Properties

Label 150.8.c.d.49.2
Level $150$
Weight $8$
Character 150.49
Analytic conductor $46.858$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.8.c.d.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{2} +27.0000i q^{3} -64.0000 q^{4} -216.000 q^{6} +1427.00i q^{7} -512.000i q^{8} -729.000 q^{9} +5070.00 q^{11} -1728.00i q^{12} +11899.0i q^{13} -11416.0 q^{14} +4096.00 q^{16} +19242.0i q^{17} -5832.00i q^{18} +43711.0 q^{19} -38529.0 q^{21} +40560.0i q^{22} +3150.00i q^{23} +13824.0 q^{24} -95192.0 q^{26} -19683.0i q^{27} -91328.0i q^{28} -140106. q^{29} +147563. q^{31} +32768.0i q^{32} +136890. i q^{33} -153936. q^{34} +46656.0 q^{36} +561674. i q^{37} +349688. i q^{38} -321273. q^{39} -270336. q^{41} -308232. i q^{42} -180683. i q^{43} -324480. q^{44} -25200.0 q^{46} +97470.0i q^{47} +110592. i q^{48} -1.21279e6 q^{49} -519534. q^{51} -761536. i q^{52} -2.13013e6i q^{53} +157464. q^{54} +730624. q^{56} +1.18020e6i q^{57} -1.12085e6i q^{58} +935070. q^{59} +135875. q^{61} +1.18050e6i q^{62} -1.04028e6i q^{63} -262144. q^{64} -1.09512e6 q^{66} -1.44343e6i q^{67} -1.23149e6i q^{68} -85050.0 q^{69} -2.68584e6 q^{71} +373248. i q^{72} -3.28047e6i q^{73} -4.49339e6 q^{74} -2.79750e6 q^{76} +7.23489e6i q^{77} -2.57018e6i q^{78} -5.67267e6 q^{79} +531441. q^{81} -2.16269e6i q^{82} -4.22791e6i q^{83} +2.46586e6 q^{84} +1.44546e6 q^{86} -3.78286e6i q^{87} -2.59584e6i q^{88} +1.18908e7 q^{89} -1.69799e7 q^{91} -201600. i q^{92} +3.98420e6i q^{93} -779760. q^{94} -884736. q^{96} +3.80853e6i q^{97} -9.70229e6i q^{98} -3.69603e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} - 432 q^{6} - 1458 q^{9} + 10140 q^{11} - 22832 q^{14} + 8192 q^{16} + 87422 q^{19} - 77058 q^{21} + 27648 q^{24} - 190384 q^{26} - 280212 q^{29} + 295126 q^{31} - 307872 q^{34} + 93312 q^{36}+ \cdots - 7392060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 27.0000i 0.577350i
\(4\) −64.0000 −0.500000
\(5\) 0 0
\(6\) −216.000 −0.408248
\(7\) 1427.00i 1.57246i 0.617931 + 0.786232i \(0.287971\pi\)
−0.617931 + 0.786232i \(0.712029\pi\)
\(8\) − 512.000i − 0.353553i
\(9\) −729.000 −0.333333
\(10\) 0 0
\(11\) 5070.00 1.14851 0.574253 0.818678i \(-0.305292\pi\)
0.574253 + 0.818678i \(0.305292\pi\)
\(12\) − 1728.00i − 0.288675i
\(13\) 11899.0i 1.50213i 0.660226 + 0.751067i \(0.270461\pi\)
−0.660226 + 0.751067i \(0.729539\pi\)
\(14\) −11416.0 −1.11190
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 19242.0i 0.949902i 0.880012 + 0.474951i \(0.157534\pi\)
−0.880012 + 0.474951i \(0.842466\pi\)
\(18\) − 5832.00i − 0.235702i
\(19\) 43711.0 1.46202 0.731010 0.682367i \(-0.239049\pi\)
0.731010 + 0.682367i \(0.239049\pi\)
\(20\) 0 0
\(21\) −38529.0 −0.907863
\(22\) 40560.0i 0.812117i
\(23\) 3150.00i 0.0539838i 0.999636 + 0.0269919i \(0.00859283\pi\)
−0.999636 + 0.0269919i \(0.991407\pi\)
\(24\) 13824.0 0.204124
\(25\) 0 0
\(26\) −95192.0 −1.06217
\(27\) − 19683.0i − 0.192450i
\(28\) − 91328.0i − 0.786232i
\(29\) −140106. −1.06675 −0.533376 0.845878i \(-0.679077\pi\)
−0.533376 + 0.845878i \(0.679077\pi\)
\(30\) 0 0
\(31\) 147563. 0.889634 0.444817 0.895621i \(-0.353269\pi\)
0.444817 + 0.895621i \(0.353269\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 136890.i 0.663091i
\(34\) −153936. −0.671682
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) 561674.i 1.82296i 0.411339 + 0.911482i \(0.365061\pi\)
−0.411339 + 0.911482i \(0.634939\pi\)
\(38\) 349688.i 1.03380i
\(39\) −321273. −0.867258
\(40\) 0 0
\(41\) −270336. −0.612577 −0.306288 0.951939i \(-0.599087\pi\)
−0.306288 + 0.951939i \(0.599087\pi\)
\(42\) − 308232.i − 0.641956i
\(43\) − 180683.i − 0.346559i −0.984873 0.173280i \(-0.944564\pi\)
0.984873 0.173280i \(-0.0554365\pi\)
\(44\) −324480. −0.574253
\(45\) 0 0
\(46\) −25200.0 −0.0381723
\(47\) 97470.0i 0.136939i 0.997653 + 0.0684697i \(0.0218116\pi\)
−0.997653 + 0.0684697i \(0.978188\pi\)
\(48\) 110592.i 0.144338i
\(49\) −1.21279e6 −1.47264
\(50\) 0 0
\(51\) −519534. −0.548426
\(52\) − 761536.i − 0.751067i
\(53\) − 2.13013e6i − 1.96535i −0.185324 0.982677i \(-0.559334\pi\)
0.185324 0.982677i \(-0.440666\pi\)
\(54\) 157464. 0.136083
\(55\) 0 0
\(56\) 730624. 0.555950
\(57\) 1.18020e6i 0.844097i
\(58\) − 1.12085e6i − 0.754308i
\(59\) 935070. 0.592737 0.296369 0.955074i \(-0.404224\pi\)
0.296369 + 0.955074i \(0.404224\pi\)
\(60\) 0 0
\(61\) 135875. 0.0766452 0.0383226 0.999265i \(-0.487799\pi\)
0.0383226 + 0.999265i \(0.487799\pi\)
\(62\) 1.18050e6i 0.629066i
\(63\) − 1.04028e6i − 0.524155i
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) −1.09512e6 −0.468876
\(67\) − 1.44343e6i − 0.586320i −0.956063 0.293160i \(-0.905293\pi\)
0.956063 0.293160i \(-0.0947069\pi\)
\(68\) − 1.23149e6i − 0.474951i
\(69\) −85050.0 −0.0311675
\(70\) 0 0
\(71\) −2.68584e6 −0.890586 −0.445293 0.895385i \(-0.646900\pi\)
−0.445293 + 0.895385i \(0.646900\pi\)
\(72\) 373248.i 0.117851i
\(73\) − 3.28047e6i − 0.986974i −0.869753 0.493487i \(-0.835722\pi\)
0.869753 0.493487i \(-0.164278\pi\)
\(74\) −4.49339e6 −1.28903
\(75\) 0 0
\(76\) −2.79750e6 −0.731010
\(77\) 7.23489e6i 1.80599i
\(78\) − 2.57018e6i − 0.613244i
