Properties

Label 150.8.c.e.49.1
Level $150$
Weight $8$
Character 150.49
Analytic conductor $46.858$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,8,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.8.c.e.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -27.0000i q^{3} -64.0000 q^{4} -216.000 q^{6} -512.000i q^{7} +512.000i q^{8} -729.000 q^{9} +5460.00 q^{11} +1728.00i q^{12} +10166.0i q^{13} -4096.00 q^{14} +4096.00 q^{16} +9918.00i q^{17} +5832.00i q^{18} +12436.0 q^{19} -13824.0 q^{21} -43680.0i q^{22} +33600.0i q^{23} +13824.0 q^{24} +81328.0 q^{26} +19683.0i q^{27} +32768.0i q^{28} +187914. q^{29} -42592.0 q^{31} -32768.0i q^{32} -147420. i q^{33} +79344.0 q^{34} +46656.0 q^{36} +544066. i q^{37} -99488.0i q^{38} +274482. q^{39} +374394. q^{41} +110592. i q^{42} -540532. i q^{43} -349440. q^{44} +268800. q^{46} -1.33836e6i q^{47} -110592. i q^{48} +561399. q^{49} +267786. q^{51} -650624. i q^{52} +1.30822e6i q^{53} +157464. q^{54} +262144. q^{56} -335772. i q^{57} -1.50331e6i q^{58} -262740. q^{59} -976330. q^{61} +340736. i q^{62} +373248. i q^{63} -262144. q^{64} -1.17936e6 q^{66} -3.55917e6i q^{67} -634752. i q^{68} +907200. q^{69} -2.67372e6 q^{71} -373248. i q^{72} -3.03213e6i q^{73} +4.35253e6 q^{74} -795904. q^{76} -2.79552e6i q^{77} -2.19586e6i q^{78} +5.47581e6 q^{79} +531441. q^{81} -2.99515e6i q^{82} +2.23156e6i q^{83} +884736. q^{84} -4.32426e6 q^{86} -5.07368e6i q^{87} +2.79552e6i q^{88} +1.00507e7 q^{89} +5.20499e6 q^{91} -2.15040e6i q^{92} +1.14998e6i q^{93} -1.07069e7 q^{94} -884736. q^{96} -5.72755e6i q^{97} -4.49119e6i q^{98} -3.98034e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} - 432 q^{6} - 1458 q^{9} + 10920 q^{11} - 8192 q^{14} + 8192 q^{16} + 24872 q^{19} - 27648 q^{21} + 27648 q^{24} + 162656 q^{26} + 375828 q^{29} - 85184 q^{31} + 158688 q^{34} + 93312 q^{36}+ \cdots - 7960680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.00000i − 0.707107i
\(3\) − 27.0000i − 0.577350i
\(4\) −64.0000 −0.500000
\(5\) 0 0
\(6\) −216.000 −0.408248
\(7\) − 512.000i − 0.564192i −0.959386 0.282096i \(-0.908970\pi\)
0.959386 0.282096i \(-0.0910296\pi\)
\(8\) 512.000i 0.353553i
\(9\) −729.000 −0.333333
\(10\) 0 0
\(11\) 5460.00 1.23685 0.618427 0.785842i \(-0.287770\pi\)
0.618427 + 0.785842i \(0.287770\pi\)
\(12\) 1728.00i 0.288675i
\(13\) 10166.0i 1.28336i 0.766973 + 0.641680i \(0.221762\pi\)
−0.766973 + 0.641680i \(0.778238\pi\)
\(14\) −4096.00 −0.398944
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 9918.00i 0.489613i 0.969572 + 0.244806i \(0.0787244\pi\)
−0.969572 + 0.244806i \(0.921276\pi\)
\(18\) 5832.00i 0.235702i
\(19\) 12436.0 0.415952 0.207976 0.978134i \(-0.433312\pi\)
0.207976 + 0.978134i \(0.433312\pi\)
\(20\) 0 0
\(21\) −13824.0 −0.325736
\(22\) − 43680.0i − 0.874587i
\(23\) 33600.0i 0.575827i 0.957656 + 0.287913i \(0.0929615\pi\)
−0.957656 + 0.287913i \(0.907038\pi\)
\(24\) 13824.0 0.204124
\(25\) 0 0
\(26\) 81328.0 0.907472
\(27\) 19683.0i 0.192450i
\(28\) 32768.0i 0.282096i
\(29\) 187914. 1.43076 0.715379 0.698737i \(-0.246254\pi\)
0.715379 + 0.698737i \(0.246254\pi\)
\(30\) 0 0
\(31\) −42592.0 −0.256781 −0.128390 0.991724i \(-0.540981\pi\)
−0.128390 + 0.991724i \(0.540981\pi\)
\(32\) − 32768.0i − 0.176777i
\(33\) − 147420.i − 0.714098i
\(34\) 79344.0 0.346209
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) 544066.i 1.76582i 0.469546 + 0.882908i \(0.344418\pi\)
−0.469546 + 0.882908i \(0.655582\pi\)
\(38\) − 99488.0i − 0.294122i
\(39\) 274482. 0.740948
\(40\) 0 0
\(41\) 374394. 0.848370 0.424185 0.905576i \(-0.360561\pi\)
0.424185 + 0.905576i \(0.360561\pi\)
\(42\) 110592.i 0.230330i
\(43\) − 540532.i − 1.03677i −0.855148 0.518384i \(-0.826534\pi\)
0.855148 0.518384i \(-0.173466\pi\)
\(44\) −349440. −0.618427
\(45\) 0 0
\(46\) 268800. 0.407171
\(47\) − 1.33836e6i − 1.88031i −0.340741 0.940157i \(-0.610678\pi\)
0.340741 0.940157i \(-0.389322\pi\)
\(48\) − 110592.i − 0.144338i
\(49\) 561399. 0.681688
\(50\) 0 0
\(51\) 267786. 0.282678
\(52\) − 650624.i − 0.641680i
\(53\) 1.30822e6i 1.20702i 0.797354 + 0.603512i \(0.206232\pi\)
−0.797354 + 0.603512i \(0.793768\pi\)
\(54\) 157464. 0.136083
\(55\) 0 0
\(56\) 262144. 0.199472
\(57\) − 335772.i − 0.240150i
\(58\) − 1.50331e6i − 1.01170i
\(59\) −262740. −0.166550 −0.0832749 0.996527i \(-0.526538\pi\)
−0.0832749 + 0.996527i \(0.526538\pi\)
\(60\) 0 0
\(61\) −976330. −0.550734 −0.275367 0.961339i \(-0.588799\pi\)
−0.275367 + 0.961339i \(0.588799\pi\)
\(62\) 340736.i 0.181571i
\(63\) 373248.i 0.188064i
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) −1.17936e6 −0.504943
\(67\) − 3.55917e6i − 1.44573i −0.690989 0.722865i \(-0.742825\pi\)
0.690989 0.722865i \(-0.257175\pi\)
\(68\) − 634752.i − 0.244806i
\(69\) 907200. 0.332454
\(70\) 0 0
\(71\) −2.67372e6 −0.886567 −0.443284 0.896381i \(-0.646187\pi\)
−0.443284 + 0.896381i \(0.646187\pi\)
\(72\) − 373248.i − 0.117851i
\(73\) − 3.03213e6i − 0.912259i −0.889913 0.456130i \(-0.849235\pi\)
0.889913 0.456130i \(-0.150765\pi\)
\(74\) 4.35253e6 1.24862
\(75\) 0 0
\(76\) −795904. −0.207976
\(77\) − 2.79552e6i − 0.697823i
