Properties

Label 150.12.e
Level $150$
Weight $12$
Character orbit 150.e
Rep. character $\chi_{150}(107,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $132$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(150, [\chi])\).

Total New Old
Modular forms 684 132 552
Cusp forms 636 132 504
Eisenstein series 48 0 48

Trace form

\( 132 q + 1012 q^{3} + 5888 q^{6} + 31508 q^{7} - 1036288 q^{12} - 3387840 q^{13} - 138412032 q^{16} + 10875136 q^{18} - 33274576 q^{21} + 39398528 q^{22} + 57593668 q^{27} + 32264192 q^{28} - 79751064 q^{31}+ \cdots - 360271956804 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{12}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)