Properties

Label 150.9.d.a
Level 150150
Weight 99
Character orbit 150.d
Analytic conductor 61.10761.107
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,9,Mod(101,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.101");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 9 9
Character orbit: [χ][\chi] == 150.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 61.106791509261.1067915092
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{-2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+2 x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=42\beta = 4\sqrt{-2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2βq2+(9β+63)q3128q4+(126β576)q62786q7+256βq8+(1134β+1377)q9+3966βq11+(1152β8064)q12+13150q13++(5461182β+143918208)q99+O(q100) q - 2 \beta q^{2} + ( - 9 \beta + 63) q^{3} - 128 q^{4} + ( - 126 \beta - 576) q^{6} - 2786 q^{7} + 256 \beta q^{8} + ( - 1134 \beta + 1377) q^{9} + 3966 \beta q^{11} + (1152 \beta - 8064) q^{12} + 13150 q^{13} + \cdots + (5461182 \beta + 143918208) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+126q3256q41152q65572q7+2754q916128q12+26300q13+32768q16145152q18+288004q19351036q21+507648q22+147456q24479682q27++287836416q99+O(q100) 2 q + 126 q^{3} - 256 q^{4} - 1152 q^{6} - 5572 q^{7} + 2754 q^{9} - 16128 q^{12} + 26300 q^{13} + 32768 q^{16} - 145152 q^{18} + 288004 q^{19} - 351036 q^{21} + 507648 q^{22} + 147456 q^{24} - 479682 q^{27}+ \cdots + 287836416 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
1.41421i
1.41421i
11.3137i 63.0000 50.9117i −128.000 0 −576.000 712.764i −2786.00 1448.15i 1377.00 6414.87i 0
101.2 11.3137i 63.0000 + 50.9117i −128.000 0 −576.000 + 712.764i −2786.00 1448.15i 1377.00 + 6414.87i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.9.d.a 2
3.b odd 2 1 inner 150.9.d.a 2
5.b even 2 1 6.9.b.a 2
5.c odd 4 2 150.9.b.a 4
15.d odd 2 1 6.9.b.a 2
15.e even 4 2 150.9.b.a 4
20.d odd 2 1 48.9.e.d 2
40.e odd 2 1 192.9.e.c 2
40.f even 2 1 192.9.e.h 2
45.h odd 6 2 162.9.d.a 4
45.j even 6 2 162.9.d.a 4
60.h even 2 1 48.9.e.d 2
120.i odd 2 1 192.9.e.h 2
120.m even 2 1 192.9.e.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.9.b.a 2 5.b even 2 1
6.9.b.a 2 15.d odd 2 1
48.9.e.d 2 20.d odd 2 1
48.9.e.d 2 60.h even 2 1
150.9.b.a 4 5.c odd 4 2
150.9.b.a 4 15.e even 4 2
150.9.d.a 2 1.a even 1 1 trivial
150.9.d.a 2 3.b odd 2 1 inner
162.9.d.a 4 45.h odd 6 2
162.9.d.a 4 45.j even 6 2
192.9.e.c 2 40.e odd 2 1
192.9.e.c 2 120.m even 2 1
192.9.e.h 2 40.f even 2 1
192.9.e.h 2 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T7+2786 T_{7} + 2786 acting on S9new(150,[χ])S_{9}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+128 T^{2} + 128 Copy content Toggle raw display
33 T2126T+6561 T^{2} - 126T + 6561 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T+2786)2 (T + 2786)^{2} Copy content Toggle raw display
1111 T2+503332992 T^{2} + 503332992 Copy content Toggle raw display
1313 (T13150)2 (T - 13150)^{2} Copy content Toggle raw display
1717 T2+4407478272 T^{2} + 4407478272 Copy content Toggle raw display
1919 (T144002)2 (T - 144002)^{2} Copy content Toggle raw display
2323 T2+2435461632 T^{2} + 2435461632 Copy content Toggle raw display
2929 T2+393632899200 T^{2} + 393632899200 Copy content Toggle raw display
3131 (T728738)2 (T - 728738)^{2} Copy content Toggle raw display
3737 (T1964446)2 (T - 1964446)^{2} Copy content Toggle raw display
4141 T2+972443423232 T^{2} + 972443423232 Copy content Toggle raw display
4343 (T78142)2 (T - 78142)^{2} Copy content Toggle raw display
4747 T2+12388250880000 T^{2} + 12388250880000 Copy content Toggle raw display
5353 T2+272534585472 T^{2} + 272534585472 Copy content Toggle raw display
5959 T2+25042474046592 T^{2} + 25042474046592 Copy content Toggle raw display
6161 (T17578274)2 (T - 17578274)^{2} Copy content Toggle raw display
6767 (T17136766)2 (T - 17136766)^{2} Copy content Toggle raw display
7171 T2+670324718707200 T^{2} + 670324718707200 Copy content Toggle raw display
7373 (T+28139330)2 (T + 28139330)^{2} Copy content Toggle raw display
7979 (T9182498)2 (T - 9182498)^{2} Copy content Toggle raw display
8383 T2+75 ⁣ ⁣48 T^{2} + 75\!\cdots\!48 Copy content Toggle raw display
8989 T2+66 ⁣ ⁣12 T^{2} + 66\!\cdots\!12 Copy content Toggle raw display
9797 (T128722558)2 (T - 128722558)^{2} Copy content Toggle raw display
show more
show less