Defining parameters
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.q (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Sturm bound: | \(160\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 864 | 210 | 654 |
Cusp forms | 816 | 210 | 606 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(152, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{8}^{\mathrm{old}}(152, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(152, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)