Properties

Label 1488.2.a.h.1.1
Level $1488$
Weight $2$
Character 1488.1
Self dual yes
Analytic conductor $11.882$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1488,2,Mod(1,1488)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1488, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1488.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1488.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.8817398208\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1488.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} -5.00000 q^{11} -7.00000 q^{13} -3.00000 q^{15} -1.00000 q^{17} -7.00000 q^{19} -2.00000 q^{21} -4.00000 q^{23} +4.00000 q^{25} -1.00000 q^{27} -8.00000 q^{29} +1.00000 q^{31} +5.00000 q^{33} +6.00000 q^{35} -6.00000 q^{37} +7.00000 q^{39} -2.00000 q^{41} +10.0000 q^{43} +3.00000 q^{45} +1.00000 q^{47} -3.00000 q^{49} +1.00000 q^{51} +6.00000 q^{53} -15.0000 q^{55} +7.00000 q^{57} +10.0000 q^{59} +1.00000 q^{61} +2.00000 q^{63} -21.0000 q^{65} +3.00000 q^{67} +4.00000 q^{69} -3.00000 q^{71} +14.0000 q^{73} -4.00000 q^{75} -10.0000 q^{77} +11.0000 q^{79} +1.00000 q^{81} -7.00000 q^{83} -3.00000 q^{85} +8.00000 q^{87} -6.00000 q^{89} -14.0000 q^{91} -1.00000 q^{93} -21.0000 q^{95} -3.00000 q^{97} -5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) −7.00000 −1.94145 −0.970725 0.240192i \(-0.922790\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 5.00000 0.870388
\(34\) 0 0
\(35\) 6.00000 1.01419
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 7.00000 1.12090
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 3.00000 0.447214
\(46\) 0 0
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −15.0000 −2.02260
\(56\) 0 0
\(57\) 7.00000 0.927173
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) −21.0000 −2.60473
\(66\) 0 0
\(67\) 3.00000 0.366508 0.183254 0.983066i \(-0.441337\pi\)
0.183254 + 0.983066i \(0.441337\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) −10.0000 −1.13961
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −7.00000 −0.768350 −0.384175 0.923260i \(-0.625514\pi\)
−0.384175 + 0.923260i \(0.625514\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) 8.00000 0.857690
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −14.0000 −1.46760
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −21.0000 −2.15455
\(96\) 0 0
\(97\) −3.00000 −0.304604 −0.152302 0.988334i \(-0.548669\pi\)
−0.152302 + 0.988334i \(0.548669\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 0 0
\(105\) −6.00000 −0.585540
\(106\) 0 0
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) 0 0
\(117\) −7.00000 −0.647150
\(118\) 0 0
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) −14.0000 −1.21395
\(134\) 0 0
\(135\) −3.00000 −0.258199
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) −1.00000 −0.0842152
\(142\) 0 0
\(143\) 35.0000 2.92685
\(144\) 0 0
\(145\) −24.0000 −1.99309
\(146\) 0 0
\(147\) 3.00000 0.247436
\(148\) 0 0
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) 1.00000 0.0813788 0.0406894 0.999172i \(-0.487045\pi\)
0.0406894 + 0.999172i \(0.487045\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 9.00000 0.704934 0.352467 0.935824i \(-0.385343\pi\)
0.352467 + 0.935824i \(0.385343\pi\)
\(164\) 0 0
\(165\) 15.0000 1.16775
\(166\) 0 0
\(167\) −10.0000 −0.773823 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(168\) 0 0
\(169\) 36.0000 2.76923
\(170\) 0 0
\(171\) −7.00000 −0.535303
\(172\) 0 0
\(173\) 1.00000 0.0760286 0.0380143 0.999277i \(-0.487897\pi\)
0.0380143 + 0.999277i \(0.487897\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) −10.0000 −0.751646
\(178\) 0 0
\(179\) −19.0000 −1.42013 −0.710063 0.704138i \(-0.751334\pi\)
