Properties

Label 1512.1.bn.b.685.1
Level 15121512
Weight 11
Character 1512.685
Analytic conductor 0.7550.755
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -56
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,1,Mod(181,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.181");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1512=23337 1512 = 2^{3} \cdot 3^{3} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1512.bn (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7545862991010.754586299101
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 504)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.4536.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

Embedding invariants

Embedding label 685.1
Root 0.500000+0.866025i0.500000 + 0.866025i of defining polynomial
Character χ\chi == 1512.685
Dual form 1512.1.bn.b.181.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.500000+0.866025i)q2+(0.500000+0.866025i)q4+(0.5000000.866025i)q5+(0.5000000.866025i)q71.00000q8+1.00000q10+(1.000001.73205i)q13+(0.5000000.866025i)q14+(0.5000000.866025i)q16+1.00000q19+(0.500000+0.866025i)q20+(0.500000+0.866025i)q23+2.00000q26+1.00000q28+(0.5000000.866025i)q321.00000q35+(0.500000+0.866025i)q38+(0.500000+0.866025i)q401.00000q46+(0.500000+0.866025i)q49+(1.00000+1.73205i)q52+(0.500000+0.866025i)q56+(1.00000+1.73205i)q59+(0.5000000.866025i)q61+1.00000q64+(1.000001.73205i)q65+(0.5000000.866025i)q70+1.00000q71+(0.500000+0.866025i)q76+(0.500000+0.866025i)q791.00000q80+(1.000001.73205i)q832.00000q91+(0.5000000.866025i)q92+(0.5000000.866025i)q951.00000q98+O(q100)q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +1.00000 q^{10} +(1.00000 - 1.73205i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +1.00000 q^{19} +(0.500000 + 0.866025i) q^{20} +(-0.500000 + 0.866025i) q^{23} +2.00000 q^{26} +1.00000 q^{28} +(0.500000 - 0.866025i) q^{32} -1.00000 q^{35} +(0.500000 + 0.866025i) q^{38} +(-0.500000 + 0.866025i) q^{40} -1.00000 q^{46} +(-0.500000 + 0.866025i) q^{49} +(1.00000 + 1.73205i) q^{52} +(0.500000 + 0.866025i) q^{56} +(-1.00000 + 1.73205i) q^{59} +(-0.500000 - 0.866025i) q^{61} +1.00000 q^{64} +(-1.00000 - 1.73205i) q^{65} +(-0.500000 - 0.866025i) q^{70} +1.00000 q^{71} +(-0.500000 + 0.866025i) q^{76} +(0.500000 + 0.866025i) q^{79} -1.00000 q^{80} +(-1.00000 - 1.73205i) q^{83} -2.00000 q^{91} +(-0.500000 - 0.866025i) q^{92} +(0.500000 - 0.866025i) q^{95} -1.00000 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q4+q5q72q8+2q10+2q13+q14q16+2q19+q20q23+4q26+2q28+q322q35+q38q402q46q49+2q98+O(q100) 2 q + q^{2} - q^{4} + q^{5} - q^{7} - 2 q^{8} + 2 q^{10} + 2 q^{13} + q^{14} - q^{16} + 2 q^{19} + q^{20} - q^{23} + 4 q^{26} + 2 q^{28} + q^{32} - 2 q^{35} + q^{38} - q^{40} - 2 q^{46} - q^{49}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1512Z)×\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times.