\(79\) −5.67267e6 −1.29447 −0.647236 0.762289i \(-0.724075\pi\)
−0.647236 + 0.762289i \(0.724075\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) − 2.16269e6i − 0.433157i
\(83\) − 4.22791e6i − 0.811619i −0.913958 0.405809i \(-0.866990\pi\)
0.913958 0.405809i \(-0.133010\pi\)
\(84\) 2.46586e6 0.453931
\(85\) 0 0
\(86\) 1.44546e6 0.245055
\(87\) − 3.78286e6i − 0.615890i
\(88\) − 2.59584e6i − 0.406058i
\(89\) 1.18908e7 1.78792 0.893959 0.448148i \(-0.147916\pi\)
0.893959 + 0.448148i \(0.147916\pi\)
\(90\) 0 0
\(91\) −1.69799e7 −2.36205
\(92\) − 201600.i − 0.0269919i
\(93\) 3.98420e6i 0.513631i
\(94\) −779760. −0.0968308
\(95\) 0 0
\(96\) −884736. −0.102062
\(97\) 3.80853e6i 0.423698i 0.977302 + 0.211849i \(0.0679485\pi\)
−0.977302 + 0.211849i \(0.932052\pi\)
\(98\) − 9.70229e6i − 1.04132i
\(99\) −3.69603e6 −0.382836
\(100\) 0 0
\(101\) −1.20593e7 −1.16465 −0.582327 0.812955i \(-0.697858\pi\)
−0.582327 + 0.812955i \(0.697858\pi\)
\(102\) − 4.15627e6i − 0.387796i
\(103\) − 3.61951e6i − 0.326377i −0.986595 0.163188i \(-0.947822\pi\)
0.986595 0.163188i \(-0.0521778\pi\)
\(104\) 6.09229e6 0.531085
\(105\) 0 0
\(106\) 1.70411e7 1.38972
\(107\) − 2.56928e6i − 0.202754i −0.994848 0.101377i \(-0.967675\pi\)
0.994848 0.101377i \(-0.0323248\pi\)
\(108\) 1.25971e6i 0.0962250i
\(109\) −6.71514e6 −0.496664 −0.248332 0.968675i \(-0.579882\pi\)
−0.248332 + 0.968675i \(0.579882\pi\)
\(110\) 0 0
\(111\) −1.51652e7 −1.05249
\(112\) 5.84499e6i 0.393116i
\(113\) − 1.37565e7i − 0.896876i −0.893814 0.448438i \(-0.851980\pi\)
0.893814 0.448438i \(-0.148020\pi\)
\(114\) −9.44158e6 −0.596867
\(115\) 0 0
\(116\) 8.96678e6 0.533376
\(117\) − 8.67437e6i − 0.500711i
\(118\) 7.48056e6i 0.419128i
\(119\) −2.74583e7 −1.49369
\(120\) 0 0
\(121\) 6.21773e6 0.319068
\(122\) 1.08700e6i 0.0541964i
\(123\) − 7.29907e6i − 0.353671i
\(124\) −9.44403e6 −0.444817
\(125\) 0 0
\(126\) 8.32226e6 0.370633
\(127\) 4.01769e7i 1.74046i 0.492647 + 0.870229i \(0.336029\pi\)
−0.492647 + 0.870229i \(0.663971\pi\)
\(128\) − 2.09715e6i − 0.0883883i
\(129\) 4.87844e6 0.200086
\(130\) 0 0
\(131\) 3.44456e7 1.33870 0.669351 0.742946i \(-0.266572\pi\)
0.669351 + 0.742946i \(0.266572\pi\)
\(132\) − 8.76096e6i − 0.331545i
\(133\) 6.23756e7i 2.29897i
\(134\) 1.15475e7 0.414591
\(135\) 0 0
\(136\) 9.85190e6 0.335841
\(137\) 2.78217e7i 0.924405i 0.886774 + 0.462203i \(0.152941\pi\)
−0.886774 + 0.462203i \(0.847059\pi\)
\(138\) − 680400.i − 0.0220388i
\(139\) 8.75852e6 0.276617 0.138308 0.990389i \(-0.455833\pi\)
0.138308 + 0.990389i \(0.455833\pi\)
\(140\) 0 0
\(141\) −2.63169e6 −0.0790620
\(142\) − 2.14867e7i − 0.629739i
\(143\) 6.03279e7i 1.72521i
\(144\) −2.98598e6 −0.0833333
\(145\) 0 0
\(146\) 2.62437e7 0.697896
\(147\) − 3.27452e7i − 0.850232i
\(148\) − 3.59471e7i − 0.911482i
\(149\) 7.68194e7 1.90247 0.951237 0.308460i \(-0.0998137\pi\)
0.951237 + 0.308460i \(0.0998137\pi\)
\(150\) 0 0
\(151\) −1.42992e7 −0.337981 −0.168991 0.985618i \(-0.554051\pi\)
−0.168991 + 0.985618i \(0.554051\pi\)
\(152\) − 2.23800e7i − 0.516902i
\(153\) − 1.40274e7i − 0.316634i
\(154\) −5.78791e7 −1.27702
\(155\) 0 0
\(156\) 2.05615e7 0.433629
\(157\) − 6.38587e7i − 1.31696i −0.752600 0.658478i \(-0.771200\pi\)
0.752600 0.658478i \(-0.228800\pi\)
\(158\) − 4.53814e7i − 0.915330i
\(159\) 5.75136e7 1.13470
\(160\) 0 0
\(161\) −4.49505e6 −0.0848875
\(162\) 4.25153e6i 0.0785674i
\(163\) 8.81015e7i 1.59341i 0.604371 + 0.796703i \(0.293425\pi\)
−0.604371 + 0.796703i \(0.706575\pi\)
\(164\) 1.73015e7 0.306288
\(165\) 0 0
\(166\) 3.38232e7 0.573901
\(167\) 6.22383e7i 1.03407i 0.855964 + 0.517035i \(0.172964\pi\)
−0.855964 + 0.517035i \(0.827036\pi\)
\(168\) 1.97268e7i 0.320978i
\(169\) −7.88377e7 −1.25641
\(170\) 0 0
\(171\) −3.18653e7 −0.487340
\(172\) 1.15637e7i 0.173280i
\(173\) 8.69882e7i 1.27732i 0.769490 + 0.638659i \(0.220510\pi\)
−0.769490 + 0.638659i \(0.779490\pi\)
\(174\) 3.02629e7 0.435500
\(175\) 0 0
\(176\) 2.07667e7 0.287127
\(177\) 2.52469e7i 0.342217i
\(178\) 9.51268e7i 1.26425i
\(179\) 1.03821e8 1.35300 0.676500 0.736443i \(-0.263496\pi\)
0.676500 + 0.736443i \(0.263496\pi\)
\(180\) 0 0
\(181\) −1.21159e7 −0.151873 −0.0759365 0.997113i \(-0.524195\pi\)
−0.0759365 + 0.997113i \(0.524195\pi\)
\(182\) − 1.35839e8i − 1.67022i
\(183\) 3.66862e6i 0.0442511i
\(184\) 1.61280e6 0.0190861
\(185\) 0 0
\(186\) −3.18736e7 −0.363192
\(187\) 9.75569e7i 1.09097i
\(188\) − 6.23808e6i − 0.0684697i
\(189\) 2.80876e7 0.302621
\(190\) 0 0
\(191\) −8.64043e7 −0.897260 −0.448630 0.893718i \(-0.648088\pi\)
−0.448630 + 0.893718i \(0.648088\pi\)
\(192\) − 7.07789e6i − 0.0721688i
\(193\) 8.89367e7i 0.890493i 0.895408 + 0.445247i \(0.146884\pi\)
−0.895408 + 0.445247i \(0.853116\pi\)
\(194\) −3.04682e7 −0.299600
\(195\) 0 0
\(196\) 7.76183e7 0.736322
\(197\) − 1.32518e8i − 1.23493i −0.786599 0.617465i \(-0.788160\pi\)
0.786599 0.617465i \(-0.211840\pi\)
\(198\) − 2.95682e7i − 0.270706i
\(199\) 3.94534e7 0.354894 0.177447 0.984130i \(-0.443216\pi\)
0.177447 + 0.984130i \(0.443216\pi\)
\(200\) 0 0
\(201\) 3.89727e7 0.338512
\(202\) − 9.64743e7i − 0.823535i
