Properties

Label 1520.2.bd
Level 15201520
Weight 22
Character orbit 1520.bd
Rep. character χ1520(113,)\chi_{1520}(113,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 116116
Sturm bound 480480

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1520=24519 1520 = 2^{4} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1520.bd (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 95 95
Character field: Q(i)\Q(i)
Sturm bound: 480480

Dimensions

The following table gives the dimensions of various subspaces of M2(1520,[χ])M_{2}(1520, [\chi]).

Total New Old
Modular forms 504 124 380
Cusp forms 456 116 340
Eisenstein series 48 8 40

Trace form

116q4q5+4q7+8q114q17+16q234q25+28q35+4q43+16q4520q47+72q55+8q5740q61+36q634q7332q7792q81+32q83++28q95+O(q100) 116 q - 4 q^{5} + 4 q^{7} + 8 q^{11} - 4 q^{17} + 16 q^{23} - 4 q^{25} + 28 q^{35} + 4 q^{43} + 16 q^{45} - 20 q^{47} + 72 q^{55} + 8 q^{57} - 40 q^{61} + 36 q^{63} - 4 q^{73} - 32 q^{77} - 92 q^{81} + 32 q^{83}+ \cdots + 28 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1520,[χ])S_{2}^{\mathrm{new}}(1520, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1520,[χ])S_{2}^{\mathrm{old}}(1520, [\chi]) into lower level spaces

S2old(1520,[χ]) S_{2}^{\mathrm{old}}(1520, [\chi]) \simeq S2new(95,[χ])S_{2}^{\mathrm{new}}(95, [\chi])5^{\oplus 5}\oplusS2new(190,[χ])S_{2}^{\mathrm{new}}(190, [\chi])4^{\oplus 4}\oplusS2new(380,[χ])S_{2}^{\mathrm{new}}(380, [\chi])3^{\oplus 3}\oplusS2new(760,[χ])S_{2}^{\mathrm{new}}(760, [\chi])2^{\oplus 2}