\(78\) − 2.19586e6i − 0.523929i
\(79\) 5.47581e6 1.24955 0.624775 0.780805i \(-0.285191\pi\)
0.624775 + 0.780805i \(0.285191\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) − 2.99515e6i − 0.599888i
\(83\) 2.23156e6i 0.428385i 0.976791 + 0.214193i \(0.0687120\pi\)
−0.976791 + 0.214193i \(0.931288\pi\)
\(84\) 884736. 0.162868
\(85\) 0 0
\(86\) −4.32426e6 −0.733106
\(87\) − 5.07368e6i − 0.826048i
\(88\) 2.79552e6i 0.437294i
\(89\) 1.00507e7 1.51123 0.755615 0.655016i \(-0.227338\pi\)
0.755615 + 0.655016i \(0.227338\pi\)
\(90\) 0 0
\(91\) 5.20499e6 0.724061
\(92\) − 2.15040e6i − 0.287913i
\(93\) 1.14998e6i 0.148252i
\(94\) −1.07069e7 −1.32958
\(95\) 0 0
\(96\) −884736. −0.102062
\(97\) − 5.72755e6i − 0.637189i −0.947891 0.318594i \(-0.896789\pi\)
0.947891 0.318594i \(-0.103211\pi\)
\(98\) − 4.49119e6i − 0.482026i
\(99\) −3.98034e6 −0.412284
\(100\) 0 0
\(101\) −1.33358e7 −1.28793 −0.643966 0.765054i \(-0.722712\pi\)
−0.643966 + 0.765054i \(0.722712\pi\)
\(102\) − 2.14229e6i − 0.199884i
\(103\) − 2.71019e6i − 0.244382i −0.992507 0.122191i \(-0.961008\pi\)
0.992507 0.122191i \(-0.0389921\pi\)
\(104\) −5.20499e6 −0.453736
\(105\) 0 0
\(106\) 1.04658e7 0.853495
\(107\) − 1.13195e7i − 0.893274i −0.894715 0.446637i \(-0.852622\pi\)
0.894715 0.446637i \(-0.147378\pi\)
\(108\) − 1.25971e6i − 0.0962250i
\(109\) 2.19732e7 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(110\) 0 0
\(111\) 1.46898e7 1.01949
\(112\) − 2.09715e6i − 0.141048i
\(113\) 3.68359e6i 0.240158i 0.992764 + 0.120079i \(0.0383147\pi\)
−0.992764 + 0.120079i \(0.961685\pi\)
\(114\) −2.68618e6 −0.169812
\(115\) 0 0
\(116\) −1.20265e7 −0.715379
\(117\) − 7.41101e6i − 0.427787i
\(118\) 2.10192e6i 0.117769i
\(119\) 5.07802e6 0.276236
\(120\) 0 0
\(121\) 1.03244e7 0.529806
\(122\) 7.81064e6i 0.389428i
\(123\) − 1.01086e7i − 0.489807i
\(124\) 2.72589e6 0.128390
\(125\) 0 0
\(126\) 2.98598e6 0.132981
\(127\) 2.67953e7i 1.16077i 0.814342 + 0.580385i \(0.197098\pi\)
−0.814342 + 0.580385i \(0.802902\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) −1.45944e7 −0.598579
\(130\) 0 0
\(131\) 1.48085e7 0.575523 0.287762 0.957702i \(-0.407089\pi\)
0.287762 + 0.957702i \(0.407089\pi\)
\(132\) 9.43488e6i 0.357049i
\(133\) − 6.36723e6i − 0.234677i
\(134\) −2.84734e7 −1.02229
\(135\) 0 0
\(136\) −5.07802e6 −0.173104
\(137\) 5.76532e7i 1.91559i 0.287458 + 0.957793i \(0.407190\pi\)
−0.287458 + 0.957793i \(0.592810\pi\)
\(138\) − 7.25760e6i − 0.235080i
\(139\) 8.37800e6 0.264599 0.132300 0.991210i \(-0.457764\pi\)
0.132300 + 0.991210i \(0.457764\pi\)
\(140\) 0 0
\(141\) −3.61357e7 −1.08560
\(142\) 2.13898e7i 0.626898i
\(143\) 5.55064e7i 1.58733i
\(144\) −2.98598e6 −0.0833333
\(145\) 0 0
\(146\) −2.42571e7 −0.645065
\(147\) − 1.51578e7i − 0.393572i
\(148\) − 3.48202e7i − 0.882908i
\(149\) −5.56477e6 −0.137815 −0.0689073 0.997623i \(-0.521951\pi\)
−0.0689073 + 0.997623i \(0.521951\pi\)
\(150\) 0 0
\(151\) 6.62933e7 1.56693 0.783466 0.621434i \(-0.213450\pi\)
0.783466 + 0.621434i \(0.213450\pi\)
\(152\) 6.36723e6i 0.147061i
\(153\) − 7.23022e6i − 0.163204i
\(154\) −2.23642e7 −0.493435
\(155\) 0 0
\(156\) −1.75668e7 −0.370474
\(157\) 6.42791e7i 1.32563i 0.748785 + 0.662813i \(0.230637\pi\)
−0.748785 + 0.662813i \(0.769363\pi\)
\(158\) − 4.38065e7i − 0.883565i
\(159\) 3.53220e7 0.696876
\(160\) 0 0
\(161\) 1.72032e7 0.324877
\(162\) − 4.25153e6i − 0.0785674i
\(163\) 8.48552e7i 1.53469i 0.641232 + 0.767347i \(0.278424\pi\)
−0.641232 + 0.767347i \(0.721576\pi\)
\(164\) −2.39612e7 −0.424185
\(165\) 0 0
\(166\) 1.78524e7 0.302914
\(167\) − 6.42144e7i − 1.06690i −0.845831 0.533451i \(-0.820895\pi\)
0.845831 0.533451i \(-0.179105\pi\)
\(168\) − 7.07789e6i − 0.115165i
\(169\) −4.05990e7 −0.647012
\(170\) 0 0
\(171\) −9.06584e6 −0.138651
\(172\) 3.45940e7i 0.518384i
\(173\) 1.10058e8i 1.61607i 0.589134 + 0.808036i \(0.299469\pi\)
−0.589134 + 0.808036i \(0.700531\pi\)
\(174\) −4.05894e7 −0.584104
\(175\) 0 0
\(176\) 2.23642e7 0.309213
\(177\) 7.09398e6i 0.0961576i
\(178\) − 8.04054e7i − 1.06860i
\(179\) −8.68778e7 −1.13220 −0.566100 0.824337i \(-0.691548\pi\)
−0.566100 + 0.824337i \(0.691548\pi\)
\(180\) 0 0
\(181\) 1.29730e8 1.62617 0.813083 0.582148i \(-0.197787\pi\)
0.813083 + 0.582148i \(0.197787\pi\)
\(182\) − 4.16399e7i − 0.511988i
\(183\) 2.63609e7i 0.317967i
\(184\) −1.72032e7 −0.203586
\(185\) 0 0
\(186\) 9.19987e6 0.104830
\(187\) 5.41523e7i 0.605579i
\(188\) 8.56550e7i 0.940157i
\(189\) 1.00777e7 0.108579
\(190\) 0 0
\(191\) −1.42024e8 −1.47484 −0.737418 0.675437i \(-0.763955\pi\)
−0.737418 + 0.675437i \(0.763955\pi\)
\(192\) 7.07789e6i 0.0721688i
\(193\) − 2.58910e7i − 0.259238i −0.991564 0.129619i \(-0.958625\pi\)
0.991564 0.129619i \(-0.0413754\pi\)
\(194\) −4.58204e7 −0.450561
\(195\) 0 0
\(196\) −3.59295e7 −0.340844
\(197\) 3.59130e7i 0.334673i 0.985900 + 0.167336i \(0.0535166\pi\)
−0.985900 + 0.167336i \(0.946483\pi\)
\(198\) 3.18427e7i 0.291529i
\(199\) 1.75453e8 1.57824 0.789122 0.614237i \(-0.210536\pi\)
0.789122 + 0.614237i \(0.210536\pi\)
\(200\) 0 0
\(201\) −9.60976e7 −0.834693
\(202\) 1.06686e8i 0.910706i
\(203\) − 9.62120e7i − 0.807222i
