Properties

Label 15.18.a.b
Level $15$
Weight $18$
Character orbit 15.a
Self dual yes
Analytic conductor $27.483$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [15,18,Mod(1,15)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(15, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("15.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 15.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4833131017\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 37234x - 350700 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 147) q^{2} - 6561 q^{3} + ( - 2 \beta_{2} - 196 \beta_1 + 99318) q^{4} - 390625 q^{5} + ( - 6561 \beta_1 + 964467) q^{6} + (87 \beta_{2} + 45211 \beta_1 + 1669256) q^{7} + (884 \beta_{2} + 72488 \beta_1 - 36253436) q^{8}+ \cdots + ( - 159445054584 \beta_{2} + \cdots + 15\!\cdots\!44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 442 q^{2} - 19683 q^{3} + 298148 q^{4} - 1171875 q^{5} + 2899962 q^{6} + 4962644 q^{7} - 108831912 q^{8} + 129140163 q^{9} + 172656250 q^{10} + 1049849720 q^{11} - 1956149028 q^{12} - 3091742090 q^{13}+ \cdots + 45\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 37234x - 350700 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{2} + 58\nu + 24809 ) / 41 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 61\nu^{2} + 16142\nu - 1514169 ) / 41 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 61\beta _1 + 20 ) / 480 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 29\beta_{2} - 8071\beta _1 + 5954740 ) / 240 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−188.067
197.509
−9.44141
−670.613 −6561.00 318650. −390625. 4.39989e6 −2.70804e7 −1.25792e8 4.30467e7 2.61958e8
1.2 −213.954 −6561.00 −85295.6 −390625. 1.40375e6 7.24373e6 4.62928e7 4.30467e7 8.35759e7
1.3 442.567 −6561.00 64793.8 −390625. −2.90368e6 2.47993e7 −2.93326e7 4.30467e7 −1.72878e8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 15.18.a.b 3
3.b odd 2 1 45.18.a.e 3
5.b even 2 1 75.18.a.e 3
5.c odd 4 2 75.18.b.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.18.a.b 3 1.a even 1 1 trivial
45.18.a.e 3 3.b odd 2 1
75.18.a.e 3 5.b even 2 1
75.18.b.d 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 442T_{2}^{2} - 248000T_{2} - 63499776 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(15))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 442 T^{2} + \cdots - 63499776 \) Copy content Toggle raw display
$3$ \( (T + 6561)^{3} \) Copy content Toggle raw display
$5$ \( (T + 390625)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 48\!\cdots\!80 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 32\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 48\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 19\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 24\!\cdots\!20 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 64\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 17\!\cdots\!40 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 69\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 41\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 55\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 30\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 55\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 30\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 11\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 57\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 87\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 42\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 36\!\cdots\!28 \) Copy content Toggle raw display
show more
show less