Properties

Label 1519.2.a.a
Level $1519$
Weight $2$
Character orbit 1519.a
Self dual yes
Analytic conductor $12.129$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1519,2,Mod(1,1519)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1519, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1519.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.1292760670\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 2 \beta q^{3} + (\beta - 1) q^{4} - q^{5} + (2 \beta + 2) q^{6} + ( - 2 \beta + 1) q^{8} + (4 \beta + 1) q^{9} - \beta q^{10} + 2 q^{11} + 2 q^{12} + 2 \beta q^{13} - 2 \beta q^{15} + \cdots + (8 \beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} - 2 q^{5} + 6 q^{6} + 6 q^{9} - q^{10} + 4 q^{11} + 4 q^{12} + 2 q^{13} - 2 q^{15} - 3 q^{16} - 6 q^{17} + 13 q^{18} + q^{20} + 2 q^{22} - 2 q^{23} - 10 q^{24} - 8 q^{25}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 −1.23607 −1.61803 −1.00000 0.763932 0 2.23607 −1.47214 0.618034
1.2 1.61803 3.23607 0.618034 −1.00000 5.23607 0 −2.23607 7.47214 −1.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1519.2.a.a 2
7.b odd 2 1 31.2.a.a 2
21.c even 2 1 279.2.a.a 2
28.d even 2 1 496.2.a.i 2
35.c odd 2 1 775.2.a.d 2
35.f even 4 2 775.2.b.d 4
56.e even 2 1 1984.2.a.n 2
56.h odd 2 1 1984.2.a.r 2
77.b even 2 1 3751.2.a.b 2
84.h odd 2 1 4464.2.a.bf 2
91.b odd 2 1 5239.2.a.f 2
105.g even 2 1 6975.2.a.y 2
119.d odd 2 1 8959.2.a.b 2
217.d even 2 1 961.2.a.f 2
217.s even 6 2 961.2.c.c 4
217.u odd 6 2 961.2.c.e 4
217.v even 10 2 961.2.d.a 4
217.v even 10 2 961.2.d.g 4
217.w odd 10 2 961.2.d.c 4
217.w odd 10 2 961.2.d.d 4
217.bd odd 30 4 961.2.g.a 8
217.bd odd 30 4 961.2.g.h 8
217.be even 30 4 961.2.g.d 8
217.be even 30 4 961.2.g.e 8
651.e odd 2 1 8649.2.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.2.a.a 2 7.b odd 2 1
279.2.a.a 2 21.c even 2 1
496.2.a.i 2 28.d even 2 1
775.2.a.d 2 35.c odd 2 1
775.2.b.d 4 35.f even 4 2
961.2.a.f 2 217.d even 2 1
961.2.c.c 4 217.s even 6 2
961.2.c.e 4 217.u odd 6 2
961.2.d.a 4 217.v even 10 2
961.2.d.c 4 217.w odd 10 2
961.2.d.d 4 217.w odd 10 2
961.2.d.g 4 217.v even 10 2
961.2.g.a 8 217.bd odd 30 4
961.2.g.d 8 217.be even 30 4
961.2.g.e 8 217.be even 30 4
961.2.g.h 8 217.bd odd 30 4
1519.2.a.a 2 1.a even 1 1 trivial
1984.2.a.n 2 56.e even 2 1
1984.2.a.r 2 56.h odd 2 1
3751.2.a.b 2 77.b even 2 1
4464.2.a.bf 2 84.h odd 2 1
5239.2.a.f 2 91.b odd 2 1
6975.2.a.y 2 105.g even 2 1
8649.2.a.c 2 651.e odd 2 1
8959.2.a.b 2 119.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1519))\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{2} - 2T_{3} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 5 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$29$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$31$ \( (T + 1)^{2} \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( (T + 7)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} - 5 \) Copy content Toggle raw display
$61$ \( T^{2} - 6T - 116 \) Copy content Toggle raw display
$67$ \( (T - 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 121 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 10T - 20 \) Copy content Toggle raw display
$83$ \( T^{2} - 12T - 44 \) Copy content Toggle raw display
$89$ \( T^{2} + 10T - 20 \) Copy content Toggle raw display
$97$ \( T^{2} - 14T - 31 \) Copy content Toggle raw display
show more
show less