−0.710063 + 0.704138i \(0.751334\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) −18.0000 −1.32339
\(186\) 0 0
\(187\) 5.00000 0.365636
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 19.0000 1.36765 0.683825 0.729646i \(-0.260315\pi\)
0.683825 + 0.729646i \(0.260315\pi\)
\(194\) 0 0
\(195\) 21.0000 1.50384
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 0 0
\(201\) −3.00000 −0.211604
\(202\) 0 0
\(203\) −16.0000 −1.12298
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 35.0000 2.42100
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 3.00000 0.205557
\(214\) 0 0
\(215\) 30.0000 2.04598
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 7.00000 0.470871
\(222\) 0 0
\(223\) 5.00000 0.334825 0.167412 0.985887i \(-0.446459\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) −22.0000 −1.46019 −0.730096 0.683345i \(-0.760525\pi\)
−0.730096 + 0.683345i \(0.760525\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 10.0000 0.657952
\(232\) 0 0
\(233\) 20.0000 1.31024 0.655122 0.755523i \(-0.272617\pi\)
0.655122 + 0.755523i \(0.272617\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) 0 0
\(237\) −11.0000 −0.714527
\(238\) 0 0
\(239\) 4.00000 0.258738 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −9.00000 −0.574989
\(246\) 0 0
\(247\) 49.0000 3.11780
\(248\) 0 0
\(249\) 7.00000 0.443607
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 20.0000 1.25739
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) −12.0000 −0.745644
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 18.0000 1.10573
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 19.0000 1.15417 0.577084 0.816685i \(-0.304191\pi\)
0.577084 + 0.816685i \(0.304191\pi\)
\(272\) 0 0
\(273\) 14.0000 0.847319
\(274\) 0 0
\(275\) −20.0000 −1.20605
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) −5.00000 −0.297219 −0.148610 0.988896i \(-0.547480\pi\)
−0.148610 + 0.988896i \(0.547480\pi\)
\(284\) 0 0
\(285\) 21.0000 1.24393
\(286\) 0 0
\(287\) −4.00000 −0.236113
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 3.00000 0.175863
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 30.0000 1.74667
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) 28.0000 1.61928
\(300\) 0 0
\(301\) 20.0000 1.15278
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 3.00000 0.171780
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) −21.0000 −1.19080 −0.595400 0.803429i \(-0.703007\pi\)
−0.595400 + 0.803429i \(0.703007\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) 6.00000 0.338062
\(316\) 0 0
\(317\) 5.00000 0.280828 0.140414 0.990093i \(-0.455157\pi\)
0.140414 + 0.990093i \(0.455157\pi\)
\(318\) 0 0
\(319\) 40.0000 2.23957
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 7.00000 0.389490
\(324\) 0 0
\(325\) −28.0000 −1.55316
\(326\) 0 0
\(327\) 6.00000 0.331801
\(328\) 0 0
\(329\) 2.00000 0.110264
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 9.00000 0.491723
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −5.00000 −0.270765
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) −17.0000 −0.912608 −0.456304 0.889824i \(-0.650827\pi\)
−0.456304 + 0.889824i \(0.650827\pi\)
\(348\) 0 0
\(349\) 24.0000 1.28469 0.642345 0.766415i \(-0.277962\pi\)
0.642345 + 0.766415i \(0.277962\pi\)
\(350\) 0 0
\(351\) 7.00000 0.373632
\(352\) 0 0
\(353\) −11.0000 −0.585471 −0.292735 0.956193i \(-0.594566\pi\)
−0.292735 + 0.956193i \(0.594566\pi\)
\(354\) 0 0
\(355\) −9.00000 −0.477670
\(356\) 0 0
\(357\) 2.00000 0.105851
\(358\) 0 0
\(359\) 17.0000 0.897226 0.448613 0.893726i \(-0.351918\pi\)
0.448613 + 0.893726i \(0.351918\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) 42.0000 2.19838
\(366\) 0 0
\(367\) 11.0000 0.574195 0.287098 0.957901i \(-0.407310\pi\)
