Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [152,4,Mod(45,152)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(152, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("152.45");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.p (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.96829032087\) |
Analytic rank: | \(0\) |
Dimension: | \(116\) |
Relative dimension: | \(58\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | −2.82711 | − | 0.0864225i | 4.26220 | − | 2.46078i | 7.98506 | + | 0.488651i | −8.57414 | + | 4.95028i | −12.2624 | + | 6.58855i | 24.1590 | −22.5324 | − | 2.07156i | −1.38908 | + | 2.40596i | 24.6678 | − | 13.2540i | ||
45.2 | −2.82486 | + | 0.142059i | −7.04526 | + | 4.06758i | 7.95964 | − | 0.802590i | −4.40862 | + | 2.54532i | 19.3240 | − | 12.4912i | 19.7207 | −22.3708 | + | 3.39794i | 19.5905 | − | 33.9317i | 12.0922 | − | 7.81645i | ||
45.3 | −2.82331 | − | 0.170085i | −5.08710 | + | 2.93704i | 7.94214 | + | 0.960407i | 17.9631 | − | 10.3710i | 14.8620 | − | 7.42692i | −14.4987 | −22.2598 | − | 4.06237i | 3.75238 | − | 6.49931i | −52.4794 | + | 26.2253i | ||
45.4 | −2.81727 | + | 0.250933i | 8.39713 | − | 4.84809i | 7.87406 | − | 1.41390i | −7.24805 | + | 4.18466i | −22.4405 | + | 15.7655i | −14.4081 | −21.8286 | + | 5.95920i | 33.5079 | − | 58.0374i | 19.3697 | − | 13.6081i | ||
45.5 | −2.74034 | − | 0.700393i | 1.33173 | − | 0.768876i | 7.01890 | + | 3.83863i | −0.690311 | + | 0.398551i | −4.18791 | + | 1.17424i | −7.42713 | −16.5456 | − | 15.4351i | −12.3177 | + | 21.3348i | 2.17083 | − | 0.608676i | ||
45.6 | −2.73439 | − | 0.723246i | −5.03629 | + | 2.90770i | 6.95383 | + | 3.95528i | −17.1051 | + | 9.87563i | 15.8742 | − | 4.30833i | −30.7136 | −16.1539 | − | 15.8446i | 3.40947 | − | 5.90537i | 53.9146 | − | 14.6327i | ||
45.7 | −2.66177 | + | 0.956557i | 3.22382 | − | 1.86127i | 6.17000 | − | 5.09226i | 15.4187 | − | 8.90199i | −6.80063 | + | 8.03803i | 36.5436 | −11.5520 | + | 19.4564i | −6.57134 | + | 11.3819i | −32.5257 | + | 38.4439i | ||
45.8 | −2.61512 | + | 1.07757i | 2.09100 | − | 1.20724i | 5.67769 | − | 5.63594i | 3.32294 | − | 1.91850i | −4.16734 | + | 5.41028i | −25.0171 | −8.77472 | + | 20.8568i | −10.5851 | + | 18.3340i | −6.62257 | + | 8.59781i | ||
45.9 | −2.55889 | + | 1.20502i | −4.74696 | + | 2.74066i | 5.09583 | − | 6.16705i | 2.75286 | − | 1.58936i | 8.84438 | − | 12.7332i | 6.39182 | −5.60823 | + | 21.9214i | 1.52239 | − | 2.63686i | −5.12904 | + | 7.38426i | ||
45.10 | −2.41786 | − | 1.46764i | 6.82189 | − | 3.93862i | 3.69206 | + | 7.09709i | 12.0425 | − | 6.95276i | −22.2748 | − | 0.489060i | 3.48301 | 1.48909 | − | 22.5784i | 17.5255 | − | 30.3550i | −39.3213 | − | 0.863327i | ||