\(203\) − 1.99931e8i − 1.67743i
\(204\) 3.32502e7 0.274213
\(205\) 0 0
\(206\) 2.89561e7 0.230783
\(207\) − 2.29635e6i − 0.0179946i
\(208\) 4.87383e7i 0.375534i
\(209\) 2.21615e8 1.67914
\(210\) 0 0
\(211\) 1.93707e8 1.41957 0.709786 0.704417i \(-0.248792\pi\)
0.709786 + 0.704417i \(0.248792\pi\)
\(212\) 1.36328e8i 0.982677i
\(213\) − 7.25177e7i − 0.514180i
\(214\) 2.05543e7 0.143369
\(215\) 0 0
\(216\) −1.00777e7 −0.0680414
\(217\) 2.10572e8i 1.39892i
\(218\) − 5.37212e7i − 0.351194i
\(219\) 8.85726e7 0.569829
\(220\) 0 0
\(221\) −2.28961e8 −1.42688
\(222\) − 1.21322e8i − 0.744222i
\(223\) − 1.36236e8i − 0.822671i −0.911484 0.411335i \(-0.865062\pi\)
0.911484 0.411335i \(-0.134938\pi\)
\(224\) −4.67599e7 −0.277975
\(225\) 0 0
\(226\) 1.10052e8 0.634187
\(227\) − 2.86433e8i − 1.62530i −0.582755 0.812648i \(-0.698025\pi\)
0.582755 0.812648i \(-0.301975\pi\)
\(228\) − 7.55326e7i − 0.422049i
\(229\) −2.84427e8 −1.56512 −0.782558 0.622578i \(-0.786085\pi\)
−0.782558 + 0.622578i \(0.786085\pi\)
\(230\) 0 0
\(231\) −1.95342e8 −1.04269
\(232\) 7.17343e7i 0.377154i
\(233\) 3.24032e8i 1.67820i 0.543981 + 0.839098i \(0.316917\pi\)
−0.543981 + 0.839098i \(0.683083\pi\)
\(234\) 6.93950e7 0.354056
\(235\) 0 0
\(236\) −5.98445e7 −0.296369
\(237\) − 1.53162e8i − 0.747364i
\(238\) − 2.19667e8i − 1.05620i
\(239\) −2.53375e8 −1.20053 −0.600263 0.799802i \(-0.704938\pi\)
−0.600263 + 0.799802i \(0.704938\pi\)
\(240\) 0 0
\(241\) 1.07795e8 0.496067 0.248034 0.968751i \(-0.420216\pi\)
0.248034 + 0.968751i \(0.420216\pi\)
\(242\) 4.97418e7i 0.225615i
\(243\) 1.43489e7i 0.0641500i
\(244\) −8.69600e6 −0.0383226
\(245\) 0 0
\(246\) 5.83926e7 0.250083
\(247\) 5.20117e8i 2.19615i
\(248\) − 7.55523e7i − 0.314533i
\(249\) 1.14153e8 0.468588
\(250\) 0 0
\(251\) 2.09909e8 0.837863 0.418932 0.908018i \(-0.362405\pi\)
0.418932 + 0.908018i \(0.362405\pi\)
\(252\) 6.65781e7i 0.262077i
\(253\) 1.59705e7i 0.0620007i
\(254\) −3.21415e8 −1.23069
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) − 1.88661e8i − 0.693293i −0.937996 0.346646i \(-0.887320\pi\)
0.937996 0.346646i \(-0.112680\pi\)
\(258\) 3.90275e7i 0.141482i
\(259\) −8.01509e8 −2.86655
\(260\) 0 0
\(261\) 1.02137e8 0.355584
\(262\) 2.75565e8i 0.946605i
\(263\) − 4.38730e8i − 1.48714i −0.668657 0.743571i \(-0.733131\pi\)
0.668657 0.743571i \(-0.266869\pi\)
\(264\) 7.00877e7 0.234438
\(265\) 0 0
\(266\) −4.99005e8 −1.62562
\(267\) 3.21053e8i 1.03226i
\(268\) 9.23797e7i 0.293160i
\(269\) 1.19910e8 0.375598 0.187799 0.982207i \(-0.439865\pi\)
0.187799 + 0.982207i \(0.439865\pi\)
\(270\) 0 0
\(271\) −3.99299e8 −1.21872 −0.609362 0.792892i \(-0.708574\pi\)
−0.609362 + 0.792892i \(0.708574\pi\)
\(272\) 7.88152e7i 0.237476i
\(273\) − 4.58457e8i − 1.36373i
\(274\) −2.22574e8 −0.653653
\(275\) 0 0
\(276\) 5.44320e6 0.0155838
\(277\) − 9.45520e7i − 0.267295i −0.991029 0.133648i \(-0.957331\pi\)
0.991029 0.133648i \(-0.0426691\pi\)
\(278\) 7.00681e7i 0.195598i
\(279\) −1.07573e8 −0.296545
\(280\) 0 0
\(281\) −2.37829e8 −0.639430 −0.319715 0.947514i \(-0.603587\pi\)
−0.319715 + 0.947514i \(0.603587\pi\)
\(282\) − 2.10535e7i − 0.0559053i
\(283\) 5.34471e8i 1.40175i 0.713282 + 0.700877i \(0.247208\pi\)
−0.713282 + 0.700877i \(0.752792\pi\)
\(284\) 1.71894e8 0.445293
\(285\) 0 0
\(286\) −4.82623e8 −1.21991
\(287\) − 3.85769e8i − 0.963255i
\(288\) − 2.38879e7i − 0.0589256i
\(289\) 4.00841e7 0.0976854
\(290\) 0 0
\(291\) −1.02830e8 −0.244622
\(292\) 2.09950e8i 0.493487i
\(293\) − 6.18845e8i − 1.43729i −0.695375 0.718647i \(-0.744762\pi\)
0.695375 0.718647i \(-0.255238\pi\)
\(294\) 2.61962e8 0.601205
\(295\) 0 0
\(296\) 2.87577e8 0.644515
\(297\) − 9.97928e7i − 0.221030i
\(298\) 6.14555e8i 1.34525i
\(299\) −3.74818e7 −0.0810909
\(300\) 0 0
\(301\) 2.57835e8 0.544952
\(302\) − 1.14394e8i − 0.238989i
\(303\) − 3.25601e8i − 0.672413i
\(304\) 1.79040e8 0.365505
\(305\) 0 0
\(306\) 1.12219e8 0.223894
\(307\) − 1.74921e8i − 0.345030i −0.985007 0.172515i \(-0.944811\pi\)
0.985007 0.172515i \(-0.0551893\pi\)
\(308\) − 4.63033e8i − 0.902993i
\(309\) 9.77267e7 0.188434
\(310\) 0 0
\(311\) −4.03443e7 −0.0760537 −0.0380269 0.999277i \(-0.512107\pi\)
−0.0380269 + 0.999277i \(0.512107\pi\)
\(312\) 1.64492e8i 0.306622i
\(313\) − 8.33163e8i − 1.53577i −0.640590 0.767883i \(-0.721310\pi\)
0.640590 0.767883i \(-0.278690\pi\)
\(314\) 5.10870e8 0.931229
\(315\) 0 0
\(316\) 3.63051e8 0.647236
\(317\) 1.06497e9i 1.87771i 0.344307 + 0.938857i \(0.388114\pi\)
−0.344307 + 0.938857i \(0.611886\pi\)
\(318\) 4.60109e8i 0.802353i
\(319\) −7.10337e8 −1.22517
\(320\) 0 0
\(321\) 6.93707e7 0.117060
\(322\) − 3.59604e7i − 0.0600246i
\(323\) 8.41087e8i 1.38878i
\(324\) −3.40122e7 −0.0555556
\(325\) 0 0
\(326\) −7.04812e8 −1.12671
\(327\) − 1.81309e8i − 0.286749i
\(328\) 1.38412e8i 0.216579i
\(329\) −1.39090e8 −0.215332
\(330\) 0 0
\(331\) 1.92701e8 0.292070 0.146035 0.989279i \(-0.453349\pi\)
0.146035 + 0.989279i \(0.453349\pi\)
\(332\) 2.70586e8i 0.405809i
\(333\) − 4.09460e8i − 0.607655i
\(334\) −4.97906e8 −0.731198
\(335\) 0 0
\(336\) −1.57815e8 −0.226966
\(337\) 2.05520e8i 0.292516i 0.989247 + 0.146258i \(0.0467229\pi\)