0.287098 + 0.957901i \(0.407310\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) 56.0000 2.88415
\(378\) 0 0
\(379\) −1.00000 −0.0513665 −0.0256833 0.999670i \(-0.508176\pi\)
−0.0256833 + 0.999670i \(0.508176\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 0 0
\(383\) 10.0000 0.510976 0.255488 0.966812i \(-0.417764\pi\)
0.255488 + 0.966812i \(0.417764\pi\)
\(384\) 0 0
\(385\) −30.0000 −1.52894
\(386\) 0 0
\(387\) 10.0000 0.508329
\(388\) 0 0
\(389\) −34.0000 −1.72387 −0.861934 0.507020i \(-0.830747\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) 10.0000 0.504433
\(394\) 0 0
\(395\) 33.0000 1.66041
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 14.0000 0.700877
\(400\) 0 0
\(401\) −23.0000 −1.14857 −0.574283 0.818657i \(-0.694719\pi\)
−0.574283 + 0.818657i \(0.694719\pi\)
\(402\) 0 0
\(403\) −7.00000 −0.348695
\(404\) 0 0
\(405\) 3.00000 0.149071
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 18.0000 0.887875
\(412\) 0 0
\(413\) 20.0000 0.984136
\(414\) 0 0
\(415\) −21.0000 −1.03085
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) 1.00000 0.0486217
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) −35.0000 −1.68982
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) 24.0000 1.15071
\(436\) 0 0
\(437\) 28.0000 1.33942
\(438\) 0 0
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 14.0000 0.665160 0.332580 0.943075i \(-0.392081\pi\)
0.332580 + 0.943075i \(0.392081\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) −15.0000 −0.709476
\(448\) 0 0
\(449\) −11.0000 −0.519122 −0.259561 0.965727i \(-0.583578\pi\)
−0.259561 + 0.965727i \(0.583578\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 0 0
\(453\) −1.00000 −0.0469841
\(454\) 0 0
\(455\) −42.0000 −1.96899
\(456\) 0 0
\(457\) −42.0000 −1.96468 −0.982339 0.187112i \(-0.940087\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) −33.0000 −1.53364 −0.766820 0.641862i \(-0.778162\pi\)
−0.766820 + 0.641862i \(0.778162\pi\)
\(464\) 0 0
\(465\) −3.00000 −0.139122
\(466\) 0 0
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) 6.00000 0.277054
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) 0 0
\(473\) −50.0000 −2.29900
\(474\) 0 0
\(475\) −28.0000 −1.28473
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −29.0000 −1.32504 −0.662522 0.749043i \(-0.730514\pi\)
−0.662522 + 0.749043i \(0.730514\pi\)
\(480\) 0 0
\(481\) 42.0000 1.91504
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) −9.00000 −0.408669
\(486\) 0 0
\(487\) 27.0000 1.22349 0.611743 0.791056i \(-0.290469\pi\)
0.611743 + 0.791056i \(0.290469\pi\)
\(488\) 0 0
\(489\) −9.00000 −0.406994
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 8.00000 0.360302
\(494\) 0 0
\(495\) −15.0000 −0.674200
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) 10.0000 0.446767
\(502\) 0 0
\(503\) 33.0000 1.47140 0.735699 0.677309i \(-0.236854\pi\)
0.735699 + 0.677309i \(0.236854\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −36.0000 −1.59882
\(508\) 0 0
\(509\) 40.0000 1.77297 0.886484 0.462758i \(-0.153140\pi\)
0.886484 + 0.462758i \(0.153140\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) 7.00000 0.309058
\(514\) 0 0
\(515\) −30.0000 −1.32196
\(516\) 0 0
\(517\) −5.00000 −0.219900
\(518\) 0 0
\(519\) −1.00000 −0.0438951
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) −30.0000 −1.31181 −0.655904 0.754844i \(-0.727712\pi\)
−0.655904 + 0.754844i \(0.727712\pi\)
\(524\) 0 0
\(525\) −8.00000 −0.349149
\(526\) 0 0
\(527\) −1.00000 −0.0435607
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 14.0000 0.606407
\(534\) 0 0
\(535\) −24.0000 −1.03761
\(536\) 0 0
\(537\) 19.0000 0.819911
\(538\) 0 0
\(539\) 15.0000 0.646096
