Properties

Label 152.2.c.a
Level 152152
Weight 22
Character orbit 152.c
Analytic conductor 1.2141.214
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,2,Mod(77,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.77");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 152=2319 152 = 2^{3} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 152.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.213726110721.21372611072
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i1)q22iq4+2q7+(2i+2)q8+3q9+4iq112iq13+(2i2)q144q16+2q17+(3i3)q18+iq19+(4i4)q222q23+5q25++12iq99+O(q100) q + (i - 1) q^{2} - 2 i q^{4} + 2 q^{7} + (2 i + 2) q^{8} + 3 q^{9} + 4 i q^{11} - 2 i q^{13} + (2 i - 2) q^{14} - 4 q^{16} + 2 q^{17} + (3 i - 3) q^{18} + i q^{19} + ( - 4 i - 4) q^{22} - 2 q^{23} + 5 q^{25} + \cdots + 12 i q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+4q7+4q8+6q94q148q16+4q176q188q224q23+10q25+4q2616q31+8q324q342q3812q41+16q44++6q98+O(q100) 2 q - 2 q^{2} + 4 q^{7} + 4 q^{8} + 6 q^{9} - 4 q^{14} - 8 q^{16} + 4 q^{17} - 6 q^{18} - 8 q^{22} - 4 q^{23} + 10 q^{25} + 4 q^{26} - 16 q^{31} + 8 q^{32} - 4 q^{34} - 2 q^{38} - 12 q^{41} + 16 q^{44}+ \cdots + 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/152Z)×\left(\mathbb{Z}/152\mathbb{Z}\right)^\times.

nn 3939 7777 9797
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
77.1
1.00000i
1.00000i
−1.00000 1.00000i 0 2.00000i 0 0 2.00000 2.00000 2.00000i 3.00000 0
77.2 −1.00000 + 1.00000i 0 2.00000i 0 0 2.00000 2.00000 + 2.00000i 3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.2.c.a 2
3.b odd 2 1 1368.2.g.a 2
4.b odd 2 1 608.2.c.a 2
8.b even 2 1 inner 152.2.c.a 2
8.d odd 2 1 608.2.c.a 2
12.b even 2 1 5472.2.g.a 2
16.e even 4 1 4864.2.a.g 1
16.e even 4 1 4864.2.a.h 1
16.f odd 4 1 4864.2.a.i 1
16.f odd 4 1 4864.2.a.j 1
24.f even 2 1 5472.2.g.a 2
24.h odd 2 1 1368.2.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.c.a 2 1.a even 1 1 trivial
152.2.c.a 2 8.b even 2 1 inner
608.2.c.a 2 4.b odd 2 1
608.2.c.a 2 8.d odd 2 1
1368.2.g.a 2 3.b odd 2 1
1368.2.g.a 2 24.h odd 2 1
4864.2.a.g 1 16.e even 4 1
4864.2.a.h 1 16.e even 4 1
4864.2.a.i 1 16.f odd 4 1
4864.2.a.j 1 16.f odd 4 1
5472.2.g.a 2 12.b even 2 1
5472.2.g.a 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3 T_{3} acting on S2new(152,[χ])S_{2}^{\mathrm{new}}(152, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1111 T2+16 T^{2} + 16 Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1919 T2+1 T^{2} + 1 Copy content Toggle raw display
2323 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
2929 T2+4 T^{2} + 4 Copy content Toggle raw display
3131 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
3737 T2+100 T^{2} + 100 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
5353 T2+4 T^{2} + 4 Copy content Toggle raw display
5959 T2+144 T^{2} + 144 Copy content Toggle raw display
6161 T2+64 T^{2} + 64 Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7373 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
7979 (T4)2 (T - 4)^{2} Copy content Toggle raw display
8383 T2+16 T^{2} + 16 Copy content Toggle raw display
8989 (T6)2 (T - 6)^{2} Copy content Toggle raw display
9797 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
show more
show less