−0.989247 + 0.146258i \(0.953277\pi\)
\(338\) − 6.30701e8i − 0.888414i
\(339\) 3.71425e8 0.517812
\(340\) 0 0
\(341\) 7.48144e8 1.02175
\(342\) − 2.54923e8i − 0.344601i
\(343\) − 5.55450e8i − 0.743217i
\(344\) −9.25097e7 −0.122527
\(345\) 0 0
\(346\) −6.95905e8 −0.903200
\(347\) − 1.24873e9i − 1.60441i −0.597050 0.802204i \(-0.703660\pi\)
0.597050 0.802204i \(-0.296340\pi\)
\(348\) 2.42103e8i 0.307945i
\(349\) 9.75467e8 1.22835 0.614177 0.789168i \(-0.289488\pi\)
0.614177 + 0.789168i \(0.289488\pi\)
\(350\) 0 0
\(351\) 2.34208e8 0.289086
\(352\) 1.66134e8i 0.203029i
\(353\) 8.12177e8i 0.982742i 0.870950 + 0.491371i \(0.163504\pi\)
−0.870950 + 0.491371i \(0.836496\pi\)
\(354\) −2.01975e8 −0.241984
\(355\) 0 0
\(356\) −7.61014e8 −0.893959
\(357\) − 7.41375e8i − 0.862381i
\(358\) 8.30565e8i 0.956716i
\(359\) 8.19316e8 0.934589 0.467294 0.884102i \(-0.345229\pi\)
0.467294 + 0.884102i \(0.345229\pi\)
\(360\) 0 0
\(361\) 1.01678e9 1.13750
\(362\) − 9.69271e7i − 0.107390i
\(363\) 1.67879e8i 0.184214i
\(364\) 1.08671e9 1.18103
\(365\) 0 0
\(366\) −2.93490e7 −0.0312903
\(367\) − 4.44464e8i − 0.469360i −0.972073 0.234680i \(-0.924596\pi\)
0.972073 0.234680i \(-0.0754042\pi\)
\(368\) 1.29024e7i 0.0134959i
\(369\) 1.97075e8 0.204192
\(370\) 0 0
\(371\) 3.03970e9 3.09045
\(372\) − 2.54989e8i − 0.256815i
\(373\) − 5.23822e8i − 0.522640i −0.965252 0.261320i \(-0.915842\pi\)
0.965252 0.261320i \(-0.0841578\pi\)
\(374\) −7.80456e8 −0.771432
\(375\) 0 0
\(376\) 4.99046e7 0.0484154
\(377\) − 1.66712e9i − 1.60241i
\(378\) 2.24701e8i 0.213985i
\(379\) 6.01805e8 0.567830 0.283915 0.958849i \(-0.408367\pi\)
0.283915 + 0.958849i \(0.408367\pi\)
\(380\) 0 0
\(381\) −1.08478e9 −1.00485
\(382\) − 6.91234e8i − 0.634459i
\(383\) 4.67737e8i 0.425408i 0.977117 + 0.212704i \(0.0682270\pi\)
−0.977117 + 0.212704i \(0.931773\pi\)
\(384\) 5.66231e7 0.0510310
\(385\) 0 0
\(386\) −7.11494e8 −0.629674
\(387\) 1.31718e8i 0.115520i
\(388\) − 2.43746e8i − 0.211849i
\(389\) 1.11784e9 0.962841 0.481421 0.876490i \(-0.340121\pi\)
0.481421 + 0.876490i \(0.340121\pi\)
\(390\) 0 0
\(391\) −6.06123e7 −0.0512793
\(392\) 6.20946e8i 0.520658i
\(393\) 9.30031e8i 0.772900i
\(394\) 1.06014e9 0.873227
\(395\) 0 0
\(396\) 2.36546e8 0.191418
\(397\) − 1.01062e9i − 0.810626i −0.914178 0.405313i \(-0.867162\pi\)
0.914178 0.405313i \(-0.132838\pi\)
\(398\) 3.15627e8i 0.250948i
\(399\) −1.68414e9 −1.32731
\(400\) 0 0
\(401\) −4.30852e8 −0.333675 −0.166837 0.985984i \(-0.553355\pi\)
−0.166837 + 0.985984i \(0.553355\pi\)
\(402\) 3.11782e8i 0.239364i
\(403\) 1.75585e9i 1.33635i
\(404\) 7.71795e8 0.582327
\(405\) 0 0
\(406\) 1.59945e9 1.18612
\(407\) 2.84769e9i 2.09369i
\(408\) 2.66001e8i 0.193898i
\(409\) −7.35181e8 −0.531328 −0.265664 0.964066i \(-0.585591\pi\)
−0.265664 + 0.964066i \(0.585591\pi\)
\(410\) 0 0
\(411\) −7.51187e8 −0.533706
\(412\) 2.31649e8i 0.163188i
\(413\) 1.33434e9i 0.932058i
\(414\) 1.83708e7 0.0127241
\(415\) 0 0
\(416\) −3.89906e8 −0.265542
\(417\) 2.36480e8i 0.159705i
\(418\) 1.77292e9i 1.18733i
\(419\) 7.97408e8 0.529580 0.264790 0.964306i \(-0.414697\pi\)
0.264790 + 0.964306i \(0.414697\pi\)
\(420\) 0 0
\(421\) −2.16840e8 −0.141629 −0.0708144 0.997490i \(-0.522560\pi\)
−0.0708144 + 0.997490i \(0.522560\pi\)
\(422\) 1.54966e9i 1.00379i
\(423\) − 7.10556e7i − 0.0456465i
\(424\) −1.09063e9 −0.694858
\(425\) 0 0
\(426\) 5.80141e8 0.363580
\(427\) 1.93894e8i 0.120522i
\(428\) 1.64434e8i 0.101377i
\(429\) −1.62885e9 −0.996051
\(430\) 0 0
\(431\) 1.05196e9 0.632890 0.316445 0.948611i \(-0.397511\pi\)
0.316445 + 0.948611i \(0.397511\pi\)
\(432\) − 8.06216e7i − 0.0481125i
\(433\) − 8.42421e8i − 0.498680i −0.968416 0.249340i \(-0.919786\pi\)
0.968416 0.249340i \(-0.0802136\pi\)
\(434\) −1.68458e9 −0.989185
\(435\) 0 0
\(436\) 4.29769e8 0.248332
\(437\) 1.37690e8i 0.0789253i
\(438\) 7.08581e8i 0.402930i
\(439\) −8.78820e8 −0.495763 −0.247882 0.968790i \(-0.579734\pi\)
−0.247882 + 0.968790i \(0.579734\pi\)
\(440\) 0 0
\(441\) 8.84121e8 0.490881
\(442\) − 1.83168e9i − 1.00896i
\(443\) 2.09919e9i 1.14720i 0.819136 + 0.573599i \(0.194453\pi\)
−0.819136 + 0.573599i \(0.805547\pi\)
\(444\) 9.70573e8 0.526245
\(445\) 0 0
\(446\) 1.08989e9 0.581716
\(447\) 2.07412e9i 1.09839i
\(448\) − 3.74079e8i − 0.196558i
\(449\) 1.30937e9 0.682656 0.341328 0.939944i \(-0.389123\pi\)
0.341328 + 0.939944i \(0.389123\pi\)
\(450\) 0 0
\(451\) −1.37060e9 −0.703548
\(452\) 8.80414e8i 0.448438i
\(453\) − 3.86079e8i − 0.195134i
\(454\) 2.29146e9 1.14926
\(455\) 0 0
\(456\) 6.04261e8 0.298433
\(457\) − 2.54163e9i − 1.24568i −0.782350 0.622839i \(-0.785979\pi\)
0.782350 0.622839i \(-0.214021\pi\)
\(458\) − 2.27541e9i − 1.10670i
\(459\) 3.78740e8 0.182809
\(460\) 0 0
\(461\) 5.86141e8 0.278644 0.139322 0.990247i \(-0.455508\pi\)
0.139322 + 0.990247i \(0.455508\pi\)
\(462\) − 1.56274e9i − 0.737291i
\(463\) − 1.57279e9i − 0.736439i −0.929739 0.368220i \(-0.879967\pi\)
0.929739 0.368220i \(-0.120033\pi\)
\(464\) −5.73874e8 −0.266688
\(465\) 0 0
\(466\) −2.59226e9 −1.18666
\(467\) 1.58046e9i 0.718083i 0.933322 + 0.359042i \(0.116896\pi\)
