Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [152,4,Mod(75,152)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(152, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("152.75");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.96829032087\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
75.1 | −2.82566 | − | 0.125191i | − | 3.78769i | 7.96865 | + | 0.707493i | − | 18.1832i | −0.474184 | + | 10.7027i | − | 24.7388i | −22.4281 | − | 2.99673i | 12.6534 | −2.27637 | + | 51.3795i | |||||
75.2 | −2.82566 | + | 0.125191i | 3.78769i | 7.96865 | − | 0.707493i | 18.1832i | −0.474184 | − | 10.7027i | 24.7388i | −22.4281 | + | 2.99673i | 12.6534 | −2.27637 | − | 51.3795i | ||||||||
75.3 | −2.81728 | − | 0.250834i | 8.04587i | 7.87416 | + | 1.41334i | − | 9.63632i | 2.01818 | − | 22.6675i | 0.162175i | −21.8292 | − | 5.95690i | −37.7360 | −2.41712 | + | 27.1482i | |||||||
75.4 | −2.81728 | + | 0.250834i | − | 8.04587i | 7.87416 | − | 1.41334i | 9.63632i | 2.01818 | + | 22.6675i | − | 0.162175i | −21.8292 | + | 5.95690i | −37.7360 | −2.41712 | − | 27.1482i | ||||||
75.5 | −2.66988 | − | 0.933662i | − | 0.255308i | 6.25655 | + | 4.98554i | − | 11.8859i | −0.238371 | + | 0.681642i | 31.1204i | −12.0494 | − | 19.1523i | 26.9348 | −11.0974 | + | 31.7339i | ||||||
75.6 | −2.66988 | + | 0.933662i | 0.255308i | 6.25655 | − | 4.98554i | 11.8859i | −0.238371 | − | 0.681642i | − | 31.1204i | −12.0494 | + | 19.1523i | 26.9348 | −11.0974 | − | 31.7339i | |||||||
75.7 | −2.58234 | − | 1.15391i | 4.27659i | 5.33699 | + | 5.95958i | 5.11676i | 4.93480 | − | 11.0436i | − | 21.0790i | −6.90512 | − | 21.5481i | 8.71076 | 5.90427 | − | 13.2132i | |||||||
75.8 | −2.58234 | + | 1.15391i | − | 4.27659i | 5.33699 | − | 5.95958i | − | 5.11676i | 4.93480 | + | 11.0436i | 21.0790i | −6.90512 | + | 21.5481i | 8.71076 | 5.90427 | + | 13.2132i | ||||||
75.9 | −2.57123 | − | 1.17846i | − | 5.03936i | 5.22247 | + | 6.06019i | 5.72550i | −5.93868 | + | 12.9574i | − | 3.30417i | −6.28649 | − | 21.7366i | 1.60489 | 6.74727 | − | 14.7216i | ||||||
75.10 | −2.57123 | + | 1.17846i | 5.03936i | 5.22247 | − | 6.06019i | − | 5.72550i | −5.93868 | − | 12.9574i | 3.30417i | −6.28649 | + | 21.7366i | 1.60489 | 6.74727 | + | 14.7216i | |||||||
75.11 | −2.08379 | − | 1.91254i | − | 9.95156i | 0.684366 | + | 7.97067i | − | 10.9343i | −19.0328 | + | 20.7370i | 8.59819i | 13.8182 | − | 17.9181i | −72.0335 | −20.9122 | + | 22.7847i | ||||||
75.12 | −2.08379 | + | 1.91254i | 9.95156i | 0.684366 | − | 7.97067i | 10.9343i | −19.0328 | − | 20.7370i | − | 8.59819i | 13.8182 | + | 17.9181i | −72.0335 | −20.9122 | − | 22.7847i | |||||||
75.13 | −2.03616 | − | 1.96318i | 1.32918i | 0.291881 | + | 7.99467i | 12.0484i | 2.60942 | − | 2.70643i | 0.906494i | 15.1006 | − | 16.8514i | 25.2333 | 23.6532 | − | 24.5325i | ||||||||
75.14 | −2.03616 | + | 1.96318i | − | 1.32918i | 0.291881 | − | 7.99467i | − | 12.0484i | 2.60942 | + | 2.70643i | − | 0.906494i | 15.1006 | + | 16.8514i | 25.2333 | 23.6532 | + | 24.5325i | |||||
75.15 | −1.78669 | − | 2.19266i | 7.28174i | −1.61551 | + | 7.83519i | − | 9.90745i | 15.9664 | − | 13.0102i | − | 14.2544i | 20.0663 | − | 10.4568i | −26.0237 | −21.7237 | + | 17.7015i | ||||||
75.16 | −1.78669 | + | 2.19266i | − | 7.28174i | −1.61551 | − | 7.83519i | 9.90745i | 15.9664 | + | 13.0102i | 14.2544i | 20.0663 | + | 10.4568i | −26.0237 | −21.7237 | − | 17.7015i | |||||||
75.17 | −1.75234 | − | 2.22020i | 9.10949i | −1.85859 | + | 7.78111i | 8.44223i | 20.2249 | − | 15.9629i | 32.9185i | 20.5325 | − | 9.50873i | −55.9827 | 18.7435 | − | 14.7937i | ||||||||
75.18 | −1.75234 | + | 2.22020i | − | 9.10949i | −1.85859 | − | 7.78111i | − | 8.44223i | 20.2249 | + | 15.9629i | − | 32.9185i | 20.5325 | + | 9.50873i | −55.9827 | 18.7435 | + | 14.7937i | |||||
75.19 | −1.43264 | − | 2.43876i | − | 0.262060i | −3.89506 | + | 6.98774i | − | 16.1045i | −0.639101 | + | 0.375439i | − | 14.0942i | 22.6216 | − | 0.511862i | 26.9313 | −39.2748 | + | 23.0720i | |||||
75.20 | −1.43264 | + | 2.43876i | 0.262060i | −3.89506 | − | 6.98774i | 16.1045i | −0.639101 | − | 0.375439i | 14.0942i | 22.6216 | + | 0.511862i | 26.9313 | −39.2748 | − | 23.0720i | ||||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
152.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 152.4.b.b | ✓ | 56 |
4.b | odd | 2 | 1 | 608.4.b.b | 56 | ||
8.b | even | 2 | 1 | 608.4.b.b | 56 | ||
8.d | odd | 2 | 1 | inner | 152.4.b.b | ✓ | 56 |
19.b | odd | 2 | 1 | inner | 152.4.b.b | ✓ | 56 |
76.d | even | 2 | 1 | 608.4.b.b | 56 | ||
152.b | even | 2 | 1 | inner | 152.4.b.b | ✓ | 56 |
152.g | odd | 2 | 1 | 608.4.b.b | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
152.4.b.b | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
152.4.b.b | ✓ | 56 | 8.d | odd | 2 | 1 | inner |
152.4.b.b | ✓ | 56 | 19.b | odd | 2 | 1 | inner |
152.4.b.b | ✓ | 56 | 152.b | even | 2 | 1 | inner |
608.4.b.b | 56 | 4.b | odd | 2 | 1 | ||
608.4.b.b | 56 | 8.b | even | 2 | 1 | ||
608.4.b.b | 56 | 76.d | even | 2 | 1 | ||
608.4.b.b | 56 | 152.g | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{28} + 510 T_{3}^{26} + 114211 T_{3}^{24} + 14801236 T_{3}^{22} + 1231097567 T_{3}^{20} + \cdots + 14\!\cdots\!00 \) acting on \(S_{4}^{\mathrm{new}}(152, [\chi])\).