nn 757757 785785 10811081 11351135
χ(n)\chi(n) 1-1 e(13)e\left(\frac{1}{3}\right) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 + 0.866025i 0.500000 + 0.866025i
33 0 0
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
66 0 0
77 −0.500000 0.866025i −0.500000 0.866025i
88 −1.00000 −1.00000
99 0 0
1010 1.00000 1.00000
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0 0
1313 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
1414 0.500000 0.866025i 0.500000 0.866025i
1515 0 0
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 0.500000 + 0.866025i 0.500000 + 0.866025i
2121 0 0
2222 0 0
2323 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
2424 0 0
2525 0 0
2626 2.00000 2.00000
2727 0 0
2828 1.00000 1.00000
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0.500000 0.866025i 0.500000 0.866025i
3333 0 0
3434 0 0
3535 −1.00000 −1.00000
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0.500000 + 0.866025i 0.500000 + 0.866025i
3939 0 0
4040 −0.500000 + 0.866025i −0.500000 + 0.866025i
4141 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 0 0
4343 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 0 0
4646 −1.00000 −1.00000
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 0 0
4949 −0.500000 + 0.866025i −0.500000 + 0.866025i
5050 0 0
5151 0 0
5252 1.00000 + 1.73205i 1.00000 + 1.73205i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0.500000 + 0.866025i 0.500000 + 0.866025i
5757 0 0
5858 0 0
5959 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 0 0
6161 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 −1.00000 1.73205i −1.00000 1.73205i
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0 0
6969 0 0
7070 −0.500000 0.866025i −0.500000 0.866025i
7171 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 −0.500000 + 0.866025i −0.500000 + 0.866025i
7777 0 0
7878 0 0
7979 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 −1.00000 −1.00000
8181 0 0
8282 0 0
8383 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 −2.00000 −2.00000
9292 −0.500000 0.866025i −0.500000 0.866025i
9393 0 0
9494 0 0
9595 0.500000 0.866025i 0.500000 0.866025i
9696 0 0
9797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9898 −1.00000 −1.00000
9999 0 0
100100 0 0
101101 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 0 0
103103 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
104104 −1.00000 + 1.73205i −1.00000 + 1.73205i
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 −0.500000 + 0.866025i −0.500000 + 0.866025i
113113 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
114114 0 0
115115 0.500000 + 0.866025i 0.500000 + 0.866025i
116116 0 0
117117 0 0
118118 −2.00000 −2.00000
119119 0 0
120120 0 0
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 0.500000 0.866025i 0.500000 0.866025i
123123 0 0
124124 0 0
125125 1.00000 1.00000
126126 0 0
127127 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 0.500000 + 0.866025i 0.500000 + 0.866025i
129129 0 0
130130 1.00000 1.73205i 1.00000 1.73205i
131131 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
132132 0 0
133133 −0.500000 0.866025i −0.500000 0.866025i
134134 0 0
135135 0 0
136136 0 0
137137 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
140140 0.500000 0.866025i 0.500000 0.866025i
141141 0 0
142142 0.500000 + 0.866025i 0.500000 + 0.866025i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 −1.00000 −1.00000
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
158158 −0.500000 + 0.866025i −0.500000 + 0.866025i
159159 0 0
160160 −0.500000 0.866025i −0.500000 0.866025i
161161 1.00000 1.00000
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 1.00000 1.73205i 1.00000 1.73205i
167167 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
168168 0 0
169169 −1.50000 2.59808i −1.50000 2.59808i
170170 0 0
171171 0 0
172172 0 0
173173 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
182182 −1.00000 1.73205i −1.00000 1.73205i
183183 0 0
184184 0.500000 0.866025i 0.500000 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 1.00000 1.00000
191191 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
192192 0 0
193193 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
