Defining parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 12 | 60 |
Cusp forms | 48 | 12 | 36 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
150.3.d.a | $2$ | $4.087$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(-2\) | \(0\) | \(-14\) | \(q+\beta q^{2}+(-1-2\beta )q^{3}-2q^{4}+(4-\beta )q^{6}+\cdots\) |
150.3.d.b | $2$ | $4.087$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(2\) | \(0\) | \(14\) | \(q+\beta q^{2}+(1-2\beta )q^{3}-2q^{4}+(4+\beta )q^{6}+\cdots\) |
150.3.d.c | $4$ | $4.087$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | None | \(0\) | \(-4\) | \(0\) | \(-8\) | \(q+\beta _{1}q^{2}+(-1+\beta _{1}-\beta _{2})q^{3}-2q^{4}+\cdots\) |
150.3.d.d | $4$ | $4.087$ | \(\Q(\sqrt{-2}, \sqrt{-17})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}-\beta _{1}q^{3}-2q^{4}+(-1+\beta _{3})q^{6}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)