Properties

Label 150.12.h
Level $150$
Weight $12$
Character orbit 150.h
Rep. character $\chi_{150}(19,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $216$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.h (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(150, [\chi])\).

Total New Old
Modular forms 1336 216 1120
Cusp forms 1304 216 1088
Eisenstein series 32 0 32

Trace form

\( 216 q + 55296 q^{4} + 4976 q^{5} + 15552 q^{6} + 3188646 q^{9} - 301376 q^{10} + 2939388 q^{11} + 1186326 q^{15} - 56623104 q^{16} + 8389460 q^{17} + 22976792 q^{19} - 31453184 q^{20} + 16336404 q^{21}+ \cdots + 115711948008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{12}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)