Defining parameters
Level: | \( N \) | \(=\) | \( 1520 = 2^{4} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1520.bd (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(480\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1520, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 504 | 124 | 380 |
Cusp forms | 456 | 116 | 340 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1520, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1520, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1520, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)