Defining parameters
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 152 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 124 | 0 |
Cusp forms | 116 | 116 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(152, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
152.4.o.a | $4$ | $8.968$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-30\) | \(0\) | \(0\) | \(q+2\beta _{1}q^{2}+(-5+\beta _{1}-5\beta _{2})q^{3}+8\beta _{2}q^{4}+\cdots\) |
152.4.o.b | $112$ | $8.968$ | None | \(-3\) | \(24\) | \(0\) | \(0\) |