Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [150,3,Mod(29,150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(150, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("150.29");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.i (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.08720396540\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −0.437016 | + | 1.34500i | −2.95317 | + | 0.527988i | −1.61803 | − | 1.17557i | 4.87810 | + | 1.09731i | 0.580441 | − | 4.20275i | 10.6357i | 2.28825 | − | 1.66251i | 8.44246 | − | 3.11848i | −3.60769 | + | 6.08149i | ||
29.2 | −0.437016 | + | 1.34500i | −2.88702 | − | 0.815530i | −1.61803 | − | 1.17557i | −1.13734 | + | 4.86893i | 2.35856 | − | 3.52664i | − | 10.7444i | 2.28825 | − | 1.66251i | 7.66982 | + | 4.70891i | −6.05166 | − | 3.65752i | |
29.3 | −0.437016 | + | 1.34500i | −2.70555 | − | 1.29615i | −1.61803 | − | 1.17557i | −2.68239 | − | 4.21957i | 2.92568 | − | 3.07252i | 8.88015i | 2.28825 | − | 1.66251i | 5.64000 | + | 7.01359i | 6.84756 | − | 1.76378i | ||
29.4 | −0.437016 | + | 1.34500i | −1.99435 | + | 2.24110i | −1.61803 | − | 1.17557i | 2.92277 | − | 4.05678i | −2.14271 | − | 3.66180i | − | 10.3258i | 2.28825 | − | 1.66251i | −1.04510 | − | 8.93911i | 4.17905 | + | 5.70399i | |
29.5 | −0.437016 | + | 1.34500i | −0.0352727 | − | 2.99979i | −1.61803 | − | 1.17557i | −4.11716 | + | 2.83707i | 4.05013 | + | 1.26352i | 2.70868i | 2.28825 | − | 1.66251i | −8.99751 | + | 0.211621i | −2.01659 | − | 6.77742i | ||
29.6 | −0.437016 | + | 1.34500i | −0.0189915 | + | 2.99994i | −1.61803 | − | 1.17557i | −4.54494 | − | 2.08411i | −4.02661 | − | 1.33657i | 1.94466i | 2.28825 | − | 1.66251i | −8.99928 | − | 0.113946i | 4.78934 | − | 5.20214i | ||
29.7 | −0.437016 | + | 1.34500i | 1.95554 | − | 2.27505i | −1.61803 | − | 1.17557i | 4.48538 | + | 2.20939i | 2.20534 | + | 3.62443i | 0.464101i | 2.28825 | − | 1.66251i | −1.35173 | − | 8.89791i | −4.93180 | + | 5.06728i | ||
29.8 | −0.437016 | + | 1.34500i | 2.11142 | + | 2.13118i | −1.61803 | − | 1.17557i | −0.399233 | + | 4.98404i | −3.78915 | + | 1.90849i | − | 0.905152i | 2.28825 | − | 1.66251i | −0.0838289 | + | 8.99961i | −6.52904 | − | 2.71507i | |
29.9 | −0.437016 | + | 1.34500i | 2.48265 | + | 1.68417i | −1.61803 | − | 1.17557i | 3.26810 | − | 3.78412i | −3.35017 | + | 2.60315i | 7.29758i | 2.28825 | − | 1.66251i | 3.32712 | + | 8.36243i | 3.66142 | + | 6.04930i | ||
29.10 | −0.437016 | + | 1.34500i | 2.92672 | − | 0.659017i | −1.61803 | − | 1.17557i | −4.08750 | − | 2.87964i | −0.392649 | + | 4.22443i | − | 12.3067i | 2.28825 | − | 1.66251i | 8.13139 | − | 3.85752i | 5.65941 | − | 4.23923i | |
29.11 | 0.437016 | − | 1.34500i | −2.84724 | + | 0.945094i | −1.61803 | − | 1.17557i | 4.54494 | + | 2.08411i | 0.0268580 | + | 4.24256i | 1.94466i | −2.28825 | + | 1.66251i | 7.21359 | − | 5.38183i | 4.78934 | − | 5.20214i | ||