−0.933322 + 0.359042i \(0.883104\pi\)
\(468\) 5.55160e8i 0.250356i
\(469\) 2.05978e9 0.921968
\(470\) 0 0
\(471\) 1.72419e9 0.760345
\(472\) − 4.78756e8i − 0.209564i
\(473\) − 9.16063e8i − 0.398026i
\(474\) 1.22530e9 0.528466
\(475\) 0 0
\(476\) 1.75733e9 0.746844
\(477\) 1.55287e9i 0.655118i
\(478\) − 2.02700e9i − 0.848901i
\(479\) −3.70114e9 −1.53873 −0.769364 0.638811i \(-0.779427\pi\)
−0.769364 + 0.638811i \(0.779427\pi\)
\(480\) 0 0
\(481\) −6.68336e9 −2.73834
\(482\) 8.62363e8i 0.350773i
\(483\) − 1.21366e8i − 0.0490098i
\(484\) −3.97935e8 −0.159534
\(485\) 0 0
\(486\) −1.14791e8 −0.0453609
\(487\) − 9.78261e8i − 0.383798i −0.981415 0.191899i \(-0.938535\pi\)
0.981415 0.191899i \(-0.0614647\pi\)
\(488\) − 6.95680e7i − 0.0270982i
\(489\) −2.37874e9 −0.919954
\(490\) 0 0
\(491\) −8.54921e8 −0.325942 −0.162971 0.986631i \(-0.552108\pi\)
−0.162971 + 0.986631i \(0.552108\pi\)
\(492\) 4.67141e8i 0.176836i
\(493\) − 2.69592e9i − 1.01331i
\(494\) −4.16094e9 −1.55291
\(495\) 0 0
\(496\) 6.04418e8 0.222409
\(497\) − 3.83269e9i − 1.40041i
\(498\) 9.13228e8i 0.331342i
\(499\) 2.00214e9 0.721345 0.360672 0.932693i \(-0.382547\pi\)
0.360672 + 0.932693i \(0.382547\pi\)
\(500\) 0 0
\(501\) −1.68043e9 −0.597021
\(502\) 1.67927e9i 0.592459i
\(503\) 3.51483e9i 1.23145i 0.787962 + 0.615724i \(0.211136\pi\)
−0.787962 + 0.615724i \(0.788864\pi\)
\(504\) −5.32625e8 −0.185317
\(505\) 0 0
\(506\) −1.27764e8 −0.0438411
\(507\) − 2.12862e9i − 0.725387i
\(508\) − 2.57132e9i − 0.870229i
\(509\) 3.70703e9 1.24599 0.622995 0.782226i \(-0.285916\pi\)
0.622995 + 0.782226i \(0.285916\pi\)
\(510\) 0 0
\(511\) 4.68122e9 1.55198
\(512\) 1.34218e8i 0.0441942i
\(513\) − 8.60364e8i − 0.281366i
\(514\) 1.50929e9 0.490232
\(515\) 0 0
\(516\) −3.12220e8 −0.100043
\(517\) 4.94173e8i 0.157276i
\(518\) − 6.41207e9i − 2.02696i
\(519\) −2.34868e9 −0.737460
\(520\) 0 0
\(521\) −1.31752e9 −0.408156 −0.204078 0.978955i \(-0.565420\pi\)
−0.204078 + 0.978955i \(0.565420\pi\)
\(522\) 8.17098e8i 0.251436i
\(523\) 4.45839e8i 0.136277i 0.997676 + 0.0681385i \(0.0217060\pi\)
−0.997676 + 0.0681385i \(0.978294\pi\)
\(524\) −2.20452e9 −0.669351
\(525\) 0 0
\(526\) 3.50984e9 1.05157
\(527\) 2.83941e9i 0.845066i
\(528\) 5.60701e8i 0.165773i
\(529\) 3.39490e9 0.997086
\(530\) 0 0
\(531\) −6.81666e8 −0.197579
\(532\) − 3.99204e9i − 1.14949i
\(533\) − 3.21673e9i − 0.920172i
\(534\) −2.56842e9 −0.729915
\(535\) 0 0
\(536\) −7.39038e8 −0.207295
\(537\) 2.80316e9i 0.781155i
\(538\) 9.59282e8i 0.265588i
\(539\) −6.14883e9 −1.69134
\(540\) 0 0
\(541\) −7.31894e9 −1.98727 −0.993637 0.112631i \(-0.964072\pi\)
−0.993637 + 0.112631i \(0.964072\pi\)
\(542\) − 3.19439e9i − 0.861768i
\(543\) − 3.27129e8i − 0.0876839i
\(544\) −6.30522e8 −0.167921
\(545\) 0 0
\(546\) 3.66765e9 0.964304
\(547\) 5.21813e9i 1.36320i 0.731725 + 0.681600i \(0.238715\pi\)
−0.731725 + 0.681600i \(0.761285\pi\)
\(548\) − 1.78059e9i − 0.462203i
\(549\) −9.90529e7 −0.0255484
\(550\) 0 0
\(551\) −6.12417e9 −1.55961
\(552\) 4.35456e7i 0.0110194i
\(553\) − 8.09490e9i − 2.03551i
\(554\) 7.56416e8 0.189006
\(555\) 0 0
\(556\) −5.60545e8 −0.138308
\(557\) 5.22742e7i 0.0128172i 0.999979 + 0.00640862i \(0.00203994\pi\)
−0.999979 + 0.00640862i \(0.997960\pi\)
\(558\) − 8.60587e8i − 0.209689i
\(559\) 2.14995e9 0.520579
\(560\) 0 0
\(561\) −2.63404e9 −0.629871
\(562\) − 1.90263e9i − 0.452145i
\(563\) 7.63499e9i 1.80314i 0.432636 + 0.901569i \(0.357584\pi\)
−0.432636 + 0.901569i \(0.642416\pi\)
\(564\) 1.68428e8 0.0395310
\(565\) 0 0
\(566\) −4.27577e9 −0.991190
\(567\) 7.58366e8i 0.174718i
\(568\) 1.37515e9i 0.314870i
\(569\) 2.52617e9 0.574871 0.287435 0.957800i \(-0.407197\pi\)
0.287435 + 0.957800i \(0.407197\pi\)
\(570\) 0 0
\(571\) −4.75335e9 −1.06850 −0.534248 0.845328i \(-0.679405\pi\)
−0.534248 + 0.845328i \(0.679405\pi\)
\(572\) − 3.86099e9i − 0.862606i
\(573\) − 2.33291e9i − 0.518033i
\(574\) 3.08616e9 0.681124
\(575\) 0 0
\(576\) 1.91103e8 0.0416667
\(577\) 7.07337e9i 1.53289i 0.642309 + 0.766445i \(0.277976\pi\)
−0.642309 + 0.766445i \(0.722024\pi\)
\(578\) 3.20673e8i 0.0690740i
\(579\) −2.40129e9 −0.514127
\(580\) 0 0
\(581\) 6.03322e9 1.27624
\(582\) − 8.22642e8i − 0.172974i
\(583\) − 1.07998e10i − 2.25722i
\(584\) −1.67960e9 −0.348948
\(585\) 0 0
\(586\) 4.95076e9 1.01632
\(587\) − 6.82995e8i − 0.139375i −0.997569 0.0696874i \(-0.977800\pi\)
0.997569 0.0696874i \(-0.0222002\pi\)
\(588\) 2.09569e9i 0.425116i
\(589\) 6.45013e9 1.30066
\(590\) 0 0
\(591\) 3.57798e9 0.712987
\(592\) 2.30062e9i 0.455741i
\(593\) − 4.11466e9i − 0.810294i −0.914251 0.405147i \(-0.867220\pi\)
0.914251 0.405147i \(-0.132780\pi\)
\(594\) 7.98342e8 0.156292
\(595\) 0 0
\(596\) −4.91644e9 −0.951237
\(597\) 1.06524e9i 0.204898i
\(598\) − 2.99855e8i − 0.0573399i
\(599\) 2.71835e8 0.0516787 0.0258394 0.999666i \(-0.491774\pi\)
0.0258394 + 0.999666i \(0.491774\pi\)
\(600\) 0 0
\(601\) −1.63646e9 −0.307500 −0.153750 0.988110i \(-0.549135\pi\)
−0.153750 + 0.988110i \(0.549135\pi\)
\(602\) 2.06268e9i 0.385340i
\(603\) 1.05226e9i 0.195440i
\(604\) 9.15149e8 0.168991
\(605\) 0 0
\(606\) 2.60481e9 0.475468
