Defining parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.h (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Sturm bound: | \(360\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1336 | 216 | 1120 |
Cusp forms | 1304 | 216 | 1088 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{12}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{12}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)