\(540\) 0 0
\(541\) 44.0000 1.89171 0.945854 0.324593i \(-0.105227\pi\)
0.945854 + 0.324593i \(0.105227\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) −32.0000 −1.36822 −0.684111 0.729378i \(-0.739809\pi\)
−0.684111 + 0.729378i \(0.739809\pi\)
\(548\) 0 0
\(549\) 1.00000 0.0426790
\(550\) 0 0
\(551\) 56.0000 2.38568
\(552\) 0 0
\(553\) 22.0000 0.935535
\(554\) 0 0
\(555\) 18.0000 0.764057
\(556\) 0 0
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) −70.0000 −2.96068
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.0000 −0.667246
\(576\) 0 0
\(577\) 27.0000 1.12402 0.562012 0.827129i \(-0.310027\pi\)
0.562012 + 0.827129i \(0.310027\pi\)
\(578\) 0 0
\(579\) −19.0000 −0.789613
\(580\) 0 0
\(581\) −14.0000 −0.580818
\(582\) 0 0
\(583\) −30.0000 −1.24247
\(584\) 0 0
\(585\) −21.0000 −0.868243
\(586\) 0 0
\(587\) 17.0000 0.701665 0.350833 0.936438i \(-0.385899\pi\)
0.350833 + 0.936438i \(0.385899\pi\)
\(588\) 0 0
\(589\) −7.00000 −0.288430
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) −11.0000 −0.450200
\(598\) 0 0
\(599\) 39.0000 1.59350 0.796748 0.604311i \(-0.206552\pi\)
0.796748 + 0.604311i \(0.206552\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 3.00000 0.122169
\(604\) 0 0
\(605\) 42.0000 1.70754
\(606\) 0 0
\(607\) −10.0000 −0.405887 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(608\) 0 0
\(609\) 16.0000 0.648353
\(610\) 0 0
\(611\) −7.00000 −0.283190
\(612\) 0 0
\(613\) 5.00000 0.201948 0.100974 0.994889i \(-0.467804\pi\)
0.100974 + 0.994889i \(0.467804\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) −35.0000 −1.39777
\(628\) 0 0
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0000 −0.476205
\(636\) 0 0
\(637\) 21.0000 0.832050
\(638\) 0 0
\(639\) −3.00000 −0.118678
\(640\) 0 0
\(641\) 23.0000 0.908445 0.454223 0.890888i \(-0.349917\pi\)
0.454223 + 0.890888i \(0.349917\pi\)
\(642\) 0 0
\(643\) 32.0000 1.26196 0.630978 0.775800i \(-0.282654\pi\)
0.630978 + 0.775800i \(0.282654\pi\)
\(644\) 0 0
\(645\) −30.0000 −1.18125
\(646\) 0 0
\(647\) −14.0000 −0.550397 −0.275198 0.961387i \(-0.588744\pi\)
−0.275198 + 0.961387i \(0.588744\pi\)
\(648\) 0 0
\(649\) −50.0000 −1.96267
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 0 0
\(653\) 27.0000 1.05659 0.528296 0.849060i \(-0.322831\pi\)
0.528296 + 0.849060i \(0.322831\pi\)
\(654\) 0 0
\(655\) −30.0000 −1.17220
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 26.0000 1.01282 0.506408 0.862294i \(-0.330973\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(660\) 0 0
\(661\) 4.00000 0.155582 0.0777910 0.996970i \(-0.475213\pi\)
0.0777910 + 0.996970i \(0.475213\pi\)
\(662\) 0 0
\(663\) −7.00000 −0.271857
\(664\) 0 0
\(665\) −42.0000 −1.62869
\(666\) 0 0
\(667\) 32.0000 1.23904
\(668\) 0 0
\(669\) −5.00000 −0.193311
\(670\) 0 0
\(671\) −5.00000 −0.193023
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 36.0000 1.38359 0.691796 0.722093i \(-0.256820\pi\)
0.691796 + 0.722093i \(0.256820\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) 0 0
\(681\) 22.0000 0.843042
\(682\) 0 0
\(683\) −16.0000 −0.612223 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(684\) 0 0
\(685\) −54.0000 −2.06323
\(686\) 0 0
\(687\) −13.0000 −0.495981
\(688\) 0 0
\(689\) −42.0000 −1.60007
\(690\) 0 0
\(691\) −13.0000 −0.494543 −0.247272 0.968946i \(-0.579534\pi\)
−0.247272 + 0.968946i \(0.579534\pi\)
\(692\) 0 0
\(693\) −10.0000 −0.379869
\(694\) 0 0
\(695\) 24.0000 0.910372
\(696\) 0 0
\(697\) 2.00000 0.0757554
\(698\) 0 0
\(699\) −20.0000 −0.756469
\(700\) 0 0
\(701\) 35.0000 1.32193 0.660966 0.750416i \(-0.270147\pi\)
0.660966 + 0.750416i \(0.270147\pi\)
\(702\) 0 0
\(703\) 42.0000 1.58406
\(704\) 0 0
\(705\) −3.00000 −0.112987