\(607\) − 7.25840e8i − 0.131729i −0.997829 0.0658644i \(-0.979020\pi\)
0.997829 0.0658644i \(-0.0209805\pi\)
\(608\) 1.43232e9i 0.258451i
\(609\) 5.39814e9 0.968465
\(610\) 0 0
\(611\) −1.15980e9 −0.205701
\(612\) 8.97755e8i 0.158317i
\(613\) 9.79507e9i 1.71750i 0.512397 + 0.858749i \(0.328758\pi\)
−0.512397 + 0.858749i \(0.671242\pi\)
\(614\) 1.39937e9 0.243973
\(615\) 0 0
\(616\) 3.70426e9 0.638512
\(617\) − 7.54736e8i − 0.129359i −0.997906 0.0646796i \(-0.979397\pi\)
0.997906 0.0646796i \(-0.0206025\pi\)
\(618\) 7.81814e8i 0.133243i
\(619\) −9.48066e9 −1.60665 −0.803325 0.595541i \(-0.796938\pi\)
−0.803325 + 0.595541i \(0.796938\pi\)
\(620\) 0 0
\(621\) 6.20014e7 0.0103892
\(622\) − 3.22754e8i − 0.0537781i
\(623\) 1.69682e10i 2.81144i
\(624\) −1.31593e9 −0.216814
\(625\) 0 0
\(626\) 6.66531e9 1.08595
\(627\) 5.98360e9i 0.969451i
\(628\) 4.08696e9i 0.658478i
\(629\) −1.08077e10 −1.73164
\(630\) 0 0
\(631\) 2.11281e8 0.0334779 0.0167389 0.999860i \(-0.494672\pi\)
0.0167389 + 0.999860i \(0.494672\pi\)
\(632\) 2.90441e9i 0.457665i
\(633\) 5.23010e9i 0.819590i
\(634\) −8.51975e9 −1.32774
\(635\) 0 0
\(636\) −3.68087e9 −0.567349
\(637\) − 1.44309e10i − 2.21211i
\(638\) − 5.68270e9i − 0.866328i
\(639\) 1.95798e9 0.296862
\(640\) 0 0
\(641\) 7.52664e9 1.12875 0.564375 0.825518i \(-0.309117\pi\)
0.564375 + 0.825518i \(0.309117\pi\)
\(642\) 5.54965e8i 0.0827739i
\(643\) 3.52375e9i 0.522717i 0.965242 + 0.261358i \(0.0841704\pi\)
−0.965242 + 0.261358i \(0.915830\pi\)
\(644\) 2.87683e8 0.0424438
\(645\) 0 0
\(646\) −6.72870e9 −0.982013
\(647\) 3.90185e9i 0.566377i 0.959064 + 0.283189i \(0.0913922\pi\)
−0.959064 + 0.283189i \(0.908608\pi\)
\(648\) − 2.72098e8i − 0.0392837i
\(649\) 4.74080e9 0.680763
\(650\) 0 0
\(651\) −5.68545e9 −0.807666
\(652\) − 5.63850e9i − 0.796703i
\(653\) 8.20768e9i 1.15352i 0.816915 + 0.576759i \(0.195683\pi\)
−0.816915 + 0.576759i \(0.804317\pi\)
\(654\) 1.45047e9 0.202762
\(655\) 0 0
\(656\) −1.10730e9 −0.153144
\(657\) 2.39146e9i 0.328991i
\(658\) − 1.11272e9i − 0.152263i
\(659\) −4.49137e9 −0.611336 −0.305668 0.952138i \(-0.598880\pi\)
−0.305668 + 0.952138i \(0.598880\pi\)
\(660\) 0 0
\(661\) 9.78484e9 1.31780 0.658898 0.752232i \(-0.271023\pi\)
0.658898 + 0.752232i \(0.271023\pi\)
\(662\) 1.54161e9i 0.206525i
\(663\) − 6.18194e9i − 0.823810i
\(664\) −2.16469e9 −0.286951
\(665\) 0 0
\(666\) 3.27568e9 0.429677
\(667\) − 4.41334e8i − 0.0575873i
\(668\) − 3.98325e9i − 0.517035i
\(669\) 3.67838e9 0.474969
\(670\) 0 0
\(671\) 6.88886e8 0.0880276
\(672\) − 1.26252e9i − 0.160489i
\(673\) 1.99688e9i 0.252522i 0.991997 + 0.126261i \(0.0402978\pi\)
−0.991997 + 0.126261i \(0.959702\pi\)
\(674\) −1.64416e9 −0.206840
\(675\) 0 0
\(676\) 5.04561e9 0.628204
\(677\) − 1.76852e9i − 0.219053i −0.993984 0.109526i \(-0.965067\pi\)
0.993984 0.109526i \(-0.0349334\pi\)
\(678\) 2.97140e9i 0.366148i
\(679\) −5.43477e9 −0.666250
\(680\) 0 0
\(681\) 7.73369e9 0.938365
\(682\) 5.98516e9i 0.722487i
\(683\) − 1.33982e10i − 1.60906i −0.593910 0.804531i \(-0.702417\pi\)
0.593910 0.804531i \(-0.297583\pi\)
\(684\) 2.03938e9 0.243670
\(685\) 0 0
\(686\) 4.44360e9 0.525533
\(687\) − 7.67952e9i − 0.903620i
\(688\) − 7.40078e8i − 0.0866399i
\(689\) 2.53464e10 2.95223
\(690\) 0 0
\(691\) 1.36908e10 1.57854 0.789270 0.614046i \(-0.210459\pi\)
0.789270 + 0.614046i \(0.210459\pi\)
\(692\) − 5.56724e9i − 0.638659i
\(693\) − 5.27423e9i − 0.601995i
\(694\) 9.98983e9 1.13449
\(695\) 0 0
\(696\) −1.93683e9 −0.217750
\(697\) − 5.20181e9i − 0.581888i
\(698\) 7.80374e9i 0.868578i
\(699\) −8.74887e9 −0.968907
\(700\) 0 0
\(701\) −8.98742e9 −0.985422 −0.492711 0.870193i \(-0.663994\pi\)
−0.492711 + 0.870193i \(0.663994\pi\)
\(702\) 1.87366e9i 0.204415i
\(703\) 2.45513e10i 2.66521i
\(704\) −1.32907e9 −0.143563
\(705\) 0 0
\(706\) −6.49742e9 −0.694903
\(707\) − 1.72086e10i − 1.83138i
\(708\) − 1.61580e9i − 0.171108i
\(709\) 4.36499e9 0.459962 0.229981 0.973195i \(-0.426134\pi\)
0.229981 + 0.973195i \(0.426134\pi\)
\(710\) 0 0
\(711\) 4.13538e9 0.431491
\(712\) − 6.08811e9i − 0.632125i
\(713\) 4.64823e8i 0.0480258i
\(714\) 5.93100e9 0.609795
\(715\) 0 0
\(716\) −6.64452e9 −0.676500
\(717\) − 6.84114e9i − 0.693125i
\(718\) 6.55452e9i 0.660854i
\(719\) 1.46045e10 1.46534 0.732668 0.680587i \(-0.238275\pi\)
0.732668 + 0.680587i \(0.238275\pi\)
\(720\) 0 0
\(721\) 5.16504e9 0.513216
\(722\) 8.13424e9i 0.804335i
\(723\) 2.91048e9i 0.286405i
\(724\) 7.75417e8 0.0759365
\(725\) 0 0
\(726\) −1.34303e9 −0.130259
\(727\) 1.42461e10i 1.37507i 0.726150 + 0.687536i \(0.241308\pi\)
−0.726150 + 0.687536i \(0.758692\pi\)
\(728\) 8.69369e9i 0.835112i
\(729\) −3.87420e8 −0.0370370
\(730\) 0 0
\(731\) 3.47670e9 0.329198
\(732\) − 2.34792e8i − 0.0221256i
\(733\) − 8.78749e9i − 0.824140i −0.911152 0.412070i \(-0.864806\pi\)
0.911152 0.412070i \(-0.135194\pi\)
\(734\) 3.55571e9 0.331887
\(735\) 0 0
\(736\) −1.03219e8 −0.00954307
\(737\) − 7.31821e9i − 0.673393i
\(738\) 1.57660e9i 0.144386i
\(739\) −1.59660e10 −1.45526 −0.727632 0.685968i \(-0.759379\pi\)
−0.727632 + 0.685968i \(0.759379\pi\)
\(740\) 0 0
\(741\) −1.40432e10 −1.26795