29.12 | 0.437016 | − | 1.34500i | −2.67933 | − | 1.34951i | −1.61803 | − | 1.17557i | 0.399233 | − | 4.98404i | −2.98600 | + | 3.01394i | − | 0.905152i | −2.28825 | + | 1.66251i | 5.35766 | + | 7.23156i | −6.52904 | − | 2.71507i | |
29.13 | 0.437016 | − | 1.34500i | −2.36893 | − | 1.84070i | −1.61803 | − | 1.17557i | −3.26810 | + | 3.78412i | −3.51100 | + | 2.38178i | 7.29758i | −2.28825 | + | 1.66251i | 2.22361 | + | 8.72098i | 3.66142 | + | 6.04930i | ||
29.14 | 0.437016 | − | 1.34500i | −1.51513 | + | 2.58928i | −1.61803 | − | 1.17557i | −2.92277 | + | 4.05678i | 2.82044 | + | 3.16940i | − | 10.3258i | −2.28825 | + | 1.66251i | −4.40877 | − | 7.84619i | 4.17905 | + | 5.70399i | |
29.15 | 0.437016 | − | 1.34500i | −0.277644 | − | 2.98712i | −1.61803 | − | 1.17557i | 4.08750 | + | 2.87964i | −4.13901 | − | 0.931990i | − | 12.3067i | −2.28825 | + | 1.66251i | −8.84583 | + | 1.65872i | 5.65941 | − | 4.23923i | |
29.16 | 0.437016 | − | 1.34500i | 0.410434 | + | 2.97179i | −1.61803 | − | 1.17557i | −4.87810 | − | 1.09731i | 4.17642 | + | 0.746688i | 10.6357i | −2.28825 | + | 1.66251i | −8.66309 | + | 2.43945i | −3.60769 | + | 6.08149i | ||
29.17 | 0.437016 | − | 1.34500i | 1.55941 | − | 2.56286i | −1.61803 | − | 1.17557i | −4.48538 | − | 2.20939i | −2.76555 | − | 3.21741i | 0.464101i | −2.28825 | + | 1.66251i | −4.13649 | − | 7.99309i | −4.93180 | + | 5.06728i | ||
29.18 | 0.437016 | − | 1.34500i | 1.66776 | + | 2.49371i | −1.61803 | − | 1.17557i | 1.13734 | − | 4.86893i | 4.08287 | − | 1.15333i | − | 10.7444i | −2.28825 | + | 1.66251i | −3.43719 | + | 8.31780i | −6.05166 | − | 3.65752i | |
29.19 | 0.437016 | − | 1.34500i | 2.06877 | + | 2.17260i | −1.61803 | − | 1.17557i | 2.68239 | + | 4.21957i | 3.82622 | − | 1.83303i | 8.88015i | −2.28825 | + | 1.66251i | −0.440370 | + | 8.98922i | 6.84756 | − | 1.76378i | ||
29.20 | 0.437016 | − | 1.34500i | 2.86387 | − | 0.893441i | −1.61803 | − | 1.17557i | 4.11716 | − | 2.83707i | 0.0498831 | − | 4.24235i | 2.70868i | −2.28825 | + | 1.66251i | 7.40353 | − | 5.11740i | −2.01659 | − | 6.77742i | ||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
25.e | even | 10 | 1 | inner |
75.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 150.3.i.a | ✓ | 80 |
3.b | odd | 2 | 1 | inner | 150.3.i.a | ✓ | 80 |
25.e | even | 10 | 1 | inner | 150.3.i.a | ✓ | 80 |
75.h | odd | 10 | 1 | inner | 150.3.i.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
150.3.i.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
150.3.i.a | ✓ | 80 | 3.b | odd | 2 | 1 | inner |
150.3.i.a | ✓ | 80 | 25.e | even | 10 | 1 | inner |
150.3.i.a | ✓ | 80 | 75.h | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(150, [\chi])\).