Properties

Label 150.12.a
Level $150$
Weight $12$
Character orbit 150.a
Rep. character $\chi_{150}(1,\cdot)$
Character field $\Q$
Dimension $35$
Newform subspaces $21$
Sturm bound $360$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(360\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(150))\).

Total New Old
Modular forms 342 35 307
Cusp forms 318 35 283
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(5\)
\(-\)\(-\)\(+\)\(+\)\(5\)
\(-\)\(-\)\(-\)\(-\)\(4\)
Plus space\(+\)\(19\)
Minus space\(-\)\(16\)

Trace form

\( 35 q + 32 q^{2} + 243 q^{3} + 35840 q^{4} - 7776 q^{6} - 66564 q^{7} + 32768 q^{8} + 2066715 q^{9} + 1576964 q^{11} + 248832 q^{12} - 535218 q^{13} - 4739328 q^{14} + 36700160 q^{16} + 12946866 q^{17} + 1889568 q^{18}+ \cdots + 93118147236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(150))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
150.12.a.a 150.a 1.a $1$ $115.251$ \(\Q\) None 6.12.a.c \(-32\) \(-243\) \(0\) \(-32936\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.b 150.a 1.a $1$ $115.251$ \(\Q\) None 30.12.a.f \(-32\) \(-243\) \(0\) \(-10556\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.c 150.a 1.a $1$ $115.251$ \(\Q\) None 30.12.a.d \(-32\) \(243\) \(0\) \(-29348\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.d 150.a 1.a $1$ $115.251$ \(\Q\) None 30.12.a.e \(-32\) \(243\) \(0\) \(5152\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.e 150.a 1.a $1$ $115.251$ \(\Q\) None 30.12.a.c \(32\) \(-243\) \(0\) \(-56672\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.f 150.a 1.a $1$ $115.251$ \(\Q\) None 6.12.a.b \(32\) \(-243\) \(0\) \(50008\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.g 150.a 1.a $1$ $115.251$ \(\Q\) None 6.12.a.a \(32\) \(243\) \(0\) \(-72464\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.h 150.a 1.a $1$ $115.251$ \(\Q\) None 30.12.a.a \(32\) \(243\) \(0\) \(22876\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.i 150.a 1.a $1$ $115.251$ \(\Q\) None 30.12.a.b \(32\) \(243\) \(0\) \(57376\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.j 150.a 1.a $2$ $115.251$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 150.12.a.j \(-64\) \(-486\) \(0\) \(24058\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.k 150.a 1.a $2$ $115.251$ \(\Q(\sqrt{1129}) \) None 30.12.c.a \(-64\) \(-486\) \(0\) \(27738\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.l 150.a 1.a $2$ $115.251$ \(\Q(\sqrt{499}) \) None 150.12.a.l \(-64\) \(-486\) \(0\) \(65438\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.m 150.a 1.a $2$ $115.251$ \(\Q(\sqrt{94291}) \) None 150.12.a.m \(-64\) \(486\) \(0\) \(21394\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.n 150.a 1.a $2$ $115.251$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 150.12.a.n \(-64\) \(486\) \(0\) \(37214\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.o 150.a 1.a $2$ $115.251$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 150.12.a.n \(64\) \(-486\) \(0\) \(-37214\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.p 150.a 1.a $2$ $115.251$ \(\Q(\sqrt{94291}) \) None 150.12.a.m \(64\) \(-486\) \(0\) \(-21394\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.q 150.a 1.a $2$ $115.251$ \(\Q(\sqrt{499}) \) None 150.12.a.l \(64\) \(486\) \(0\) \(-65438\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.r 150.a 1.a $2$ $115.251$ \(\Q(\sqrt{1129}) \) None 30.12.c.a \(64\) \(486\) \(0\) \(-27738\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.s 150.a 1.a $2$ $115.251$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 150.12.a.j \(64\) \(486\) \(0\) \(-24058\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+6^{5}q^{6}+\cdots\)
150.12.a.t 150.a 1.a $3$ $115.251$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 30.12.c.b \(-96\) \(729\) \(0\) \(-67384\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)
150.12.a.u 150.a 1.a $3$ $115.251$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 30.12.c.b \(96\) \(-729\) \(0\) \(67384\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-6^{5}q^{6}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(150))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(150)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)