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) −21.0000 −0.788672 −0.394336 0.918966i \(-0.629025\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(710\) 0 0
\(711\) 11.0000 0.412532
\(712\) 0 0
\(713\) −4.00000 −0.149801
\(714\) 0 0
\(715\) 105.000 3.92678
\(716\) 0 0
\(717\) −4.00000 −0.149383
\(718\) 0 0
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) 14.0000 0.520666
\(724\) 0 0
\(725\) −32.0000 −1.18845
\(726\) 0 0
\(727\) −4.00000 −0.148352 −0.0741759 0.997245i \(-0.523633\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.0000 −0.369863
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) 9.00000 0.331970
\(736\) 0 0
\(737\) −15.0000 −0.552532
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) −49.0000 −1.80006
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 45.0000 1.64867
\(746\) 0 0
\(747\) −7.00000 −0.256117
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) 38.0000 1.38664 0.693320 0.720630i \(-0.256147\pi\)
0.693320 + 0.720630i \(0.256147\pi\)
\(752\) 0 0
\(753\) 20.0000 0.728841
\(754\) 0 0
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) 18.0000 0.654221 0.327111 0.944986i \(-0.393925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) −20.0000 −0.725954
\(760\) 0 0
\(761\) 1.00000 0.0362500 0.0181250 0.999836i \(-0.494230\pi\)
0.0181250 + 0.999836i \(0.494230\pi\)
\(762\) 0 0
\(763\) −12.0000 −0.434429
\(764\) 0 0
\(765\) −3.00000 −0.108465
\(766\) 0 0
\(767\) −70.0000 −2.52755
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) −16.0000 −0.575480 −0.287740 0.957709i \(-0.592904\pi\)
−0.287740 + 0.957709i \(0.592904\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 12.0000 0.430498
\(778\) 0 0
\(779\) 14.0000 0.501602
\(780\) 0 0
\(781\) 15.0000 0.536742
\(782\) 0 0
\(783\) 8.00000 0.285897
\(784\) 0 0
\(785\) −12.0000 −0.428298
\(786\) 0 0
\(787\) −40.0000 −1.42585 −0.712923 0.701242i \(-0.752629\pi\)
−0.712923 + 0.701242i \(0.752629\pi\)
\(788\) 0 0
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) −7.00000 −0.248577
\(794\) 0 0
\(795\) −18.0000 −0.638394
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −1.00000 −0.0353775
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −70.0000 −2.47025
\(804\) 0 0
\(805\) −24.0000 −0.845889
\(806\) 0 0
\(807\) −6.00000 −0.211210
\(808\) 0 0
\(809\) −29.0000 −1.01959 −0.509793 0.860297i \(-0.670278\pi\)
−0.509793 + 0.860297i \(0.670278\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) −19.0000 −0.666359
\(814\) 0 0
\(815\) 27.0000 0.945769
\(816\) 0 0
\(817\) −70.0000 −2.44899
\(818\) 0 0
\(819\) −14.0000 −0.489200
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) −43.0000 −1.49889 −0.749443 0.662069i \(-0.769679\pi\)
−0.749443 + 0.662069i \(0.769679\pi\)
\(824\) 0 0
\(825\) 20.0000 0.696311
\(826\) 0 0
\(827\) −27.0000 −0.938882 −0.469441 0.882964i \(-0.655545\pi\)
−0.469441 + 0.882964i \(0.655545\pi\)
\(828\) 0 0
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) 7.00000 0.242827
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −30.0000 −1.03819
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 30.0000 1.03325
\(844\) 0 0
\(845\) 108.000 3.71531
\(846\) 0 0
\(847\) 28.0000 0.962091
\(848\) 0 0
\(849\) 5.00000 0.171600
\(850\) 0 0
\(851\) 24.0000 0.822709
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) −21.0000 −0.718185
\(856\) 0 0
\(857\) −8.00000 −0.273275 −0.136637 0.990621i \(-0.543630\pi\)
−0.136637 + 0.990621i \(0.543630\pi\)
\(858\) 0 0
\(859\) 26.0000 0.887109 0.443554 0.896248i \(-0.353717\pi\)
0.443554 + 0.896248i \(0.353717\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 0 0
\(865\) 3.00000 0.102003
\(866\) 0 0
\(867\) 16.0000 0.543388
\(868\) 0 0
\(869\) −55.0000 −1.86575