\(204\) −1.71383e7 −0.141339
\(205\) 0 0
\(206\) −2.16815e7 −0.172804
\(207\) − 2.44944e7i − 0.191942i
\(208\) 4.16399e7i 0.320840i
\(209\) 6.79006e7 0.514472
\(210\) 0 0
\(211\) −9.18337e7 −0.672998 −0.336499 0.941684i \(-0.609243\pi\)
−0.336499 + 0.941684i \(0.609243\pi\)
\(212\) − 8.37262e7i − 0.603512i
\(213\) 7.21904e7i 0.511860i
\(214\) −9.05561e7 −0.631640
\(215\) 0 0
\(216\) −1.00777e7 −0.0680414
\(217\) 2.18071e7i 0.144873i
\(218\) − 1.75786e8i − 1.14917i
\(219\) −8.18676e7 −0.526693
\(220\) 0 0
\(221\) −1.00826e8 −0.628349
\(222\) − 1.17518e8i − 0.720892i
\(223\) 1.15780e7i 0.0699146i 0.999389 + 0.0349573i \(0.0111295\pi\)
−0.999389 + 0.0349573i \(0.988870\pi\)
\(224\) −1.67772e7 −0.0997360
\(225\) 0 0
\(226\) 2.94687e7 0.169817
\(227\) 2.99769e7i 0.170097i 0.996377 + 0.0850485i \(0.0271045\pi\)
−0.996377 + 0.0850485i \(0.972895\pi\)
\(228\) 2.14894e7i 0.120075i
\(229\) −1.19721e8 −0.658787 −0.329394 0.944193i \(-0.606844\pi\)
−0.329394 + 0.944193i \(0.606844\pi\)
\(230\) 0 0
\(231\) −7.54790e7 −0.402888
\(232\) 9.62120e7i 0.505849i
\(233\) − 1.27607e8i − 0.660890i −0.943825 0.330445i \(-0.892801\pi\)
0.943825 0.330445i \(-0.107199\pi\)
\(234\) −5.92881e7 −0.302491
\(235\) 0 0
\(236\) 1.68154e7 0.0832749
\(237\) − 1.47847e8i − 0.721428i
\(238\) − 4.06241e7i − 0.195328i
\(239\) 1.64949e8 0.781549 0.390775 0.920486i \(-0.372207\pi\)
0.390775 + 0.920486i \(0.372207\pi\)
\(240\) 0 0
\(241\) 3.98628e8 1.83446 0.917230 0.398357i \(-0.130420\pi\)
0.917230 + 0.398357i \(0.130420\pi\)
\(242\) − 8.25954e7i − 0.374630i
\(243\) − 1.43489e7i − 0.0641500i
\(244\) 6.24851e7 0.275367
\(245\) 0 0
\(246\) −8.08691e7 −0.346346
\(247\) 1.26424e8i 0.533816i
\(248\) − 2.18071e7i − 0.0907856i
\(249\) 6.02520e7 0.247328
\(250\) 0 0
\(251\) 2.42512e8 0.967999 0.484000 0.875068i \(-0.339184\pi\)
0.484000 + 0.875068i \(0.339184\pi\)
\(252\) − 2.38879e7i − 0.0940320i
\(253\) 1.83456e8i 0.712213i
\(254\) 2.14363e8 0.820788
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) − 3.22956e8i − 1.18680i −0.804908 0.593399i \(-0.797786\pi\)
0.804908 0.593399i \(-0.202214\pi\)
\(258\) 1.16755e8i 0.423259i
\(259\) 2.78562e8 0.996259
\(260\) 0 0
\(261\) −1.36989e8 −0.476919
\(262\) − 1.18468e8i − 0.406956i
\(263\) − 3.37426e8i − 1.14376i −0.820338 0.571879i \(-0.806215\pi\)
0.820338 0.571879i \(-0.193785\pi\)
\(264\) 7.54790e7 0.252472
\(265\) 0 0
\(266\) −5.09379e7 −0.165941
\(267\) − 2.71368e8i − 0.872509i
\(268\) 2.27787e8i 0.722865i
\(269\) −2.55886e8 −0.801517 −0.400759 0.916184i \(-0.631253\pi\)
−0.400759 + 0.916184i \(0.631253\pi\)
\(270\) 0 0
\(271\) 4.85679e8 1.48237 0.741185 0.671301i \(-0.234264\pi\)
0.741185 + 0.671301i \(0.234264\pi\)
\(272\) 4.06241e7i 0.122403i
\(273\) − 1.40535e8i − 0.418037i
\(274\) 4.61226e8 1.35452
\(275\) 0 0
\(276\) −5.80608e7 −0.166227
\(277\) − 2.92732e8i − 0.827545i −0.910380 0.413772i \(-0.864211\pi\)
0.910380 0.413772i \(-0.135789\pi\)
\(278\) − 6.70240e7i − 0.187100i
\(279\) 3.10496e7 0.0855935
\(280\) 0 0
\(281\) −1.86225e8 −0.500685 −0.250343 0.968157i \(-0.580543\pi\)
−0.250343 + 0.968157i \(0.580543\pi\)
\(282\) 2.89086e8i 0.767635i
\(283\) − 6.58251e8i − 1.72639i −0.504870 0.863196i \(-0.668459\pi\)
0.504870 0.863196i \(-0.331541\pi\)
\(284\) 1.71118e8 0.443284
\(285\) 0 0
\(286\) 4.44051e8 1.12241
\(287\) − 1.91690e8i − 0.478644i
\(288\) 2.38879e7i 0.0589256i
\(289\) 3.11972e8 0.760279
\(290\) 0 0
\(291\) −1.54644e8 −0.367881
\(292\) 1.94057e8i 0.456130i
\(293\) 1.61426e8i 0.374918i 0.982272 + 0.187459i \(0.0600252\pi\)
−0.982272 + 0.187459i \(0.939975\pi\)
\(294\) −1.21262e8 −0.278298
\(295\) 0 0
\(296\) −2.78562e8 −0.624310
\(297\) 1.07469e8i 0.238033i
\(298\) 4.45181e7i 0.0974496i
\(299\) −3.41578e8 −0.738993
\(300\) 0 0
\(301\) −2.76752e8 −0.584936
\(302\) − 5.30346e8i − 1.10799i
\(303\) 3.60066e8i 0.743588i
\(304\) 5.09379e7 0.103988
\(305\) 0 0
\(306\) −5.78418e7 −0.115403
\(307\) 7.15488e8i 1.41130i 0.708562 + 0.705648i \(0.249344\pi\)
−0.708562 + 0.705648i \(0.750656\pi\)
\(308\) 1.78913e8i 0.348911i
\(309\) −7.31752e7 −0.141094
\(310\) 0 0
\(311\) −6.86692e7 −0.129449 −0.0647247 0.997903i \(-0.520617\pi\)
−0.0647247 + 0.997903i \(0.520617\pi\)
\(312\) 1.40535e8i 0.261965i
\(313\) 9.27771e7i 0.171015i 0.996338 + 0.0855077i \(0.0272512\pi\)
−0.996338 + 0.0855077i \(0.972749\pi\)
\(314\) 5.14233e8 0.937359
\(315\) 0 0
\(316\) −3.50452e8 −0.624775
\(317\) − 3.90749e8i − 0.688954i −0.938795 0.344477i \(-0.888056\pi\)
0.938795 0.344477i \(-0.111944\pi\)
\(318\) − 2.82576e8i − 0.492765i
\(319\) 1.02601e9 1.76964
\(320\) 0 0
\(321\) −3.05627e8 −0.515732
\(322\) − 1.37626e8i − 0.229723i
\(323\) 1.23340e8i 0.203655i
\(324\) −3.40122e7 −0.0555556
\(325\) 0 0
\(326\) 6.78842e8 1.08519
\(327\) − 5.93277e8i − 0.938297i
\(328\) 1.91690e8i 0.299944i
\(329\) −6.85240e8 −1.06086
\(330\) 0 0
\(331\) −4.80269e8 −0.727925 −0.363962 0.931414i \(-0.618576\pi\)
−0.363962 + 0.931414i \(0.618576\pi\)
\(332\) − 1.42820e8i − 0.214193i
\(333\) − 3.96624e8i − 0.588605i
\(334\) −5.13715e8 −0.754414
\(335\) 0 0
\(336\) −5.66231e7 −0.0814341
\(337\) 2.30504e8i 0.328075i 0.986454 + 0.164038i \(0.0524519\pi\)
