 0
\(957\) −318.070 −0.0107437
\(958\) 0 0
\(959\) 8310.33 0.279828
\(960\) 0 0
\(961\) −23053.4 −0.773837
\(962\) 0 0
\(963\) 18632.2 0.623484
\(964\) 0 0
\(965\) −27305.9 −0.910891
\(966\) 0 0
\(967\) −55599.4 −1.84897 −0.924487 0.381215i \(-0.875506\pi\)
−0.924487 + 0.381215i \(0.875506\pi\)
\(968\) 0 0
\(969\) 6806.26 0.225643
\(970\) 0 0
\(971\) −46743.5 −1.54487 −0.772435 0.635094i \(-0.780961\pi\)
−0.772435 + 0.635094i \(0.780961\pi\)
\(972\) 0 0
\(973\) 12422.8 0.409308
\(974\) 0 0
\(975\) −3166.72 −0.104017
\(976\) 0 0
\(977\) −35978.0 −1.17814 −0.589068 0.808084i \(-0.700505\pi\)
−0.589068 + 0.808084i \(0.700505\pi\)
\(978\) 0 0
\(979\) 502.718 0.0164116
\(980\) 0 0
\(981\) 42515.3 1.38370
\(982\) 0 0
\(983\) −25329.0 −0.821840 −0.410920 0.911671i \(-0.634792\pi\)
−0.410920 + 0.911671i \(0.634792\pi\)
\(984\) 0 0
\(985\) −53085.2 −1.71719
\(986\) 0 0
\(987\) 10169.5 0.327962
\(988\) 0 0
\(989\) −5243.68 −0.168594
\(990\) 0 0
\(991\) −7490.70 −0.240111 −0.120055 0.992767i \(-0.538307\pi\)
−0.120055 + 0.992767i \(0.538307\pi\)
\(992\) 0 0
\(993\) −7489.35 −0.239343
\(994\) 0 0
\(995\) −27070.1 −0.862493
\(996\) 0 0
\(997\) −34489.1 −1.09557 −0.547784 0.836620i \(-0.684528\pi\)
−0.547784 + 0.836620i \(0.684528\pi\)
\(998\) 0 0
\(999\) 8633.27 0.273418
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1472.4.a.y.1.3 4
4.3 odd 2 1472.4.a.bf.1.2 4
8.3 odd 2 368.4.a.l.1.3 4
8.5 even 2 23.4.a.b.1.1 4
24.5 odd 2 207.4.a.e.1.4 4
40.13 odd 4 575.4.b.g.24.8 8
40.29 even 2 575.4.a.i.1.4 4
40.37 odd 4 575.4.b.g.24.1 8
56.13 odd 2 1127.4.a.c.1.1 4
184.45 odd 2 529.4.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.b.1.1 4 8.5 even 2
207.4.a.e.1.4 4 24.5 odd 2
368.4.a.l.1.3 4 8.3 odd 2
529.4.a.g.1.1 4 184.45 odd 2
575.4.a.i.1.4 4 40.29 even 2
575.4.b.g.24.1 8 40.37 odd 4
575.4.b.g.24.8 8 40.13 odd 4
1127.4.a.c.1.1 4 56.13 odd 2
1472.4.a.y.1.3 4 1.1 even 1 trivial
1472.4.a.bf.1.2 4 4.3 odd 2