\(870\) 0 0
\(871\) −21.0000 −0.711558
\(872\) 0 0
\(873\) −3.00000 −0.101535
\(874\) 0 0
\(875\) −6.00000 −0.202837
\(876\) 0 0
\(877\) 28.0000 0.945493 0.472746 0.881199i \(-0.343263\pi\)
0.472746 + 0.881199i \(0.343263\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 51.0000 1.71823 0.859117 0.511780i \(-0.171014\pi\)
0.859117 + 0.511780i \(0.171014\pi\)
\(882\) 0 0
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 0 0
\(885\) −30.0000 −1.00844
\(886\) 0 0
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) −5.00000 −0.167506
\(892\) 0 0
\(893\) −7.00000 −0.234246
\(894\) 0 0
\(895\) −57.0000 −1.90530
\(896\) 0 0
\(897\) −28.0000 −0.934893
\(898\) 0 0
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) −20.0000 −0.665558
\(904\) 0 0
\(905\) 54.0000 1.79502
\(906\) 0 0
\(907\) 1.00000 0.0332045 0.0166022 0.999862i \(-0.494715\pi\)
0.0166022 + 0.999862i \(0.494715\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 35.0000 1.15833
\(914\) 0 0
\(915\) −3.00000 −0.0991769
\(916\) 0 0
\(917\) −20.0000 −0.660458
\(918\) 0 0
\(919\) −28.0000 −0.923635 −0.461817 0.886975i \(-0.652802\pi\)
−0.461817 + 0.886975i \(0.652802\pi\)
\(920\) 0 0
\(921\) 16.0000 0.527218
\(922\) 0 0
\(923\) 21.0000 0.691223
\(924\) 0 0
\(925\) −24.0000 −0.789115
\(926\) 0 0
\(927\) −10.0000 −0.328443
\(928\) 0 0
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 21.0000 0.688247
\(932\) 0 0
\(933\) 21.0000 0.687509
\(934\) 0 0
\(935\) 15.0000 0.490552
\(936\) 0 0
\(937\) 1.00000 0.0326686 0.0163343 0.999867i \(-0.494800\pi\)
0.0163343 + 0.999867i \(0.494800\pi\)
\(938\) 0 0
\(939\) −2.00000 −0.0652675
\(940\) 0 0
\(941\) −48.0000 −1.56476 −0.782378 0.622804i \(-0.785993\pi\)
−0.782378 + 0.622804i \(0.785993\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) −6.00000 −0.195180
\(946\) 0 0
\(947\) 5.00000 0.162478 0.0812391 0.996695i \(-0.474112\pi\)
0.0812391 + 0.996695i \(0.474112\pi\)
\(948\) 0 0
\(949\) −98.0000 −3.18121
\(950\) 0 0
\(951\) −5.00000 −0.162136
\(952\) 0 0
\(953\) −5.00000 −0.161966 −0.0809829 0.996715i \(-0.525806\pi\)
−0.0809829 + 0.996715i \(0.525806\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −40.0000 −1.29302
\(958\) 0 0
\(959\) −36.0000 −1.16250
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −8.00000 −0.257796
\(964\) 0 0
\(965\) 57.0000 1.83489
\(966\) 0 0
\(967\) −33.0000 −1.06121 −0.530604 0.847620i \(-0.678035\pi\)
−0.530604 + 0.847620i \(0.678035\pi\)
\(968\) 0 0
\(969\) −7.00000 −0.224872
\(970\) 0 0
\(971\) −34.0000 −1.09111 −0.545556 0.838074i \(-0.683681\pi\)
−0.545556 + 0.838074i \(0.683681\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 0 0
\(975\) 28.0000 0.896718
\(976\) 0 0
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) 30.0000 0.958804
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) −2.00000 −0.0636607
\(988\) 0 0
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 33.0000 1.04617
\(996\) 0 0
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) 0 0
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1488.2.a.h.1.1 1
3.2 odd 2 4464.2.a.c.1.1 1
4.3 odd 2 186.2.a.b.1.1 1
8.3 odd 2 5952.2.a.b.1.1 1
8.5 even 2 5952.2.a.s.1.1 1
12.11 even 2 558.2.a.f.1.1 1
20.3 even 4 4650.2.d.k.3349.2 2
20.7 even 4 4650.2.d.k.3349.1 2
20.19 odd 2 4650.2.a.bh.1.1 1
28.27 even 2 9114.2.a.b.1.1 1
124.123 even 2 5766.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.a.b.1.1 1 4.3 odd 2
558.2.a.f.1.1 1 12.11 even 2
1488.2.a.h.1.1 1 1.1 even 1 trivial
4464.2.a.c.1.1 1 3.2 odd 2
4650.2.a.bh.1.1 1 20.19 odd 2
4650.2.d.k.3349.1 2 20.7 even 4
4650.2.d.k.3349.2 2 20.3 even 4
5766.2.a.c.1.1 1 124.123 even 2
5952.2.a.b.1.1 1 8.3 odd 2
5952.2.a.s.1.1 1 8.5 even 2
9114.2.a.b.1.1 1 28.27 even 2