Properties

Label 150.9.d.a
Level $150$
Weight $9$
Character orbit 150.d
Analytic conductor $61.107$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,9,Mod(101,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.101");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 150.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.1067915092\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta q^{2} + ( - 9 \beta + 63) q^{3} - 128 q^{4} + ( - 126 \beta - 576) q^{6} - 2786 q^{7} + 256 \beta q^{8} + ( - 1134 \beta + 1377) q^{9} + 3966 \beta q^{11} + (1152 \beta - 8064) q^{12} + 13150 q^{13} + \cdots + (5461182 \beta + 143918208) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 126 q^{3} - 256 q^{4} - 1152 q^{6} - 5572 q^{7} + 2754 q^{9} - 16128 q^{12} + 26300 q^{13} + 32768 q^{16} - 145152 q^{18} + 288004 q^{19} - 351036 q^{21} + 507648 q^{22} + 147456 q^{24} - 479682 q^{27}+ \cdots + 287836416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
1.41421i
1.41421i
11.3137i 63.0000 50.9117i −128.000 0 −576.000 712.764i −2786.00 1448.15i 1377.00 6414.87i 0
101.2 11.3137i 63.0000 + 50.9117i −128.000 0 −576.000 + 712.764i −2786.00 1448.15i 1377.00 + 6414.87i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.9.d.a 2
3.b odd 2 1 inner 150.9.d.a 2
5.b even 2 1 6.9.b.a 2
5.c odd 4 2 150.9.b.a 4
15.d odd 2 1 6.9.b.a 2
15.e even 4 2 150.9.b.a 4
20.d odd 2 1 48.9.e.d 2
40.e odd 2 1 192.9.e.c 2
40.f even 2 1 192.9.e.h 2
45.h odd 6 2 162.9.d.a 4
45.j even 6 2 162.9.d.a 4
60.h even 2 1 48.9.e.d 2
120.i odd 2 1 192.9.e.h 2
120.m even 2 1 192.9.e.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.9.b.a 2 5.b even 2 1
6.9.b.a 2 15.d odd 2 1
48.9.e.d 2 20.d odd 2 1
48.9.e.d 2 60.h even 2 1
150.9.b.a 4 5.c odd 4 2
150.9.b.a 4 15.e even 4 2
150.9.d.a 2 1.a even 1 1 trivial
150.9.d.a 2 3.b odd 2 1 inner
162.9.d.a 4 45.h odd 6 2
162.9.d.a 4 45.j even 6 2
192.9.e.c 2 40.e odd 2 1
192.9.e.c 2 120.m even 2 1
192.9.e.h 2 40.f even 2 1
192.9.e.h 2 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 2786 \) acting on \(S_{9}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 128 \) Copy content Toggle raw display
$3$ \( T^{2} - 126T + 6561 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 2786)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 503332992 \) Copy content Toggle raw display
$13$ \( (T - 13150)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4407478272 \) Copy content Toggle raw display
$19$ \( (T - 144002)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2435461632 \) Copy content Toggle raw display
$29$ \( T^{2} + 393632899200 \) Copy content Toggle raw display
$31$ \( (T - 728738)^{2} \) Copy content Toggle raw display
$37$ \( (T - 1964446)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 972443423232 \) Copy content Toggle raw display
$43$ \( (T - 78142)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 12388250880000 \) Copy content Toggle raw display
$53$ \( T^{2} + 272534585472 \) Copy content Toggle raw display
$59$ \( T^{2} + 25042474046592 \) Copy content Toggle raw display
$61$ \( (T - 17578274)^{2} \) Copy content Toggle raw display
$67$ \( (T - 17136766)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 670324718707200 \) Copy content Toggle raw display
$73$ \( (T + 28139330)^{2} \) Copy content Toggle raw display
$79$ \( (T - 9182498)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 75\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{2} + 66\!\cdots\!12 \) Copy content Toggle raw display
$97$ \( (T - 128722558)^{2} \) Copy content Toggle raw display
show more
show less