Properties

Label 152.4.o
Level $152$
Weight $4$
Character orbit 152.o
Rep. character $\chi_{152}(27,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $116$
Newform subspaces $2$
Sturm bound $80$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(152, [\chi])\).

Total New Old
Modular forms 124 124 0
Cusp forms 116 116 0
Eisenstein series 8 8 0

Trace form

\( 116 q - 3 q^{2} - 6 q^{3} - 7 q^{4} - 23 q^{6} + 484 q^{9} + O(q^{10}) \) \( 116 q - 3 q^{2} - 6 q^{3} - 7 q^{4} - 23 q^{6} + 484 q^{9} + 96 q^{10} - 8 q^{11} + 120 q^{14} - 67 q^{16} - 2 q^{17} - 28 q^{19} + 576 q^{20} - 27 q^{22} - 11 q^{24} + 1248 q^{25} + 24 q^{26} + 94 q^{28} + 160 q^{30} + 357 q^{32} - 168 q^{33} + 414 q^{34} + 704 q^{35} + 616 q^{36} - 796 q^{38} + 888 q^{40} - 66 q^{41} + 458 q^{42} - 2 q^{43} + 857 q^{44} - 1359 q^{48} - 3796 q^{49} - 2238 q^{51} - 216 q^{52} + 1163 q^{54} + 282 q^{57} - 2944 q^{58} - 6 q^{59} - 1758 q^{60} + 542 q^{62} + 998 q^{64} - 2909 q^{66} - 6 q^{67} - 2676 q^{68} + 162 q^{70} + 1680 q^{72} + 214 q^{73} - 3660 q^{74} - 3321 q^{76} + 492 q^{78} - 1692 q^{80} - 3810 q^{81} - 1661 q^{82} - 2688 q^{83} - 1596 q^{86} - 6 q^{89} + 6720 q^{90} + 2052 q^{91} + 3106 q^{92} - 4126 q^{96} - 6 q^{97} + 1167 q^{98} + 1088 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
152.4.o.a 152.o 152.o $4$ $8.968$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) 152.4.o.a \(0\) \(-30\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+2\beta _{1}q^{2}+(-5+\beta _{1}-5\beta _{2})q^{3}+8\beta _{2}q^{4}+\cdots\)
152.4.o.b 152.o 152.o $112$ $8.968$ None 152.4.o.b \(-3\) \(24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$