−0.986454 + 0.164038i \(0.947548\pi\)
\(338\) 3.24792e8i 0.457507i
\(339\) 9.94568e7 0.138655
\(340\) 0 0
\(341\) −2.32552e8 −0.317600
\(342\) 7.25268e7i 0.0980408i
\(343\) − 7.09090e8i − 0.948794i
\(344\) 2.76752e8 0.366553
\(345\) 0 0
\(346\) 8.80464e8 1.14273
\(347\) 8.36727e8i 1.07505i 0.843246 + 0.537527i \(0.180641\pi\)
−0.843246 + 0.537527i \(0.819359\pi\)
\(348\) 3.24715e8i 0.413024i
\(349\) −1.51659e9 −1.90976 −0.954881 0.296988i \(-0.904018\pi\)
−0.954881 + 0.296988i \(0.904018\pi\)
\(350\) 0 0
\(351\) −2.00097e8 −0.246983
\(352\) − 1.78913e8i − 0.218647i
\(353\) 2.33016e7i 0.0281952i 0.999901 + 0.0140976i \(0.00448755\pi\)
−0.999901 + 0.0140976i \(0.995512\pi\)
\(354\) 5.67518e7 0.0679937
\(355\) 0 0
\(356\) −6.43243e8 −0.755615
\(357\) − 1.37106e8i − 0.159485i
\(358\) 6.95022e8i 0.800586i
\(359\) −1.63162e9 −1.86118 −0.930590 0.366063i \(-0.880705\pi\)
−0.930590 + 0.366063i \(0.880705\pi\)
\(360\) 0 0
\(361\) −7.39218e8 −0.826984
\(362\) − 1.03784e9i − 1.14987i
\(363\) − 2.78760e8i − 0.305884i
\(364\) −3.33119e8 −0.362031
\(365\) 0 0
\(366\) 2.10887e8 0.224836
\(367\) − 3.47807e8i − 0.367289i −0.982993 0.183644i \(-0.941211\pi\)
0.982993 0.183644i \(-0.0587895\pi\)
\(368\) 1.37626e8i 0.143957i
\(369\) −2.72933e8 −0.282790
\(370\) 0 0
\(371\) 6.69810e8 0.680993
\(372\) − 7.35990e7i − 0.0741262i
\(373\) 5.00769e7i 0.0499639i 0.999688 + 0.0249820i \(0.00795283\pi\)
−0.999688 + 0.0249820i \(0.992047\pi\)
\(374\) 4.33218e8 0.428209
\(375\) 0 0
\(376\) 6.85240e8 0.664791
\(377\) 1.91033e9i 1.83618i
\(378\) − 8.06216e7i − 0.0767768i
\(379\) −1.40154e9 −1.32241 −0.661207 0.750204i \(-0.729955\pi\)
−0.661207 + 0.750204i \(0.729955\pi\)
\(380\) 0 0
\(381\) 7.23474e8 0.670170
\(382\) 1.13619e9i 1.04287i
\(383\) 1.06830e9i 0.971623i 0.874064 + 0.485811i \(0.161476\pi\)
−0.874064 + 0.485811i \(0.838524\pi\)
\(384\) 5.66231e7 0.0510310
\(385\) 0 0
\(386\) −2.07128e8 −0.183309
\(387\) 3.94048e8i 0.345590i
\(388\) 3.66563e8i 0.318594i
\(389\) 2.13713e8 0.184080 0.0920401 0.995755i \(-0.470661\pi\)
0.0920401 + 0.995755i \(0.470661\pi\)
\(390\) 0 0
\(391\) −3.33245e8 −0.281932
\(392\) 2.87436e8i 0.241013i
\(393\) − 3.99831e8i − 0.332278i
\(394\) 2.87304e8 0.236649
\(395\) 0 0
\(396\) 2.54742e8 0.206142
\(397\) − 9.69088e8i − 0.777314i −0.921383 0.388657i \(-0.872939\pi\)
0.921383 0.388657i \(-0.127061\pi\)
\(398\) − 1.40362e9i − 1.11599i
\(399\) −1.71915e8 −0.135491
\(400\) 0 0
\(401\) −2.21767e9 −1.71748 −0.858738 0.512415i \(-0.828751\pi\)
−0.858738 + 0.512415i \(0.828751\pi\)
\(402\) 7.68781e8i 0.590217i
\(403\) − 4.32990e8i − 0.329542i
\(404\) 8.53489e8 0.643966
\(405\) 0 0
\(406\) −7.69696e8 −0.570792
\(407\) 2.97060e9i 2.18406i
\(408\) 1.37106e8i 0.0999418i
\(409\) 1.04837e9 0.757674 0.378837 0.925463i \(-0.376324\pi\)
0.378837 + 0.925463i \(0.376324\pi\)
\(410\) 0 0
\(411\) 1.55664e9 1.10596
\(412\) 1.73452e8i 0.122191i
\(413\) 1.34523e8i 0.0939661i
\(414\) −1.95955e8 −0.135724
\(415\) 0 0
\(416\) 3.33119e8 0.226868
\(417\) − 2.26206e8i − 0.152766i
\(418\) − 5.43204e8i − 0.363786i
\(419\) 2.21021e8 0.146786 0.0733930 0.997303i \(-0.476617\pi\)
0.0733930 + 0.997303i \(0.476617\pi\)
\(420\) 0 0
\(421\) 1.51339e9 0.988472 0.494236 0.869328i \(-0.335448\pi\)
0.494236 + 0.869328i \(0.335448\pi\)
\(422\) 7.34670e8i 0.475881i
\(423\) 9.75664e8i 0.626771i
\(424\) −6.69810e8 −0.426747
\(425\) 0 0
\(426\) 5.77524e8 0.361940
\(427\) 4.99881e8i 0.310720i
\(428\) 7.24449e8i 0.446637i
\(429\) 1.49867e9 0.916444
\(430\) 0 0
\(431\) 1.46801e9 0.883201 0.441601 0.897212i \(-0.354411\pi\)
0.441601 + 0.897212i \(0.354411\pi\)
\(432\) 8.06216e7i 0.0481125i
\(433\) 3.97508e8i 0.235309i 0.993055 + 0.117654i \(0.0375375\pi\)
−0.993055 + 0.117654i \(0.962463\pi\)
\(434\) 1.74457e8 0.102441
\(435\) 0 0
\(436\) −1.40629e9 −0.812589
\(437\) 4.17850e8i 0.239516i
\(438\) 6.54941e8i 0.372428i
\(439\) −1.22071e9 −0.688629 −0.344315 0.938854i \(-0.611889\pi\)
−0.344315 + 0.938854i \(0.611889\pi\)
\(440\) 0 0
\(441\) −4.09260e8 −0.227229
\(442\) 8.06611e8i 0.444310i
\(443\) 3.24551e9i 1.77366i 0.462095 + 0.886830i \(0.347098\pi\)
−0.462095 + 0.886830i \(0.652902\pi\)
\(444\) −9.40146e8 −0.509747
\(445\) 0 0
\(446\) 9.26243e7 0.0494371
\(447\) 1.50249e8i 0.0795672i
\(448\) 1.34218e8i 0.0705240i
\(449\) 7.04211e8 0.367147 0.183574 0.983006i \(-0.441233\pi\)
0.183574 + 0.983006i \(0.441233\pi\)
\(450\) 0 0
\(451\) 2.04419e9 1.04931
\(452\) − 2.35750e8i − 0.120079i
\(453\) − 1.78992e9i − 0.904669i
\(454\) 2.39815e8 0.120277
\(455\) 0 0
\(456\) 1.71915e8 0.0849058
\(457\) − 3.70970e9i − 1.81816i −0.416621 0.909080i \(-0.636786\pi\)
0.416621 0.909080i \(-0.363214\pi\)
\(458\) 9.57766e8i 0.465833i
\(459\) −1.95216e8 −0.0942261
\(460\) 0 0
\(461\) 1.12514e9 0.534878 0.267439 0.963575i \(-0.413823\pi\)
0.267439 + 0.963575i \(0.413823\pi\)
\(462\) 6.03832e8i 0.284885i
\(463\) − 7.64328e7i − 0.0357887i −0.999840 0.0178944i \(-0.994304\pi\)
0.999840 0.0178944i \(-0.00569626\pi\)
\(464\) 7.69696e8 0.357689
\(465\) 0 0
\(466\) −1.02086e9 −0.467320
\(467\) 6.41328e7i 0.0291388i 0.999894 + 0.0145694i \(0.00463774\pi\)