194194 0 0
195195 0 0
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 −0.500000 + 0.866025i −0.500000 + 0.866025i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 −2.00000 −2.00000
209209 0 0
210210 0 0
211211 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 −1.00000 −1.00000
225225 0 0
226226 −1.00000 −1.00000
227227 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
230230 −0.500000 + 0.866025i −0.500000 + 0.866025i
231231 0 0
232232 0 0
233233 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 0 0
235235 0 0
236236 −1.00000 1.73205i −1.00000 1.73205i
237237 0 0
238238 0 0
239239 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
240240 0 0
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 −1.00000 −1.00000
243243 0 0
244244 1.00000 1.00000
245245 0.500000 + 0.866025i 0.500000 + 0.866025i
246246 0 0
247247 1.00000 1.73205i 1.00000 1.73205i
248248 0 0
249249 0 0
250250 0.500000 + 0.866025i 0.500000 + 0.866025i
251251 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 0 0
254254 −0.500000 0.866025i −0.500000 0.866025i
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 2.00000 2.00000
261261 0 0
262262 1.00000 1.00000
263263 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0.500000 0.866025i 0.500000 0.866025i
267267 0 0
268268 0 0
269269 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 −1.00000 + 1.73205i −1.00000 + 1.73205i
275275 0 0
276276 0 0
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 −1.00000 −1.00000
279279 0 0
280280 1.00000 1.00000
281281 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
282282 0 0
283283 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
284284 −0.500000 + 0.866025i −0.500000 + 0.866025i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
294294 0 0
295295 1.00000 + 1.73205i 1.00000 + 1.73205i
296296 0 0
297297 0 0
298298 0 0
299299 1.00000 + 1.73205i 1.00000 + 1.73205i
300300 0 0
301301 0 0
302302 −0.500000 + 0.866025i −0.500000 + 0.866025i
303303 0 0
304304 −0.500000 0.866025i −0.500000 0.866025i
305305 −1.00000 −1.00000
306306 0 0
307307 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 −1.00000 −1.00000
315315 0 0
316316 −1.00000 −1.00000
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0 0
319319 0 0
320320 0.500000 0.866025i 0.500000 0.866025i
321321 0 0
322322 0.500000 + 0.866025i 0.500000 + 0.866025i
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 2.00000 2.00000
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
338338 1.50000 2.59808i 1.50000 2.59808i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0 0
346346 1.00000 1.73205i 1.00000 1.73205i
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0.500000 0.866025i 0.500000 0.866025i
356356 0 0
357357 0 0
358358 0 0
359359 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 0 0
362362 0.500000 + 0.866025i 0.500000 + 0.866025i
363363 0 0
364364 1.00000 1.73205i 1.00000 1.73205i
365365 0 0
366366 0 0
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 1.00000 1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0.500000 + 0.866025i 0.500000 + 0.866025i
381381 0 0
382382 0.500000 0.866025i 0.500000 0.866025i
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0 0
385385 0 0
386386 1.00000 1.00000
387387 0 0
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 0 0
392392 0.500000 0.866025i 0.500000 0.866025i
393393 0 0
394394 0 0
395395 1.00000 1.00000
396396 0 0
397397 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 −1.00000 −1.00000
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0 0
412412 0 0
413413 2.00000 2.00000
414414 0 0
415415 −2.00000 −2.00000
416416 −1.00000 1.73205i −1.00000 1.73205i
417417 0 0
418418 0 0
419419 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
420420 0 0
421421 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −0.500000 + 0.866025i −0.500000 + 0.866025i
428428 0 0
429429 0 0
430430 0 0
431431 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.500000 + 0.866025i −0.500000 + 0.866025i
438438 0 0
439439 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.500000 0.866025i −0.500000 0.866025i
449449 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
450450 0 0
