Properties

Label 1520.4.a.f
Level $1520$
Weight $4$
Character orbit 1520.a
Self dual yes
Analytic conductor $89.683$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1520,4,Mod(1,1520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1520.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6829032087\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{3} + 5 q^{5} - 8 q^{7} - 23 q^{9} - 44 q^{11} + 10 q^{15} - 74 q^{17} - 19 q^{19} - 16 q^{21} - 84 q^{23} + 25 q^{25} - 100 q^{27} + 266 q^{29} - 136 q^{31} - 88 q^{33} - 40 q^{35} + 424 q^{37}+ \cdots + 1012 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 5.00000 0 −8.00000 0 −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.4.a.f 1
4.b odd 2 1 190.4.a.a 1
12.b even 2 1 1710.4.a.i 1
20.d odd 2 1 950.4.a.c 1
20.e even 4 2 950.4.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.a 1 4.b odd 2 1
950.4.a.c 1 20.d odd 2 1
950.4.b.c 2 20.e even 4 2
1520.4.a.f 1 1.a even 1 1 trivial
1710.4.a.i 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1520))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T + 44 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 74 \) Copy content Toggle raw display
$19$ \( T + 19 \) Copy content Toggle raw display
$23$ \( T + 84 \) Copy content Toggle raw display
$29$ \( T - 266 \) Copy content Toggle raw display
$31$ \( T + 136 \) Copy content Toggle raw display
$37$ \( T - 424 \) Copy content Toggle raw display
$41$ \( T - 470 \) Copy content Toggle raw display
$43$ \( T - 236 \) Copy content Toggle raw display
$47$ \( T - 240 \) Copy content Toggle raw display
$53$ \( T - 36 \) Copy content Toggle raw display
$59$ \( T + 736 \) Copy content Toggle raw display
$61$ \( T - 650 \) Copy content Toggle raw display
$67$ \( T - 830 \) Copy content Toggle raw display
$71$ \( T - 216 \) Copy content Toggle raw display
$73$ \( T - 254 \) Copy content Toggle raw display
$79$ \( T - 1220 \) Copy content Toggle raw display
$83$ \( T - 688 \) Copy content Toggle raw display
$89$ \( T - 102 \) Copy content Toggle raw display
$97$ \( T + 1280 \) Copy content Toggle raw display
show more
show less