−0.999894 + 0.0145694i \(0.995362\pi\)
\(468\) 4.74305e8i 0.213893i
\(469\) −1.82230e9 −0.815669
\(470\) 0 0
\(471\) 1.73553e9 0.765350
\(472\) − 1.34523e8i − 0.0588843i
\(473\) − 2.95130e9i − 1.28233i
\(474\) −1.18277e9 −0.510126
\(475\) 0 0
\(476\) −3.24993e8 −0.138118
\(477\) − 9.53694e8i − 0.402341i
\(478\) − 1.31959e9i − 0.552639i
\(479\) −1.01386e9 −0.421505 −0.210753 0.977539i \(-0.567591\pi\)
−0.210753 + 0.977539i \(0.567591\pi\)
\(480\) 0 0
\(481\) −5.53097e9 −2.26618
\(482\) − 3.18903e9i − 1.29716i
\(483\) − 4.64486e8i − 0.187568i
\(484\) −6.60763e8 −0.264903
\(485\) 0 0
\(486\) −1.14791e8 −0.0453609
\(487\) 2.79009e8i 0.109463i 0.998501 + 0.0547315i \(0.0174303\pi\)
−0.998501 + 0.0547315i \(0.982570\pi\)
\(488\) − 4.99881e8i − 0.194714i
\(489\) 2.29109e9 0.886056
\(490\) 0 0
\(491\) 1.77339e9 0.676112 0.338056 0.941126i \(-0.390231\pi\)
0.338056 + 0.941126i \(0.390231\pi\)
\(492\) 6.46953e8i 0.244903i
\(493\) 1.86373e9i 0.700518i
\(494\) 1.01140e9 0.377465
\(495\) 0 0
\(496\) −1.74457e8 −0.0641951
\(497\) 1.36894e9i 0.500194i
\(498\) − 4.82016e8i − 0.174888i
\(499\) 4.66125e9 1.67939 0.839693 0.543061i \(-0.182735\pi\)
0.839693 + 0.543061i \(0.182735\pi\)
\(500\) 0 0
\(501\) −1.73379e9 −0.615977
\(502\) − 1.94010e9i − 0.684479i
\(503\) − 2.59549e9i − 0.909352i −0.890657 0.454676i \(-0.849755\pi\)
0.890657 0.454676i \(-0.150245\pi\)
\(504\) −1.91103e8 −0.0664906
\(505\) 0 0
\(506\) 1.46765e9 0.503611
\(507\) 1.09617e9i 0.373553i
\(508\) − 1.71490e9i − 0.580385i
\(509\) −9.18100e8 −0.308587 −0.154293 0.988025i \(-0.549310\pi\)
−0.154293 + 0.988025i \(0.549310\pi\)
\(510\) 0 0
\(511\) −1.55245e9 −0.514689
\(512\) − 1.34218e8i − 0.0441942i
\(513\) 2.44778e8i 0.0800500i
\(514\) −2.58365e9 −0.839193
\(515\) 0 0
\(516\) 9.34039e8 0.299289
\(517\) − 7.30745e9i − 2.32567i
\(518\) − 2.22849e9i − 0.704462i
\(519\) 2.97157e9 0.933039
\(520\) 0 0
\(521\) −5.35323e8 −0.165838 −0.0829189 0.996556i \(-0.526424\pi\)
−0.0829189 + 0.996556i \(0.526424\pi\)
\(522\) 1.09591e9i 0.337233i
\(523\) 5.20020e8i 0.158951i 0.996837 + 0.0794756i \(0.0253246\pi\)
−0.996837 + 0.0794756i \(0.974675\pi\)
\(524\) −9.47747e8 −0.287762
\(525\) 0 0
\(526\) −2.69941e9 −0.808758
\(527\) − 4.22427e8i − 0.125723i
\(528\) − 6.03832e8i − 0.178524i
\(529\) 2.27587e9 0.668424
\(530\) 0 0
\(531\) 1.91537e8 0.0555166
\(532\) 4.07503e8i 0.117338i
\(533\) 3.80609e9i 1.08876i
\(534\) −2.17095e9 −0.616957
\(535\) 0 0
\(536\) 1.82230e9 0.511143
\(537\) 2.34570e9i 0.653676i
\(538\) 2.04708e9i 0.566758i
\(539\) 3.06524e9 0.843148
\(540\) 0 0
\(541\) −3.93186e9 −1.06760 −0.533798 0.845612i \(-0.679236\pi\)
−0.533798 + 0.845612i \(0.679236\pi\)
\(542\) − 3.88543e9i − 1.04819i
\(543\) − 3.50271e9i − 0.938867i
\(544\) 3.24993e8 0.0865522
\(545\) 0 0
\(546\) −1.12428e9 −0.295597
\(547\) − 3.11516e9i − 0.813814i −0.913470 0.406907i \(-0.866607\pi\)
0.913470 0.406907i \(-0.133393\pi\)
\(548\) − 3.68981e9i − 0.957793i
\(549\) 7.11745e8 0.183578
\(550\) 0 0
\(551\) 2.33690e9 0.595126
\(552\) 4.64486e8i 0.117540i
\(553\) − 2.80361e9i − 0.704986i
\(554\) −2.34186e9 −0.585163
\(555\) 0 0
\(556\) −5.36192e8 −0.132300
\(557\) − 4.14733e9i − 1.01689i −0.861093 0.508447i \(-0.830220\pi\)
0.861093 0.508447i \(-0.169780\pi\)
\(558\) − 2.48397e8i − 0.0605238i
\(559\) 5.49505e9 1.33055
\(560\) 0 0
\(561\) 1.46211e9 0.349631
\(562\) 1.48980e9i 0.354038i
\(563\) − 5.15380e8i − 0.121716i −0.998146 0.0608580i \(-0.980616\pi\)
0.998146 0.0608580i \(-0.0193837\pi\)
\(564\) 2.31269e9 0.542800
\(565\) 0 0
\(566\) −5.26601e9 −1.22074
\(567\) − 2.72098e8i − 0.0626880i
\(568\) − 1.36894e9i − 0.313449i
\(569\) 4.82868e8 0.109884 0.0549421 0.998490i \(-0.482503\pi\)
0.0549421 + 0.998490i \(0.482503\pi\)
\(570\) 0 0
\(571\) −2.23974e9 −0.503466 −0.251733 0.967797i \(-0.581001\pi\)
−0.251733 + 0.967797i \(0.581001\pi\)
\(572\) − 3.55241e9i − 0.793664i
\(573\) 3.83463e9i 0.851496i
\(574\) −1.53352e9 −0.338452
\(575\) 0 0
\(576\) 1.91103e8 0.0416667
\(577\) − 6.93164e9i − 1.50218i −0.660202 0.751088i \(-0.729529\pi\)
0.660202 0.751088i \(-0.270471\pi\)
\(578\) − 2.49578e9i − 0.537599i
\(579\) −6.99057e8 −0.149671
\(580\) 0 0
\(581\) 1.14256e9 0.241691
\(582\) 1.23715e9i 0.260131i
\(583\) 7.14289e9i 1.49291i
\(584\) 1.55245e9 0.322532
\(585\) 0 0
\(586\) 1.29141e9 0.265107
\(587\) 4.17248e9i 0.851454i 0.904852 + 0.425727i \(0.139982\pi\)
−0.904852 + 0.425727i \(0.860018\pi\)
\(588\) 9.70097e8i 0.196786i
\(589\) −5.29674e8 −0.106808
\(590\) 0 0
\(591\) 9.69652e8 0.193223
\(592\) 2.22849e9i 0.441454i
\(593\) 6.27101e9i 1.23494i 0.786594 + 0.617470i \(0.211842\pi\)
−0.786594 + 0.617470i \(0.788158\pi\)
\(594\) 8.59753e8 0.168314
\(595\) 0 0
\(596\) 3.56145e8 0.0689073
\(597\) − 4.73722e9i − 0.911199i
\(598\) 2.73262e9i 0.522547i
\(599\) 2.10159e9 0.399535 0.199767 0.979843i \(-0.435981\pi\)
0.199767 + 0.979843i \(0.435981\pi\)
\(600\) 0 0
\(601\) −2.41110e9 −0.453059 −0.226529 0.974004i \(-0.572738\pi\)
−0.226529 + 0.974004i \(0.572738\pi\)
\(602\) 2.21402e9i 0.413612i
\(603\) 2.59464e9i 0.481910i
\(604\) −4.24277e9 −0.783466
\(605\) 0 0
\(606\) 2.88052e9 0.525796