451451 0 0
452452 −0.500000 0.866025i −0.500000 0.866025i
453453 0 0
454454 −0.500000 + 0.866025i −0.500000 + 0.866025i
455455 −1.00000 + 1.73205i −1.00000 + 1.73205i
456456 0 0
457457 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 −1.00000 −1.00000
459459 0 0
460460 −1.00000 −1.00000
461461 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
464464 0 0
465465 0 0
466466 0.500000 + 0.866025i 0.500000 + 0.866025i
467467 2.00000 2.00000 1.00000 00
1.00000 00
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 1.00000 1.73205i 1.00000 1.73205i
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 −1.00000 −1.00000
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.500000 0.866025i −0.500000 0.866025i
485485 0 0
486486 0 0
487487 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
488488 0.500000 + 0.866025i 0.500000 + 0.866025i
489489 0 0
490490 −0.500000 + 0.866025i −0.500000 + 0.866025i
491491 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 0 0
493493 0 0
494494 2.00000 2.00000
495495 0 0
496496 0 0
497497 −0.500000 0.866025i −0.500000 0.866025i
498498 0 0
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 −0.500000 + 0.866025i −0.500000 + 0.866025i
501501 0 0
502502 −0.500000 0.866025i −0.500000 0.866025i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 1.00000 1.00000
506506 0 0
507507 0 0
508508 0.500000 0.866025i 0.500000 0.866025i
509509 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 1.00000 + 1.73205i 1.00000 + 1.73205i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
524524 0.500000 + 0.866025i 0.500000 + 0.866025i
525525 0 0
526526 0.500000 0.866025i 0.500000 0.866025i
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 1.00000 1.00000
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −0.500000 0.866025i −0.500000 0.866025i
539539 0 0
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 −2.00000 −2.00000
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0.500000 0.866025i 0.500000 0.866025i
554554 0 0
555555 0 0
556556 −0.500000 0.866025i −0.500000 0.866025i
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0.500000 + 0.866025i 0.500000 + 0.866025i
561561 0 0
562562 0.500000 0.866025i 0.500000 0.866025i
563563 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
564564 0 0
565565 0.500000 + 0.866025i 0.500000 + 0.866025i
566566 −1.00000 −1.00000
567567 0 0
568568 −1.00000 −1.00000
569569 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.500000 + 0.866025i 0.500000 + 0.866025i
579579 0 0
580580 0 0
581581 −1.00000 + 1.73205i −1.00000 + 1.73205i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 1.00000 1.00000
587587 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0 0
590590 −1.00000 + 1.73205i −1.00000 + 1.73205i
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 −1.00000 + 1.73205i −1.00000 + 1.73205i
599599 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
600600 0 0
601601 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
602602 0 0
603603 0 0
604604 −1.00000 −1.00000
605605 0.500000 + 0.866025i 0.500000 + 0.866025i
606606 0 0
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 0.500000 0.866025i 0.500000 0.866025i
609609 0 0
610610 −0.500000 0.866025i −0.500000 0.866025i
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0.500000 + 0.866025i 0.500000 + 0.866025i
615615 0 0
616616 0 0
617617 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
618618 0 0
619619 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0 0
627627 0 0
628628 −0.500000 0.866025i −0.500000 0.866025i
629629 0 0
630630 0 0
631631 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 −0.500000 0.866025i −0.500000 0.866025i
633633 0 0
634634 0 0
635635 −0.500000 + 0.866025i −0.500000 + 0.866025i
636636 0 0
637637 1.00000 + 1.73205i 1.00000 + 1.73205i
638638 0 0
639639 0 0
640640 1.00000 1.00000
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0 0
643643 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
644644 −0.500000 + 0.866025i −0.500000 + 0.866025i
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 −0.500000 0.866025i −0.500000 0.866025i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
660660 0 0
