Properties

Label 1520.1.cr.a
Level 15201520
Weight 11
Character orbit 1520.cr
Analytic conductor 0.7590.759
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,1,Mod(273,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 9, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.273");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1520=24519 1520 = 2^{4} \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1520.cr (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7585788192020.758578819202
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 760)
Projective image: S4S_{4}
Projective field: Galois closure of 4.0.722000.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ124ζ12)q3ζ12q5ζ125q9q11+(ζ125+ζ122)q15ζ125q19+(ζ125+ζ122)q23++ζ125q99+O(q100) q + (\zeta_{12}^{4} - \zeta_{12}) q^{3} - \zeta_{12} q^{5} - \zeta_{12}^{5} q^{9} - q^{11} + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{15} - \zeta_{12}^{5} q^{19} + (\zeta_{12}^{5} + \zeta_{12}^{2}) q^{23} + \cdots + \zeta_{12}^{5} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q34q11+2q15+2q23+2q25+4q31+2q334q37+2q434q45+2q534q57+2q61+2q71+2q734q752q81+4q834q87++2q97+O(q100) 4 q - 2 q^{3} - 4 q^{11} + 2 q^{15} + 2 q^{23} + 2 q^{25} + 4 q^{31} + 2 q^{33} - 4 q^{37} + 2 q^{43} - 4 q^{45} + 2 q^{53} - 4 q^{57} + 2 q^{61} + 2 q^{71} + 2 q^{73} - 4 q^{75} - 2 q^{81} + 4 q^{83} - 4 q^{87}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1520Z)×\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times.

nn 191191 401401 11411141 12171217
χ(n)\chi(n) 11 ζ122-\zeta_{12}^{2} 11 ζ123-\zeta_{12}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
273.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0 0.366025 1.36603i 0 0.866025 0.500000i 0 0 0 −0.866025 0.500000i 0
353.1 0 −1.36603 + 0.366025i 0 −0.866025 0.500000i 0 0 0 0.866025 0.500000i 0
577.1 0 −1.36603 0.366025i 0 −0.866025 + 0.500000i 0 0 0 0.866025 + 0.500000i 0
657.1 0 0.366025 + 1.36603i 0 0.866025 + 0.500000i 0 0 0 −0.866025 + 0.500000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
19.c even 3 1 inner
95.m odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.1.cr.a 4
4.b odd 2 1 760.1.bt.a 4
5.c odd 4 1 inner 1520.1.cr.a 4
19.c even 3 1 inner 1520.1.cr.a 4
20.d odd 2 1 3800.1.cj.a 4
20.e even 4 1 760.1.bt.a 4
20.e even 4 1 3800.1.cj.a 4
76.g odd 6 1 760.1.bt.a 4
95.m odd 12 1 inner 1520.1.cr.a 4
380.p odd 6 1 3800.1.cj.a 4
380.v even 12 1 760.1.bt.a 4
380.v even 12 1 3800.1.cj.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
760.1.bt.a 4 4.b odd 2 1
760.1.bt.a 4 20.e even 4 1
760.1.bt.a 4 76.g odd 6 1
760.1.bt.a 4 380.v even 12 1
1520.1.cr.a 4 1.a even 1 1 trivial
1520.1.cr.a 4 5.c odd 4 1 inner
1520.1.cr.a 4 19.c even 3 1 inner
1520.1.cr.a 4 95.m odd 12 1 inner
3800.1.cj.a 4 20.d odd 2 1
3800.1.cj.a 4 20.e even 4 1
3800.1.cj.a 4 380.p odd 6 1
3800.1.cj.a 4 380.v even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+2T33+2T32+4T3+4 T_{3}^{4} + 2T_{3}^{3} + 2T_{3}^{2} + 4T_{3} + 4 acting on S1new(1520,[χ])S_{1}^{\mathrm{new}}(1520, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
2323 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
2929 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
3131 (T1)4 (T - 1)^{4} Copy content Toggle raw display
3737 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
5959 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
6161 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
7373 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
7979 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
8383 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
8989 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
9797 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
show more
show less