Properties

Label 150.3.d
Level 150150
Weight 33
Character orbit 150.d
Rep. character χ150(101,)\chi_{150}(101,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 44
Sturm bound 9090
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 150.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 3 3
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 9090
Trace bound: 33
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M3(150,[χ])M_{3}(150, [\chi]).

Total New Old
Modular forms 72 12 60
Cusp forms 48 12 36
Eisenstein series 24 0 24

Trace form

12q4q324q4+8q68q74q9+8q12+40q13+48q1632q1844q19+44q2148q2216q2428q27+16q28124q3124q33+112q34+656q99+O(q100) 12 q - 4 q^{3} - 24 q^{4} + 8 q^{6} - 8 q^{7} - 4 q^{9} + 8 q^{12} + 40 q^{13} + 48 q^{16} - 32 q^{18} - 44 q^{19} + 44 q^{21} - 48 q^{22} - 16 q^{24} - 28 q^{27} + 16 q^{28} - 124 q^{31} - 24 q^{33} + 112 q^{34}+ \cdots - 656 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(150,[χ])S_{3}^{\mathrm{new}}(150, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
150.3.d.a 150.d 3.b 22 4.0874.087 Q(2)\Q(\sqrt{-2}) None 150.3.d.a 00 2-2 00 14-14 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+βq2+(12β)q32q4+(4β)q6+q+\beta q^{2}+(-1-2\beta )q^{3}-2q^{4}+(4-\beta )q^{6}+\cdots
150.3.d.b 150.d 3.b 22 4.0874.087 Q(2)\Q(\sqrt{-2}) None 150.3.d.a 00 22 00 1414 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+βq2+(12β)q32q4+(4+β)q6+q+\beta q^{2}+(1-2\beta )q^{3}-2q^{4}+(4+\beta )q^{6}+\cdots
150.3.d.c 150.d 3.b 44 4.0874.087 Q(2,5)\Q(\sqrt{-2}, \sqrt{-5}) None 30.3.d.a 00 4-4 00 8-8 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+(1+β1β2)q32q4+q+\beta _{1}q^{2}+(-1+\beta _{1}-\beta _{2})q^{3}-2q^{4}+\cdots
150.3.d.d 150.d 3.b 44 4.0874.087 Q(2,17)\Q(\sqrt{-2}, \sqrt{-17}) None 30.3.b.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q2β1q32q4+(1+β3)q6+q-\beta _{2}q^{2}-\beta _{1}q^{3}-2q^{4}+(-1+\beta _{3})q^{6}+\cdots

Decomposition of S3old(150,[χ])S_{3}^{\mathrm{old}}(150, [\chi]) into lower level spaces

S3old(150,[χ]) S_{3}^{\mathrm{old}}(150, [\chi]) \simeq S3new(15,[χ])S_{3}^{\mathrm{new}}(15, [\chi])4^{\oplus 4}\oplusS3new(30,[χ])S_{3}^{\mathrm{new}}(30, [\chi])2^{\oplus 2}\oplusS3new(75,[χ])S_{3}^{\mathrm{new}}(75, [\chi])2^{\oplus 2}