\(742\) 2.43176e10i 2.18528i
\(743\) − 4.01209e9i − 0.358847i −0.983772 0.179424i \(-0.942577\pi\)
0.983772 0.179424i \(-0.0574232\pi\)
\(744\) 2.03991e9 0.181596
\(745\) 0 0
\(746\) 4.19057e9 0.369562
\(747\) 3.08214e9i 0.270540i
\(748\) − 6.24364e9i − 0.545485i
\(749\) 3.66637e9 0.318823
\(750\) 0 0
\(751\) 7.41663e9 0.638950 0.319475 0.947595i \(-0.396493\pi\)
0.319475 + 0.947595i \(0.396493\pi\)
\(752\) 3.99237e8i 0.0342349i
\(753\) 5.66755e9i 0.483741i
\(754\) 1.33370e10 1.13307
\(755\) 0 0
\(756\) −1.79761e9 −0.151310
\(757\) 1.51143e8i 0.0126634i 0.999980 + 0.00633171i \(0.00201546\pi\)
−0.999980 + 0.00633171i \(0.997985\pi\)
\(758\) 4.81444e9i 0.401516i
\(759\) −4.31204e8 −0.0357961
\(760\) 0 0
\(761\) 3.85268e9 0.316896 0.158448 0.987367i \(-0.449351\pi\)
0.158448 + 0.987367i \(0.449351\pi\)
\(762\) − 8.67821e9i − 0.710539i
\(763\) − 9.58251e9i − 0.780986i
\(764\) 5.52987e9 0.448630
\(765\) 0 0
\(766\) −3.74189e9 −0.300809
\(767\) 1.11264e10i 0.890371i
\(768\) 4.52985e8i 0.0360844i
\(769\) −1.56192e10 −1.23856 −0.619280 0.785170i \(-0.712576\pi\)
−0.619280 + 0.785170i \(0.712576\pi\)
\(770\) 0 0
\(771\) 5.09385e9 0.400273
\(772\) − 5.69195e9i − 0.445247i
\(773\) − 1.44828e10i − 1.12778i −0.825850 0.563889i \(-0.809304\pi\)
0.825850 0.563889i \(-0.190696\pi\)
\(774\) −1.05374e9 −0.0816848
\(775\) 0 0
\(776\) 1.94997e9 0.149800
\(777\) − 2.16407e10i − 1.65500i
\(778\) 8.94269e9i 0.680831i
\(779\) −1.18167e10 −0.895599
\(780\) 0 0
\(781\) −1.36172e10 −1.02284
\(782\) − 4.84898e8i − 0.0362599i
\(783\) 2.75771e9i 0.205297i
\(784\) −4.96757e9 −0.368161
\(785\) 0 0
\(786\) −7.44025e9 −0.546523
\(787\) 1.37729e10i 1.00720i 0.863938 + 0.503599i \(0.167991\pi\)
−0.863938 + 0.503599i \(0.832009\pi\)
\(788\) 8.48113e9i 0.617465i
\(789\) 1.18457e10 0.858601
\(790\) 0 0
\(791\) 1.96305e10 1.41031
\(792\) 1.89237e9i 0.135353i
\(793\) 1.61678e9i 0.115131i
\(794\) 8.08495e9 0.573199
\(795\) 0 0
\(796\) −2.52502e9 −0.177447
\(797\) − 6.88529e9i − 0.481746i −0.970557 0.240873i \(-0.922566\pi\)
0.970557 0.240873i \(-0.0774338\pi\)
\(798\) − 1.34731e10i − 0.938552i
\(799\) −1.87552e9 −0.130079
\(800\) 0 0
\(801\) −8.66843e9 −0.595973
\(802\) − 3.44682e9i − 0.235944i
\(803\) − 1.66320e10i − 1.13355i
\(804\) −2.49425e9 −0.169256
\(805\) 0 0
\(806\) −1.40468e10 −0.944942
\(807\) 3.23758e9i 0.216852i
\(808\) 6.17436e9i 0.411767i
\(809\) 1.28256e10 0.851644 0.425822 0.904807i \(-0.359985\pi\)
0.425822 + 0.904807i \(0.359985\pi\)
\(810\) 0 0
\(811\) −7.36094e9 −0.484574 −0.242287 0.970205i \(-0.577898\pi\)
−0.242287 + 0.970205i \(0.577898\pi\)
\(812\) 1.27956e10i 0.838715i
\(813\) − 1.07811e10i − 0.703631i
\(814\) −2.27815e10 −1.48046
\(815\) 0 0
\(816\) −2.12801e9 −0.137107
\(817\) − 7.89783e9i − 0.506677i
\(818\) − 5.88144e9i − 0.375705i
\(819\) 1.23783e10 0.787351
\(820\) 0 0
\(821\) −1.09919e10 −0.693219 −0.346610 0.938009i \(-0.612667\pi\)
−0.346610 + 0.938009i \(0.612667\pi\)
\(822\) − 6.00950e9i − 0.377387i
\(823\) 1.15788e10i 0.724041i 0.932170 + 0.362020i \(0.117913\pi\)
−0.932170 + 0.362020i \(0.882087\pi\)
\(824\) −1.85319e9 −0.115392
\(825\) 0 0
\(826\) −1.06748e10 −0.659064
\(827\) 4.97823e9i 0.306059i 0.988222 + 0.153030i \(0.0489030\pi\)
−0.988222 + 0.153030i \(0.951097\pi\)
\(828\) 1.46966e8i 0.00899729i
\(829\) 1.15589e10 0.704655 0.352328 0.935877i \(-0.385390\pi\)
0.352328 + 0.935877i \(0.385390\pi\)
\(830\) 0 0
\(831\) 2.55290e9 0.154323
\(832\) − 3.11925e9i − 0.187767i
\(833\) − 2.33364e10i − 1.39887i
\(834\) −1.89184e9 −0.112928
\(835\) 0 0
\(836\) −1.41833e10 −0.839570
\(837\) − 2.90448e9i − 0.171210i
\(838\) 6.37926e9i 0.374469i
\(839\) −4.50868e9 −0.263562 −0.131781 0.991279i \(-0.542070\pi\)
−0.131781 + 0.991279i \(0.542070\pi\)
\(840\) 0 0
\(841\) 2.37981e9 0.137961
\(842\) − 1.73472e9i − 0.100147i
\(843\) − 6.42139e9i − 0.369175i
\(844\) −1.23973e10 −0.709786
\(845\) 0 0
\(846\) 5.68445e8 0.0322769
\(847\) 8.87270e9i 0.501723i
\(848\) − 8.72502e9i − 0.491339i
\(849\) −1.44307e10 −0.809303
\(850\) 0 0
\(851\) −1.76927e9 −0.0984105
\(852\) 4.64113e9i 0.257090i
\(853\) 9.35143e9i 0.515889i 0.966160 + 0.257945i \(0.0830452\pi\)
−0.966160 + 0.257945i \(0.916955\pi\)
\(854\) −1.55115e9 −0.0852219
\(855\) 0 0
\(856\) −1.31547e9 −0.0716843
\(857\) 1.85745e9i 0.100806i 0.998729 + 0.0504029i \(0.0160505\pi\)
−0.998729 + 0.0504029i \(0.983949\pi\)
\(858\) − 1.30308e10i − 0.704315i
\(859\) −3.34304e10 −1.79956 −0.899779 0.436346i \(-0.856272\pi\)
−0.899779 + 0.436346i \(0.856272\pi\)
\(860\) 0 0
\(861\) 1.04158e10 0.556135
\(862\) 8.41567e9i 0.447521i
\(863\) − 1.34259e10i − 0.711061i −0.934665 0.355531i \(-0.884300\pi\)
0.934665 0.355531i \(-0.115700\pi\)
\(864\) 6.44973e8 0.0340207
\(865\) 0 0
\(866\) 6.73937e9 0.352620
\(867\) 1.08227e9i 0.0563987i
\(868\) − 1.34766e10i − 0.699459i
\(869\) −2.87604e10 −1.48671
\(870\) 0 0
\(871\) 1.71754e10 0.880732
\(872\) 3.43815e9i 0.175597i
\(873\) − 2.77642e9i − 0.141233i
\(874\) −1.10152e9 −0.0558086
\(875\) 0 0
\(876\) −5.66865e9 −0.284915
\(877\) 3.08992e9i 0.154685i 0.997005 + 0.0773426i \(0.0246435\pi\)
