Properties

Label 1520.1.bh.b
Level 15201520
Weight 11
Character orbit 1520.bh
Analytic conductor 0.7590.759
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,1,Mod(189,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.189");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1520=24519 1520 = 2^{4} \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1520.bh (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7585788192020.758578819202
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.972800.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ83q2ζ8q3ζ82q4+q5q6+q7ζ8q8ζ83q10+ζ83q12+ζ8q13ζ83q14ζ8q15++(ζ83+ζ8)q97+O(q100) q - \zeta_{8}^{3} q^{2} - \zeta_{8} q^{3} - \zeta_{8}^{2} q^{4} + q^{5} - q^{6} + q^{7} - \zeta_{8} q^{8} - \zeta_{8}^{3} q^{10} + \zeta_{8}^{3} q^{12} + \zeta_{8} q^{13} - \zeta_{8}^{3} q^{14} - \zeta_{8} q^{15} + \cdots + ( - \zeta_{8}^{3} + \zeta_{8}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q54q6+4q74q164q23+4q25+4q264q30+4q354q424q434q574q61+4q684q734q80+4q81+4q87+4q96+O(q100) 4 q + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{16} - 4 q^{23} + 4 q^{25} + 4 q^{26} - 4 q^{30} + 4 q^{35} - 4 q^{42} - 4 q^{43} - 4 q^{57} - 4 q^{61} + 4 q^{68} - 4 q^{73} - 4 q^{80} + 4 q^{81} + 4 q^{87} + 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1520Z)×\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times.

nn 191191 401401 11411141 12171217
χ(n)\chi(n) 11 1-1 ζ82-\zeta_{8}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
189.1
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i 1.00000 −1.00000 1.00000 0.707107 + 0.707107i 0 −0.707107 + 0.707107i
189.2 0.707107 0.707107i −0.707107 0.707107i 1.00000i 1.00000 −1.00000 1.00000 −0.707107 0.707107i 0 0.707107 0.707107i
949.1 −0.707107 0.707107i 0.707107 0.707107i 1.00000i 1.00000 −1.00000 1.00000 0.707107 0.707107i 0 −0.707107 0.707107i
949.2 0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i 1.00000 −1.00000 1.00000 −0.707107 + 0.707107i 0 0.707107 + 0.707107i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner
80.q even 4 1 inner
1520.bh odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.1.bh.b yes 4
5.b even 2 1 1520.1.bh.a 4
16.e even 4 1 1520.1.bh.a 4
19.b odd 2 1 inner 1520.1.bh.b yes 4
80.q even 4 1 inner 1520.1.bh.b yes 4
95.d odd 2 1 1520.1.bh.a 4
304.j odd 4 1 1520.1.bh.a 4
1520.bh odd 4 1 inner 1520.1.bh.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1520.1.bh.a 4 5.b even 2 1
1520.1.bh.a 4 16.e even 4 1
1520.1.bh.a 4 95.d odd 2 1
1520.1.bh.a 4 304.j odd 4 1
1520.1.bh.b yes 4 1.a even 1 1 trivial
1520.1.bh.b yes 4 19.b odd 2 1 inner
1520.1.bh.b yes 4 80.q even 4 1 inner
1520.1.bh.b yes 4 1520.bh odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(1520,[χ])S_{1}^{\mathrm{new}}(1520, [\chi]):

T34+1 T_{3}^{4} + 1 Copy content Toggle raw display
T71 T_{7} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 (T1)4 (T - 1)^{4} Copy content Toggle raw display
77 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4+1 T^{4} + 1 Copy content Toggle raw display
1717 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1919 T4+1 T^{4} + 1 Copy content Toggle raw display
2323 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2929 T4+1 T^{4} + 1 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
4747 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
5353 T4+1 T^{4} + 1 Copy content Toggle raw display
5959 T4+1 T^{4} + 1 Copy content Toggle raw display
6161 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
6767 T4+1 T^{4} + 1 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
7979 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
9797 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
show more
show less