\(607\) 5.94932e9i 1.07971i 0.841758 + 0.539855i \(0.181521\pi\)
−0.841758 + 0.539855i \(0.818479\pi\)
\(608\) − 4.07503e8i − 0.0735306i
\(609\) −2.59772e9 −0.466050
\(610\) 0 0
\(611\) 1.36058e10 2.41312
\(612\) 4.62734e8i 0.0816022i
\(613\) 5.45618e9i 0.956702i 0.878169 + 0.478351i \(0.158765\pi\)
−0.878169 + 0.478351i \(0.841235\pi\)
\(614\) 5.72391e9 0.997937
\(615\) 0 0
\(616\) 1.43131e9 0.246718
\(617\) 4.11503e9i 0.705301i 0.935755 + 0.352651i \(0.114720\pi\)
−0.935755 + 0.352651i \(0.885280\pi\)
\(618\) 5.85401e8i 0.0997687i
\(619\) −2.78751e9 −0.472388 −0.236194 0.971706i \(-0.575900\pi\)
−0.236194 + 0.971706i \(0.575900\pi\)
\(620\) 0 0
\(621\) −6.61349e8 −0.110818
\(622\) 5.49353e8i 0.0915346i
\(623\) − 5.14595e9i − 0.852623i
\(624\) 1.12428e9 0.185237
\(625\) 0 0
\(626\) 7.42217e8 0.120926
\(627\) − 1.83332e9i − 0.297030i
\(628\) − 4.11386e9i − 0.662813i
\(629\) −5.39605e9 −0.864567
\(630\) 0 0
\(631\) 4.87155e8 0.0771906 0.0385953 0.999255i \(-0.487712\pi\)
0.0385953 + 0.999255i \(0.487712\pi\)
\(632\) 2.80361e9i 0.441782i
\(633\) 2.47951e9i 0.388555i
\(634\) −3.12599e9 −0.487164
\(635\) 0 0
\(636\) −2.26061e9 −0.348438
\(637\) 5.70718e9i 0.874850i
\(638\) − 8.20808e9i − 1.25132i
\(639\) 1.94914e9 0.295522
\(640\) 0 0
\(641\) −2.39918e9 −0.359798 −0.179899 0.983685i \(-0.557577\pi\)
−0.179899 + 0.983685i \(0.557577\pi\)
\(642\) 2.44502e9i 0.364678i
\(643\) − 1.02984e10i − 1.52767i −0.645410 0.763836i \(-0.723313\pi\)
0.645410 0.763836i \(-0.276687\pi\)
\(644\) −1.10100e9 −0.162438
\(645\) 0 0
\(646\) 9.86722e8 0.144006
\(647\) 8.49896e9i 1.23367i 0.787091 + 0.616837i \(0.211586\pi\)
−0.787091 + 0.616837i \(0.788414\pi\)
\(648\) 2.72098e8i 0.0392837i
\(649\) −1.43456e9 −0.205998
\(650\) 0 0
\(651\) 5.88792e8 0.0836427
\(652\) − 5.43073e9i − 0.767347i
\(653\) − 3.78543e9i − 0.532009i −0.963972 0.266004i \(-0.914296\pi\)
0.963972 0.266004i \(-0.0857035\pi\)
\(654\) −4.74621e9 −0.663476
\(655\) 0 0
\(656\) 1.53352e9 0.212093
\(657\) 2.21043e9i 0.304086i
\(658\) 5.48192e9i 0.750140i
\(659\) 7.69061e9 1.04680 0.523398 0.852089i \(-0.324664\pi\)
0.523398 + 0.852089i \(0.324664\pi\)
\(660\) 0 0
\(661\) 5.78185e9 0.778685 0.389343 0.921093i \(-0.372702\pi\)
0.389343 + 0.921093i \(0.372702\pi\)
\(662\) 3.84215e9i 0.514720i
\(663\) 2.72231e9i 0.362778i
\(664\) −1.14256e9 −0.151457
\(665\) 0 0
\(666\) −3.17299e9 −0.416207
\(667\) 6.31391e9i 0.823869i
\(668\) 4.10972e9i 0.533451i
\(669\) 3.12607e8 0.0403652
\(670\) 0 0
\(671\) −5.33076e9 −0.681178
\(672\) 4.52985e8i 0.0575826i
\(673\) − 1.07125e10i − 1.35468i −0.735670 0.677340i \(-0.763133\pi\)
0.735670 0.677340i \(-0.236867\pi\)
\(674\) 1.84403e9 0.231984
\(675\) 0 0
\(676\) 2.59834e9 0.323506
\(677\) − 1.24253e8i − 0.0153903i −0.999970 0.00769516i \(-0.997551\pi\)
0.999970 0.00769516i \(-0.00244947\pi\)
\(678\) − 7.95655e8i − 0.0980439i
\(679\) −2.93251e9 −0.359497
\(680\) 0 0
\(681\) 8.09377e8 0.0982055
\(682\) 1.86042e9i 0.224577i
\(683\) − 5.48973e8i − 0.0659294i −0.999457 0.0329647i \(-0.989505\pi\)
0.999457 0.0329647i \(-0.0104949\pi\)
\(684\) 5.80214e8 0.0693253
\(685\) 0 0
\(686\) −5.67272e9 −0.670899
\(687\) 3.23246e9i 0.380351i
\(688\) − 2.21402e9i − 0.259192i
\(689\) −1.32994e10 −1.54905
\(690\) 0 0
\(691\) 3.86163e9 0.445243 0.222622 0.974905i \(-0.428539\pi\)
0.222622 + 0.974905i \(0.428539\pi\)
\(692\) − 7.04372e9i − 0.808036i
\(693\) 2.03793e9i 0.232608i
\(694\) 6.69381e9 0.760178
\(695\) 0 0
\(696\) 2.59772e9 0.292052
\(697\) 3.71324e9i 0.415373i
\(698\) 1.21327e10i 1.35041i
\(699\) −3.44539e9 −0.381565
\(700\) 0 0
\(701\) −1.24129e10 −1.36100 −0.680501 0.732748i \(-0.738238\pi\)
−0.680501 + 0.732748i \(0.738238\pi\)
\(702\) 1.60078e9i 0.174643i
\(703\) 6.76600e9i 0.734495i
\(704\) −1.43131e9 −0.154607
\(705\) 0 0
\(706\) 1.86413e8 0.0199370
\(707\) 6.82791e9i 0.726641i
\(708\) − 4.54015e8i − 0.0480788i
\(709\) −8.68970e9 −0.915678 −0.457839 0.889035i \(-0.651376\pi\)
−0.457839 + 0.889035i \(0.651376\pi\)
\(710\) 0 0
\(711\) −3.99186e9 −0.416516
\(712\) 5.14595e9i 0.534300i
\(713\) − 1.43109e9i − 0.147861i
\(714\) −1.09685e9 −0.112773
\(715\) 0 0
\(716\) 5.56018e9 0.566100
\(717\) − 4.45362e9i − 0.451228i
\(718\) 1.30530e10i 1.31605i
\(719\) −1.34874e10 −1.35325 −0.676625 0.736328i \(-0.736558\pi\)
−0.676625 + 0.736328i \(0.736558\pi\)
\(720\) 0 0
\(721\) −1.38762e9 −0.137879
\(722\) 5.91374e9i 0.584766i
\(723\) − 1.07630e10i − 1.05913i
\(724\) −8.30271e9 −0.813083
\(725\) 0 0
\(726\) −2.23008e9 −0.216293
\(727\) 4.09956e9i 0.395700i 0.980232 + 0.197850i \(0.0633960\pi\)
−0.980232 + 0.197850i \(0.936604\pi\)
\(728\) 2.66496e9i 0.255994i
\(729\) −3.87420e8 −0.0370370
\(730\) 0 0
\(731\) 5.36100e9 0.507615
\(732\) − 1.68710e9i − 0.158983i
\(733\) 9.50716e9i 0.891635i 0.895124 + 0.445818i \(0.147087\pi\)
−0.895124 + 0.445818i \(0.852913\pi\)
\(734\) −2.78246e9 −0.259712
\(735\) 0 0
\(736\) 1.10100e9 0.101793
\(737\) − 1.94331e10i − 1.78816i
\(738\) 2.18347e9i 0.199963i
\(739\) −2.75490e9 −0.251102 −0.125551 0.992087i \(-0.540070\pi\)
−0.125551 + 0.992087i \(0.540070\pi\)
\(740\) 0 0
\(741\) 3.41346e9 0.308199
