Properties

Label 152.4.t
Level $152$
Weight $4$
Character orbit 152.t
Rep. character $\chi_{152}(5,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $348$
Newform subspaces $1$
Sturm bound $80$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.t (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(80\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(152, [\chi])\).

Total New Old
Modular forms 372 372 0
Cusp forms 348 348 0
Eisenstein series 24 24 0

Trace form

\( 348 q - 6 q^{2} + 12 q^{4} - 24 q^{6} - 6 q^{7} - 3 q^{8} - 12 q^{9} + 75 q^{10} - 3 q^{12} - 81 q^{14} - 12 q^{15} + 192 q^{16} - 12 q^{17} - 12 q^{18} + 558 q^{20} - 30 q^{22} - 12 q^{23} - 108 q^{24}+ \cdots + 8055 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
152.4.t.a 152.t 152.t $348$ $8.968$ None 152.4.t.a \(-6\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{18}]$