Properties

Label 152.4.o
Level 152152
Weight 44
Character orbit 152.o
Rep. character χ152(27,)\chi_{152}(27,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 116116
Newform subspaces 22
Sturm bound 8080
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 152=2319 152 = 2^{3} \cdot 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 152.o (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 152 152
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 8080
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(152,[χ])M_{4}(152, [\chi]).

Total New Old
Modular forms 124 124 0
Cusp forms 116 116 0
Eisenstein series 8 8 0

Trace form

116q3q26q37q423q6+484q9+96q108q11+120q1467q162q1728q19+576q2027q2211q24+1248q25+24q26+94q28++1088q99+O(q100) 116 q - 3 q^{2} - 6 q^{3} - 7 q^{4} - 23 q^{6} + 484 q^{9} + 96 q^{10} - 8 q^{11} + 120 q^{14} - 67 q^{16} - 2 q^{17} - 28 q^{19} + 576 q^{20} - 27 q^{22} - 11 q^{24} + 1248 q^{25} + 24 q^{26} + 94 q^{28}+ \cdots + 1088 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(152,[χ])S_{4}^{\mathrm{new}}(152, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
152.4.o.a 152.o 152.o 44 8.9688.968 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) Q(2)\Q(\sqrt{-2}) 152.4.o.a 00 30-30 00 00 U(1)[D6]\mathrm{U}(1)[D_{6}] q+2β1q2+(5+β15β2)q3+8β2q4+q+2\beta _{1}q^{2}+(-5+\beta _{1}-5\beta _{2})q^{3}+8\beta _{2}q^{4}+\cdots
152.4.o.b 152.o 152.o 112112 8.9688.968 None 152.4.o.b 3-3 2424 00 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]