\(742\) − 5.35848e9i − 0.481535i
\(743\) 7.88700e9i 0.705425i 0.935732 + 0.352712i \(0.114741\pi\)
−0.935732 + 0.352712i \(0.885259\pi\)
\(744\) −5.88792e8 −0.0524151
\(745\) 0 0
\(746\) 4.00615e8 0.0353298
\(747\) − 1.62680e9i − 0.142795i
\(748\) − 3.46575e9i − 0.302790i
\(749\) −5.79559e9 −0.503978
\(750\) 0 0
\(751\) 1.54231e10 1.32871 0.664356 0.747416i \(-0.268706\pi\)
0.664356 + 0.747416i \(0.268706\pi\)
\(752\) − 5.48192e9i − 0.470079i
\(753\) − 6.54782e9i − 0.558875i
\(754\) 1.52827e10 1.29837
\(755\) 0 0
\(756\) −6.44973e8 −0.0542894
\(757\) 2.28786e10i 1.91687i 0.285307 + 0.958436i \(0.407904\pi\)
−0.285307 + 0.958436i \(0.592096\pi\)
\(758\) 1.12123e10i 0.935087i
\(759\) 4.95331e9 0.411197
\(760\) 0 0
\(761\) −2.06723e10 −1.70037 −0.850183 0.526488i \(-0.823509\pi\)
−0.850183 + 0.526488i \(0.823509\pi\)
\(762\) − 5.78779e9i − 0.473882i
\(763\) − 1.12503e10i − 0.916912i
\(764\) 9.08950e9 0.737418
\(765\) 0 0
\(766\) 8.54640e9 0.687041
\(767\) − 2.67101e9i − 0.213743i
\(768\) − 4.52985e8i − 0.0360844i
\(769\) 7.74699e9 0.614315 0.307157 0.951659i \(-0.400622\pi\)
0.307157 + 0.951659i \(0.400622\pi\)
\(770\) 0 0
\(771\) −8.71980e9 −0.685198
\(772\) 1.65702e9i 0.129619i
\(773\) 1.55352e10i 1.20973i 0.796327 + 0.604866i \(0.206773\pi\)
−0.796327 + 0.604866i \(0.793227\pi\)
\(774\) 3.15238e9 0.244369
\(775\) 0 0
\(776\) 2.93251e9 0.225280
\(777\) − 7.52117e9i − 0.575191i
\(778\) − 1.70970e9i − 0.130164i
\(779\) 4.65596e9 0.352881
\(780\) 0 0
\(781\) −1.45985e10 −1.09655
\(782\) 2.66596e9i 0.199356i
\(783\) 3.69871e9i 0.275349i
\(784\) 2.29949e9 0.170422
\(785\) 0 0
\(786\) −3.19864e9 −0.234956
\(787\) − 1.21211e10i − 0.886399i −0.896423 0.443199i \(-0.853843\pi\)
0.896423 0.443199i \(-0.146157\pi\)
\(788\) − 2.29843e9i − 0.167336i
\(789\) −9.11051e9 −0.660349
\(790\) 0 0
\(791\) 1.88600e9 0.135495
\(792\) − 2.03793e9i − 0.145765i
\(793\) − 9.92537e9i − 0.706790i
\(794\) −7.75270e9 −0.549644
\(795\) 0 0
\(796\) −1.12290e10 −0.789122
\(797\) − 8.20343e9i − 0.573973i −0.957935 0.286987i \(-0.907346\pi\)
0.957935 0.286987i \(-0.0926535\pi\)
\(798\) 1.37532e9i 0.0958064i
\(799\) 1.32739e10 0.920626
\(800\) 0 0
\(801\) −7.32694e9 −0.503743
\(802\) 1.77413e10i 1.21444i
\(803\) − 1.65555e10i − 1.12833i
\(804\) 6.15025e9 0.417346
\(805\) 0 0
\(806\) −3.46392e9 −0.233021
\(807\) 6.90891e9i 0.462756i
\(808\) − 6.82791e9i − 0.455353i
\(809\) −9.91739e9 −0.658533 −0.329267 0.944237i \(-0.606801\pi\)
−0.329267 + 0.944237i \(0.606801\pi\)
\(810\) 0 0
\(811\) 2.13417e10 1.40494 0.702469 0.711715i \(-0.252081\pi\)
0.702469 + 0.711715i \(0.252081\pi\)
\(812\) 6.15757e9i 0.403611i
\(813\) − 1.31133e10i − 0.855847i
\(814\) 2.37648e10 1.54436
\(815\) 0 0
\(816\) 1.09685e9 0.0706695
\(817\) − 6.72206e9i − 0.431246i
\(818\) − 8.38695e9i − 0.535756i
\(819\) −3.79444e9 −0.241354
\(820\) 0 0
\(821\) 1.81759e9 0.114629 0.0573145 0.998356i \(-0.481746\pi\)
0.0573145 + 0.998356i \(0.481746\pi\)
\(822\) − 1.24531e10i − 0.782035i
\(823\) 9.68482e9i 0.605609i 0.953053 + 0.302804i \(0.0979228\pi\)
−0.953053 + 0.302804i \(0.902077\pi\)
\(824\) 1.38762e9 0.0864022
\(825\) 0 0
\(826\) 1.07618e9 0.0664440
\(827\) − 1.22370e10i − 0.752326i −0.926553 0.376163i \(-0.877243\pi\)
0.926553 0.376163i \(-0.122757\pi\)
\(828\) 1.56764e9i 0.0959711i
\(829\) 1.30073e9 0.0792951 0.0396476 0.999214i \(-0.487376\pi\)
0.0396476 + 0.999214i \(0.487376\pi\)
\(830\) 0 0
\(831\) −7.90377e9 −0.477783
\(832\) − 2.66496e9i − 0.160420i
\(833\) 5.56796e9i 0.333763i
\(834\) −1.80965e9 −0.108022
\(835\) 0 0
\(836\) −4.34564e9 −0.257236
\(837\) − 8.38338e8i − 0.0494174i
\(838\) − 1.76817e9i − 0.103793i
\(839\) 1.65720e10 0.968743 0.484372 0.874862i \(-0.339048\pi\)
0.484372 + 0.874862i \(0.339048\pi\)
\(840\) 0 0
\(841\) 1.80618e10 1.04707
\(842\) − 1.21071e10i − 0.698956i
\(843\) 5.02806e9i 0.289071i
\(844\) 5.87736e9 0.336499
\(845\) 0 0
\(846\) 7.80532e9 0.443194
\(847\) − 5.28611e9i − 0.298912i
\(848\) 5.35848e9i 0.301756i
\(849\) −1.77728e10 −0.996732
\(850\) 0 0
\(851\) −1.82806e10 −1.01680
\(852\) − 4.62019e9i − 0.255930i
\(853\) − 2.87728e10i − 1.58730i −0.608372 0.793652i \(-0.708177\pi\)
0.608372 0.793652i \(-0.291823\pi\)
\(854\) 3.99905e9 0.219712
\(855\) 0 0
\(856\) 5.79559e9 0.315820
\(857\) 2.85737e9i 0.155072i 0.996990 + 0.0775361i \(0.0247053\pi\)
−0.996990 + 0.0775361i \(0.975295\pi\)
\(858\) − 1.19894e10i − 0.648024i
\(859\) −1.38088e10 −0.743327 −0.371663 0.928368i \(-0.621212\pi\)
−0.371663 + 0.928368i \(0.621212\pi\)
\(860\) 0 0
\(861\) −5.17562e9 −0.276345
\(862\) − 1.17441e10i − 0.624518i
\(863\) − 2.72992e9i − 0.144581i −0.997384 0.0722905i \(-0.976969\pi\)
0.997384 0.0722905i \(-0.0230309\pi\)
\(864\) 6.44973e8 0.0340207
\(865\) 0 0
\(866\) 3.18006e9 0.166388
\(867\) − 8.42324e9i − 0.438947i
\(868\) − 1.39565e9i − 0.0724367i
\(869\) 2.98979e10 1.54551
\(870\) 0 0
\(871\) 3.61825e10 1.85539
\(872\) 1.12503e10i 0.574587i
\(873\) 4.17539e9i 0.212396i
\(874\) 3.34280e9 0.169364
\(875\) 0 0
\(876\) 5.23953e9 0.263347
\(877\) − 1.52412e10i − 0.762992i −0.924370 0.381496i \(-0.875409\pi\)
0.924370 0.381496i \(-0.124591\pi\)
