Properties

Label 152.4.t
Level $152$
Weight $4$
Character orbit 152.t
Rep. character $\chi_{152}(5,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $348$
Newform subspaces $1$
Sturm bound $80$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.t (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(80\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(152, [\chi])\).

Total New Old
Modular forms 372 372 0
Cusp forms 348 348 0
Eisenstein series 24 24 0

Trace form

\( 348 q - 6 q^{2} + 12 q^{4} - 24 q^{6} - 6 q^{7} - 3 q^{8} - 12 q^{9} + O(q^{10}) \) \( 348 q - 6 q^{2} + 12 q^{4} - 24 q^{6} - 6 q^{7} - 3 q^{8} - 12 q^{9} + 75 q^{10} - 3 q^{12} - 81 q^{14} - 12 q^{15} + 192 q^{16} - 12 q^{17} - 12 q^{18} + 558 q^{20} - 30 q^{22} - 12 q^{23} - 108 q^{24} - 12 q^{25} - 411 q^{26} + 1140 q^{28} - 282 q^{30} - 1122 q^{31} + 39 q^{32} - 174 q^{33} + 1536 q^{34} - 2835 q^{36} + 966 q^{38} - 24 q^{39} - 1068 q^{40} + 48 q^{41} + 3015 q^{42} - 1203 q^{44} - 528 q^{46} - 624 q^{47} + 4755 q^{48} - 6768 q^{49} - 1074 q^{50} - 1089 q^{52} + 615 q^{54} - 762 q^{55} + 2046 q^{56} - 12 q^{57} + 4092 q^{58} + 4050 q^{60} + 3120 q^{62} + 2046 q^{63} + 2355 q^{64} - 6 q^{65} + 1716 q^{66} - 1176 q^{68} - 2973 q^{70} - 12 q^{71} - 7122 q^{72} + 636 q^{73} - 9363 q^{74} - 2454 q^{76} - 6897 q^{78} - 12 q^{79} - 6885 q^{80} + 1206 q^{81} - 7311 q^{82} + 1947 q^{84} + 7452 q^{86} - 6 q^{87} - 1131 q^{88} - 12 q^{89} + 4014 q^{90} + 7656 q^{92} + 11898 q^{94} + 1848 q^{95} - 18966 q^{96} - 12 q^{97} + 8055 q^{98} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
152.4.t.a 152.t 152.t $348$ $8.968$ None 152.4.t.a \(-6\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{18}]$