661661 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 1.00000 + 1.73205i 1.00000 + 1.73205i
665665 −1.00000 −1.00000
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 −2.00000 −2.00000
675675 0 0
676676 3.00000 3.00000
677677 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 2.00000 2.00000
686686 0.500000 + 0.866025i 0.500000 + 0.866025i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
692692 2.00000 2.00000
693693 0 0
694694 0 0
695695 0.500000 + 0.866025i 0.500000 + 0.866025i
696696 0 0
697697 0 0
698698 −1.00000 + 1.73205i −1.00000 + 1.73205i
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0.500000 0.866025i 0.500000 0.866025i
708708 0 0
709709 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
710710 1.00000 1.00000
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0.500000 + 0.866025i 0.500000 + 0.866025i
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −0.500000 + 0.866025i −0.500000 + 0.866025i
725725 0 0
726726 0 0
727727 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
728728 2.00000 2.00000
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0.500000 + 0.866025i 0.500000 + 0.866025i
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
752752 0 0
753753 0 0
754754 0 0
755755 1.00000 1.00000
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 −0.500000 + 0.866025i −0.500000 + 0.866025i
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 1.00000 1.00000
765765 0 0
766766 0 0
767767 2.00000 + 3.46410i 2.00000 + 3.46410i
768768 0 0
769769 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0.500000 + 0.866025i 0.500000 + 0.866025i
773773 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 0.500000 + 0.866025i 0.500000 + 0.866025i
786786 0 0
787787 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
788788 0 0
789789 0 0
790790 0.500000 + 0.866025i 0.500000 + 0.866025i
791791 1.00000 1.00000
792792 0 0
793793 −2.00000 −2.00000
794794 −1.00000 1.73205i −1.00000 1.73205i
795795 0 0
796796 0 0
797797 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 −1.00000 −1.00000
803803 0 0
804804 0 0
805805 0.500000 0.866025i 0.500000 0.866025i
806806 0 0
807807 0 0
808808 −0.500000 0.866025i −0.500000 0.866025i
809809 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
810810 0 0
811811 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0 0
825825 0 0
826826 1.00000 + 1.73205i 1.00000 + 1.73205i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
830830 −1.00000 1.73205i −1.00000 1.73205i
831831 0 0
832832 1.00000 1.73205i 1.00000 1.73205i
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 1.00000 1.00000
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 0 0
844844 0 0
845845 −3.00000 −3.00000
846846 0 0
847847 1.00000 1.00000
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
854854 −1.00000 −1.00000
855855 0 0
856856 0 0
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
860860 0 0
861861 0 0
862862 −1.00000 1.73205i −1.00000 1.73205i
863863 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0 0
865865 −2.00000 −2.00000
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 −1.00000 −1.00000
875875 −0.500000 0.866025i −0.500000 0.866025i
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 0 0
889889 0.500000 + 0.866025i 0.500000 + 0.866025i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0.500000 0.866025i 0.500000 0.866025i
897897 0 0
898898 0.500000 + 0.866025i 0.500000 + 0.866025i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0.500000 0.866025i 0.500000 0.866025i
905905 0.500000 0.866025i 0.500000 0.866025i
906906 0 0
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 −1.00000 −1.00000
909909 0 0
910910 −2.00000 −2.00000
911911 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
912912 0 0
913913 0 0
914914 −0.500000 + 0.866025i −0.500000 + 0.866025i
915915 0 0
916916 −0.500000 0.866025i −0.500000 0.866025i
917917 −1.00000 −1.00000
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 −0.500000 0.866025i −0.500000 0.866025i
921921 0 0
922922 −0.500000 + 0.866025i −0.500000 + 0.866025i
923923 1.00000 1.73205i 1.00000 1.73205i
924924 0 0
925925 0 0
926926 1.00000 1.00000
927927 0 0
928928 0 0