45.11 | −2.38043 | − | 1.52759i | −1.64191 | + | 0.947957i | 3.33293 | + | 7.27266i | 7.43335 | − | 4.29165i | 5.35655 | + | 0.251620i | 3.63601 | 3.17585 | − | 22.4034i | −11.7028 | + | 20.2698i | −24.2505 | − | 1.13915i | ||
45.12 | −2.37410 | + | 1.53742i | −0.934984 | + | 0.539813i | 3.27269 | − | 7.29997i | −16.9708 | + | 9.79810i | 1.38982 | − | 2.71903i | 1.96699 | 3.45341 | + | 22.3623i | −12.9172 | + | 22.3733i | 25.2266 | − | 49.3529i | ||
45.13 | −2.06790 | − | 1.92971i | −7.17990 | + | 4.14532i | 0.552429 | + | 7.98090i | −0.378089 | + | 0.218290i | 22.8466 | + | 5.28303i | 17.0792 | 14.2585 | − | 17.5697i | 20.8673 | − | 36.1433i | 1.20309 | + | 0.278201i | ||
45.14 | −1.96964 | + | 2.02991i | 7.73504 | − | 4.46582i | −0.241064 | − | 7.99637i | 8.20718 | − | 4.73842i | −6.16999 | + | 24.4975i | −1.12317 | 16.7067 | + | 15.2606i | 26.3872 | − | 45.7039i | −6.54660 | + | 25.9928i | ||
45.15 | −1.95037 | − | 2.04843i | −0.706252 | + | 0.407755i | −0.392134 | + | 7.99038i | −12.8180 | + | 7.40046i | 2.21271 | + | 0.651437i | 26.8247 | 17.1326 | − | 14.7809i | −13.1675 | + | 22.8067i | 40.1591 | + | 11.8231i | ||
45.16 | −1.90949 | − | 2.08659i | 6.11810 | − | 3.53229i | −0.707710 | + | 7.96864i | −15.3833 | + | 8.88152i | −19.0529 | − | 6.02110i | −5.95523 | 17.9786 | − | 13.7393i | 11.4541 | − | 19.8390i | 47.9062 | + | 15.1394i | ||
45.17 | −1.85453 | + | 2.13558i | −8.17248 | + | 4.71838i | −1.12144 | − | 7.92101i | 0.978198 | − | 0.564763i | 5.07960 | − | 26.2034i | −30.0678 | 18.9957 | + | 12.2948i | 31.0262 | − | 53.7390i | −0.607999 | + | 3.13639i | ||
45.18 | −1.57710 | + | 2.34792i | 5.02331 | − | 2.90021i | −3.02550 | − | 7.40583i | −10.8661 | + | 6.27356i | −1.11280 | + | 16.3683i | 0.00550543 | 22.1599 | + | 4.57612i | 3.32241 | − | 5.75457i | 2.40715 | − | 35.4069i | ||
45.19 | −1.53199 | + | 2.37761i | −3.41182 | + | 1.96982i | −3.30604 | − | 7.28492i | 2.11879 | − | 1.22328i | 0.543410 | − | 11.1297i | 20.3570 | 22.3855 | + | 3.29993i | −5.73966 | + | 9.94138i | −0.337465 | + | 6.91169i | ||
45.20 | −1.45458 | − | 2.42574i | 3.96852 | − | 2.29123i | −3.76842 | + | 7.05684i | 3.72792 | − | 2.15232i | −11.3304 | − | 6.29383i | −30.2215 | 22.5995 | − | 1.12350i | −3.00057 | + | 5.19714i | −10.6435 | − | 5.91226i | ||
See next 80 embeddings (of 116 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
19.c | even | 3 | 1 | inner |
152.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 152.4.p.a | ✓ | 116 |
8.b | even | 2 | 1 | inner | 152.4.p.a | ✓ | 116 |
19.c | even | 3 | 1 | inner | 152.4.p.a | ✓ | 116 |
152.p | even | 6 | 1 | inner | 152.4.p.a | ✓ | 116 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
152.4.p.a | ✓ | 116 | 1.a | even | 1 | 1 | trivial |
152.4.p.a | ✓ | 116 | 8.b | even | 2 | 1 | inner |
152.4.p.a | ✓ | 116 | 19.c | even | 3 | 1 | inner |
152.4.p.a | ✓ | 116 | 152.p | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(152, [\chi])\).