\(878\) 9.76565e9i 0.486935i
\(879\) 4.35850e9 0.216459
\(880\) 0 0
\(881\) −1.89703e10 −0.934672 −0.467336 0.884080i \(-0.654786\pi\)
−0.467336 + 0.884080i \(0.654786\pi\)
\(882\) 3.27408e9i 0.160675i
\(883\) 1.03565e10i 0.506232i 0.967436 + 0.253116i \(0.0814554\pi\)
−0.967436 + 0.253116i \(0.918545\pi\)
\(884\) 6.45289e9 0.314175
\(885\) 0 0
\(886\) 2.59641e10 1.25417
\(887\) 4.04503e9i 0.194621i 0.995254 + 0.0973103i \(0.0310239\pi\)
−0.995254 + 0.0973103i \(0.968976\pi\)
\(888\) 7.52117e9i 0.360446i
\(889\) 1.37192e10 0.654897
\(890\) 0 0
\(891\) 2.90167e9 0.137428
\(892\) − 7.40995e8i − 0.0349573i
\(893\) − 1.66438e10i − 0.782120i
\(894\) 1.20199e9 0.0562625
\(895\) 0 0
\(896\) 1.07374e9 0.0498680
\(897\) 9.22260e9i 0.426658i
\(898\) − 5.63369e9i − 0.259612i
\(899\) −8.00363e9 −0.367391
\(900\) 0 0
\(901\) −1.29749e10 −0.590975
\(902\) − 1.63535e10i − 0.741974i
\(903\) 7.47231e9i 0.337713i
\(904\) −1.88600e9 −0.0849085
\(905\) 0 0
\(906\) −1.43194e10 −0.639697
\(907\) 3.30880e10i 1.47247i 0.676728 + 0.736233i \(0.263397\pi\)
−0.676728 + 0.736233i \(0.736603\pi\)
\(908\) − 1.91852e9i − 0.0850485i
\(909\) 9.72177e9 0.429311
\(910\) 0 0
\(911\) −2.13526e10 −0.935700 −0.467850 0.883808i \(-0.654971\pi\)
−0.467850 + 0.883808i \(0.654971\pi\)
\(912\) − 1.37532e9i − 0.0600375i
\(913\) 1.21843e10i 0.529850i
\(914\) −2.96776e10 −1.28563
\(915\) 0 0
\(916\) 7.66213e9 0.329394
\(917\) − 7.58197e9i − 0.324705i
\(918\) 1.56173e9i 0.0666279i
\(919\) −4.49811e10 −1.91173 −0.955863 0.293813i \(-0.905076\pi\)
−0.955863 + 0.293813i \(0.905076\pi\)
\(920\) 0 0
\(921\) 1.93182e10 0.814813
\(922\) − 9.00115e9i − 0.378216i
\(923\) − 2.71810e10i − 1.13778i
\(924\) 4.83066e9 0.201444
\(925\) 0 0
\(926\) −6.11462e8 −0.0253065
\(927\) 1.97573e9i 0.0814608i
\(928\) − 6.15757e9i − 0.252925i
\(929\) 2.15112e10 0.880258 0.440129 0.897935i \(-0.354933\pi\)
0.440129 + 0.897935i \(0.354933\pi\)
\(930\) 0 0
\(931\) 6.98156e9 0.283549
\(932\) 8.16685e9i 0.330445i
\(933\) 1.85407e9i 0.0747377i
\(934\) 5.13062e8 0.0206042
\(935\) 0 0
\(936\) 3.79444e9 0.151245
\(937\) 3.31276e10i 1.31553i 0.753222 + 0.657766i \(0.228498\pi\)
−0.753222 + 0.657766i \(0.771502\pi\)
\(938\) 1.45784e10i 0.576765i
\(939\) 2.50498e9 0.0987358
\(940\) 0 0
\(941\) 1.55361e10 0.607824 0.303912 0.952700i \(-0.401707\pi\)
0.303912 + 0.952700i \(0.401707\pi\)
\(942\) − 1.38843e10i − 0.541184i
\(943\) 1.25796e10i 0.488514i
\(944\) −1.07618e9 −0.0416375
\(945\) 0 0
\(946\) −2.36104e10 −0.906745
\(947\) − 5.05218e10i − 1.93310i −0.256482 0.966549i \(-0.582564\pi\)
0.256482 0.966549i \(-0.417436\pi\)
\(948\) 9.46220e9i 0.360714i
\(949\) 3.08247e10 1.17076
\(950\) 0 0
\(951\) −1.05502e10 −0.397768
\(952\) 2.59994e9i 0.0976640i
\(953\) − 7.93237e9i − 0.296878i −0.988922 0.148439i \(-0.952575\pi\)
0.988922 0.148439i \(-0.0474248\pi\)
\(954\) −7.62955e9 −0.284498
\(955\) 0 0
\(956\) −1.05567e10 −0.390775
\(957\) − 2.77023e10i − 1.02170i
\(958\) 8.11087e9i 0.298049i
\(959\) 2.95185e10 1.08076
\(960\) 0 0
\(961\) −2.56985e10 −0.934064
\(962\) 4.42478e10i 1.60243i
\(963\) 8.25193e9i 0.297758i
\(964\) −2.55122e10 −0.917230
\(965\) 0 0
\(966\) −3.71589e9 −0.132630
\(967\) − 2.50000e10i − 0.889095i −0.895755 0.444547i \(-0.853365\pi\)
0.895755 0.444547i \(-0.146635\pi\)
\(968\) 5.28611e9i 0.187315i
\(969\) 3.33019e9 0.117581
\(970\) 0 0
\(971\) 2.23544e10 0.783603 0.391801 0.920050i \(-0.371852\pi\)
0.391801 + 0.920050i \(0.371852\pi\)
\(972\) 9.18330e8i 0.0320750i
\(973\) − 4.28953e9i − 0.149285i
\(974\) 2.23208e9 0.0774020
\(975\) 0 0
\(976\) −3.99905e9 −0.137684
\(977\) 1.84311e9i 0.0632297i 0.999500 + 0.0316148i \(0.0100650\pi\)
−0.999500 + 0.0316148i \(0.989935\pi\)
\(978\) − 1.83287e10i − 0.626536i
\(979\) 5.48767e10 1.86917
\(980\) 0 0
\(981\) −1.60185e10 −0.541726
\(982\) − 1.41871e10i − 0.478083i
\(983\) 1.25816e10i 0.422473i 0.977435 + 0.211236i \(0.0677490\pi\)
−0.977435 + 0.211236i \(0.932251\pi\)
\(984\) 5.17562e9 0.173173
\(985\) 0 0
\(986\) 1.49098e10 0.495341
\(987\) 1.85015e10i 0.612487i
\(988\) − 8.09116e9i − 0.266908i
\(989\) 1.81619e10 0.596999
\(990\) 0 0
\(991\) −2.30746e10 −0.753142 −0.376571 0.926388i \(-0.622897\pi\)
−0.376571 + 0.926388i \(0.622897\pi\)
\(992\) 1.39565e9i 0.0453928i
\(993\) 1.29673e10i 0.420267i
\(994\) 1.09516e10 0.353691
\(995\) 0 0
\(996\) −3.85613e9 −0.123664
\(997\) 5.91619e9i 0.189064i 0.995522 + 0.0945320i \(0.0301355\pi\)
−0.995522 + 0.0945320i \(0.969865\pi\)
\(998\) − 3.72900e10i − 1.18751i
\(999\) −1.07089e10 −0.339832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.8.c.e.49.1 2
3.2 odd 2 450.8.c.c.199.2 2
5.2 odd 4 30.8.a.e.1.1 1
5.3 odd 4 150.8.a.g.1.1 1
5.4 even 2 inner 150.8.c.e.49.2 2
15.2 even 4 90.8.a.b.1.1 1
15.8 even 4 450.8.a.r.1.1 1
15.14 odd 2 450.8.c.c.199.1 2
20.7 even 4 240.8.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.8.a.e.1.1 1 5.2 odd 4
90.8.a.b.1.1 1 15.2 even 4
150.8.a.g.1.1 1 5.3 odd 4
150.8.c.e.49.1 2 1.1 even 1 trivial
150.8.c.e.49.2 2 5.4 even 2 inner
240.8.a.l.1.1 1 20.7 even 4
450.8.a.r.1.1 1 15.8 even 4
450.8.c.c.199.1 2 15.14 odd 2
450.8.c.c.199.2 2 3.2 odd 2