929929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 0 0
931931 −0.500000 + 0.866025i −0.500000 + 0.866025i
932932 −0.500000 + 0.866025i −0.500000 + 0.866025i
933933 0 0
934934 1.00000 + 1.73205i 1.00000 + 1.73205i
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
942942 0 0
943943 0 0
944944 2.00000 2.00000
945945 0 0
946946 0 0
947947 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
954954 0 0
955955 −1.00000 −1.00000
956956 −0.500000 0.866025i −0.500000 0.866025i
957957 0 0
958958 0 0
959959 1.00000 1.73205i 1.00000 1.73205i
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 −0.500000 0.866025i −0.500000 0.866025i
966966 0 0
967967 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
968968 0.500000 0.866025i 0.500000 0.866025i
969969 0 0
970970 0 0
971971 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 1.00000 1.00000
974974 −0.500000 0.866025i −0.500000 0.866025i
975975 0 0
976976 −0.500000 + 0.866025i −0.500000 + 0.866025i
977977 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
978978 0 0
979979 0 0
980980 −1.00000 −1.00000
981981 0 0
982982 0 0
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 1.00000 + 1.73205i 1.00000 + 1.73205i
989989 0 0
990990 0 0
991991 2.00000 2.00000 1.00000 00
1.00000 00
992992 0 0
993993 0 0
994994 0.500000 0.866025i 0.500000 0.866025i
995995 0 0
996996 0 0
997997 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.1.bn.b.685.1 2
3.2 odd 2 504.1.bn.a.13.1 2
7.6 odd 2 1512.1.bn.a.685.1 2
8.5 even 2 1512.1.bn.a.685.1 2
9.2 odd 6 504.1.bn.a.349.1 yes 2
9.7 even 3 inner 1512.1.bn.b.181.1 2
12.11 even 2 2016.1.bv.b.1777.1 2
21.2 odd 6 3528.1.cw.b.2677.1 2
21.5 even 6 3528.1.cw.a.2677.1 2
21.11 odd 6 3528.1.bp.b.3253.1 2
21.17 even 6 3528.1.bp.a.3253.1 2
21.20 even 2 504.1.bn.b.13.1 yes 2
24.5 odd 2 504.1.bn.b.13.1 yes 2
24.11 even 2 2016.1.bv.a.1777.1 2
36.11 even 6 2016.1.bv.b.1105.1 2
56.13 odd 2 CM 1512.1.bn.b.685.1 2
63.2 odd 6 3528.1.bp.b.1501.1 2
63.11 odd 6 3528.1.cw.b.2077.1 2
63.20 even 6 504.1.bn.b.349.1 yes 2
63.34 odd 6 1512.1.bn.a.181.1 2
63.38 even 6 3528.1.cw.a.2077.1 2
63.47 even 6 3528.1.bp.a.1501.1 2
72.11 even 6 2016.1.bv.a.1105.1 2
72.29 odd 6 504.1.bn.b.349.1 yes 2
72.61 even 6 1512.1.bn.a.181.1 2
84.83 odd 2 2016.1.bv.a.1777.1 2
168.5 even 6 3528.1.cw.b.2677.1 2
168.53 odd 6 3528.1.bp.a.3253.1 2
168.83 odd 2 2016.1.bv.b.1777.1 2
168.101 even 6 3528.1.bp.b.3253.1 2
168.125 even 2 504.1.bn.a.13.1 2
168.149 odd 6 3528.1.cw.a.2677.1 2
252.83 odd 6 2016.1.bv.a.1105.1 2
504.83 odd 6 2016.1.bv.b.1105.1 2
504.101 even 6 3528.1.cw.b.2077.1 2
504.173 even 6 3528.1.bp.b.1501.1 2
504.317 odd 6 3528.1.bp.a.1501.1 2
504.349 odd 6 inner 1512.1.bn.b.181.1 2
504.389 odd 6 3528.1.cw.a.2077.1 2
504.461 even 6 504.1.bn.a.349.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.1.bn.a.13.1 2 3.2 odd 2
504.1.bn.a.13.1 2 168.125 even 2
504.1.bn.a.349.1 yes 2 9.2 odd 6
504.1.bn.a.349.1 yes 2 504.461 even 6
504.1.bn.b.13.1 yes 2 21.20 even 2
504.1.bn.b.13.1 yes 2 24.5 odd 2
504.1.bn.b.349.1 yes 2 63.20 even 6
504.1.bn.b.349.1 yes 2 72.29 odd 6
1512.1.bn.a.181.1 2 63.34 odd 6
1512.1.bn.a.181.1 2 72.61 even 6
1512.1.bn.a.685.1 2 7.6 odd 2
1512.1.bn.a.685.1 2 8.5 even 2
1512.1.bn.b.181.1 2 9.7 even 3 inner
1512.1.bn.b.181.1 2 504.349 odd 6 inner
1512.1.bn.b.685.1 2 1.1 even 1 trivial
1512.1.bn.b.685.1 2 56.13 odd 2 CM
2016.1.bv.a.1105.1 2 72.11 even 6
2016.1.bv.a.1105.1 2 252.83 odd 6
2016.1.bv.a.1777.1 2 24.11 even 2
2016.1.bv.a.1777.1 2 84.83 odd 2
2016.1.bv.b.1105.1 2 36.11 even 6
2016.1.bv.b.1105.1 2 504.83 odd 6
2016.1.bv.b.1777.1 2 12.11 even 2
2016.1.bv.b.1777.1 2 168.83 odd 2
3528.1.bp.a.1501.1 2 63.47 even 6
3528.1.bp.a.1501.1 2 504.317 odd 6
3528.1.bp.a.3253.1 2 21.17 even 6
3528.1.bp.a.3253.1 2 168.53 odd 6
3528.1.bp.b.1501.1 2 63.2 odd 6
3528.1.bp.b.1501.1 2 504.173 even 6
3528.1.bp.b.3253.1 2 21.11 odd 6
3528.1.bp.b.3253.1 2 168.101 even 6
3528.1.cw.a.2077.1 2 63.38 even 6
3528.1.cw.a.2077.1 2 504.389 odd 6
3528.1.cw.a.2677.1 2 21.5 even 6
3528.1.cw.a.2677.1 2 168.149 odd 6
3528.1.cw.b.2077.1 2 63.11 odd 6
3528.1.cw.b.2077.1 2 504.101 even 6
3528.1.cw.b.2677.1 2 21.2 odd 6
3528.1.cw.b.2677.1 2 168.5 even 6