−0.997005 + 0.0773426i \(0.975356\pi\)
\(878\) − 7.03056e9i − 0.350558i
\(879\) 1.67088e10 0.829822
\(880\) 0 0
\(881\) 8.72396e9 0.429831 0.214916 0.976633i \(-0.431052\pi\)
0.214916 + 0.976633i \(0.431052\pi\)
\(882\) 7.07297e9i 0.347106i
\(883\) 3.90723e9i 0.190988i 0.995430 + 0.0954942i \(0.0304431\pi\)
−0.995430 + 0.0954942i \(0.969557\pi\)
\(884\) 1.46535e10 0.713440
\(885\) 0 0
\(886\) −1.67935e10 −0.811192
\(887\) 1.53854e10i 0.740246i 0.928983 + 0.370123i \(0.120684\pi\)
−0.928983 + 0.370123i \(0.879316\pi\)
\(888\) 7.76458e9i 0.372111i
\(889\) −5.73325e10 −2.73681
\(890\) 0 0
\(891\) 2.69441e9 0.127612
\(892\) 8.71913e9i 0.411335i
\(893\) 4.26051e9i 0.200208i
\(894\) −1.65930e10 −0.776682
\(895\) 0 0
\(896\) 2.99264e9 0.138988
\(897\) − 1.01201e9i − 0.0468178i
\(898\) 1.04750e10i 0.482711i
\(899\) −2.06745e10 −0.949020
\(900\) 0 0
\(901\) 4.09880e10 1.86690
\(902\) − 1.09648e10i − 0.497484i
\(903\) 6.96154e9i 0.314628i
\(904\) −7.04332e9 −0.317094
\(905\) 0 0
\(906\) 3.08863e9 0.137980
\(907\) − 2.63986e10i − 1.17478i −0.809305 0.587388i \(-0.800156\pi\)
0.809305 0.587388i \(-0.199844\pi\)
\(908\) 1.83317e10i 0.812648i
\(909\) 8.79122e9 0.388218
\(910\) 0 0
\(911\) −2.12340e10 −0.930503 −0.465251 0.885179i \(-0.654036\pi\)
−0.465251 + 0.885179i \(0.654036\pi\)
\(912\) 4.83409e9i 0.211024i
\(913\) − 2.14355e10i − 0.932149i
\(914\) 2.03331e10 0.880828
\(915\) 0 0
\(916\) 1.82033e10 0.782558
\(917\) 4.91538e10i 2.10506i
\(918\) 3.02992e9i 0.129265i
\(919\) −9.50036e9 −0.403771 −0.201886 0.979409i \(-0.564707\pi\)
−0.201886 + 0.979409i \(0.564707\pi\)
\(920\) 0 0
\(921\) 4.72286e9 0.199203
\(922\) 4.68913e9i 0.197031i
\(923\) − 3.19588e10i − 1.33778i
\(924\) 1.25019e10 0.521343
\(925\) 0 0
\(926\) 1.25823e10 0.520741
\(927\) 2.63862e9i 0.108792i
\(928\) − 4.59099e9i − 0.188577i
\(929\) 4.29492e10 1.75752 0.878760 0.477264i \(-0.158371\pi\)
0.878760 + 0.477264i \(0.158371\pi\)
\(930\) 0 0
\(931\) −5.30121e10 −2.15303
\(932\) − 2.07381e10i − 0.839098i
\(933\) − 1.08930e9i − 0.0439096i
\(934\) −1.26437e10 −0.507761
\(935\) 0 0
\(936\) −4.44128e9 −0.177028
\(937\) 1.52405e10i 0.605216i 0.953115 + 0.302608i \(0.0978573\pi\)
−0.953115 + 0.302608i \(0.902143\pi\)
\(938\) 1.64782e10i 0.651930i
\(939\) 2.24954e10 0.886675
\(940\) 0 0
\(941\) −2.27448e10 −0.889853 −0.444926 0.895567i \(-0.646770\pi\)
−0.444926 + 0.895567i \(0.646770\pi\)
\(942\) 1.37935e10i 0.537645i
\(943\) − 8.51558e8i − 0.0330692i
\(944\) 3.83005e9 0.148184
\(945\) 0 0
\(946\) 7.32850e9 0.281447
\(947\) − 8.80667e9i − 0.336967i −0.985705 0.168483i \(-0.946113\pi\)
0.985705 0.168483i \(-0.0538869\pi\)
\(948\) 9.80238e9i 0.373682i
\(949\) 3.90343e10 1.48257
\(950\) 0 0
\(951\) −2.87542e10 −1.08410
\(952\) 1.40587e10i 0.528098i
\(953\) 1.37186e9i 0.0513434i 0.999670 + 0.0256717i \(0.00817246\pi\)
−0.999670 + 0.0256717i \(0.991828\pi\)
\(954\) −1.24229e10 −0.463239
\(955\) 0 0
\(956\) 1.62160e10 0.600263
\(957\) − 1.91791e10i − 0.707354i
\(958\) − 2.96092e10i − 1.08804i
\(959\) −3.97016e10 −1.45359
\(960\) 0 0
\(961\) −5.73778e9 −0.208551
\(962\) − 5.34669e10i − 1.93630i
\(963\) 1.87301e9i 0.0675846i
\(964\) −6.89891e9 −0.248034
\(965\) 0 0
\(966\) 9.70931e8 0.0346552
\(967\) 2.51907e10i 0.895874i 0.894065 + 0.447937i \(0.147841\pi\)
−0.894065 + 0.447937i \(0.852159\pi\)
\(968\) − 3.18348e9i − 0.112808i
\(969\) −2.27094e10 −0.801810
\(970\) 0 0
\(971\) −5.11915e9 −0.179445 −0.0897223 0.995967i \(-0.528598\pi\)
−0.0897223 + 0.995967i \(0.528598\pi\)
\(972\) − 9.18330e8i − 0.0320750i
\(973\) 1.24984e10i 0.434970i
\(974\) 7.82608e9 0.271386
\(975\) 0 0
\(976\) 5.56544e8 0.0191613
\(977\) 5.06512e8i 0.0173764i 0.999962 + 0.00868818i \(0.00276557\pi\)
−0.999962 + 0.00868818i \(0.997234\pi\)
\(978\) − 1.90299e10i − 0.650506i
\(979\) 6.02866e10 2.05344
\(980\) 0 0
\(981\) 4.89534e9 0.165555
\(982\) − 6.83937e9i − 0.230476i
\(983\) 1.00756e10i 0.338323i 0.985588 + 0.169162i \(0.0541060\pi\)
−0.985588 + 0.169162i \(0.945894\pi\)
\(984\) −3.73712e9 −0.125042
\(985\) 0 0
\(986\) 2.15674e10 0.716519
\(987\) − 3.75542e9i − 0.124322i
\(988\) − 3.32875e10i − 1.09807i
\(989\) 5.69151e8 0.0187086
\(990\) 0 0
\(991\) 4.56127e10 1.48877 0.744386 0.667749i \(-0.232742\pi\)
0.744386 + 0.667749i \(0.232742\pi\)
\(992\) 4.83534e9i 0.157267i
\(993\) 5.20294e9i 0.168627i
\(994\) 3.06615e10 0.990243
\(995\) 0 0
\(996\) −7.30582e9 −0.234294
\(997\) 3.05555e10i 0.976463i 0.872714 + 0.488232i \(0.162358\pi\)
−0.872714 + 0.488232i \(0.837642\pi\)
\(998\) 1.60171e10i 0.510068i
\(999\) 1.10554e10 0.350830
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.c.d.49.2 2
3.2 odd 2 450.8.c.d.199.1 2
5.2 odd 4 150.8.a.f.1.1 1
5.3 odd 4 150.8.a.l.1.1 yes 1
5.4 even 2 inner 150.8.c.d.49.1 2
15.2 even 4 450.8.a.o.1.1 1
15.8 even 4 450.8.a.m.1.1 1
15.14 odd 2 450.8.c.d.199.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.8.a.f.1.1 1 5.2 odd 4
150.8.a.l.1.1 yes 1 5.3 odd 4
150.8.c.d.49.1 2 5.4 even 2 inner
150.8.c.d.49.2 2 1.1 even 1 trivial
450.8.a.m.1.1 1 15.8 even 4
450.8.a.o.1.1 1 15.2 even 4
450.8.c.d.199.1 2 3.2 odd 2
450.8.c.d.199.2 2 15.14 odd 2