Properties

Label 152.8.q
Level $152$
Weight $8$
Character orbit 152.q
Rep. character $\chi_{152}(9,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $210$
Sturm bound $160$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 152.q (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(160\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(152, [\chi])\).

Total New Old
Modular forms 864 210 654
Cusp forms 816 210 606
Eisenstein series 48 0 48

Trace form

\( 210 q + 39 q^{3} - 5031 q^{9} - 5298 q^{13} + 10668 q^{15} + 31002 q^{17} - 28734 q^{19} + 20574 q^{21} - 3444 q^{23} + 197652 q^{25} + 269241 q^{27} + 398652 q^{29} - 141366 q^{31} - 803835 q^{33} + 41814 q^{35}+ \cdots + 56832825 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(152, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(152, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(152, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)