Properties

Label 1521.2.b.g.1351.1
Level $1521$
Weight $2$
Character 1521.1351
Analytic conductor $12.145$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(1351,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.1
Root \(1.93649 + 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 1521.1351
Dual form 1521.2.b.g.1351.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{2} -3.00000 q^{4} -2.23607i q^{5} -3.46410i q^{7} +2.23607i q^{8} -5.00000 q^{10} +4.47214i q^{11} -7.74597 q^{14} -1.00000 q^{16} -3.87298 q^{17} -3.46410i q^{19} +6.70820i q^{20} +10.0000 q^{22} -7.74597 q^{23} +10.3923i q^{28} +3.87298 q^{29} +6.70820i q^{32} +8.66025i q^{34} -7.74597 q^{35} -1.73205i q^{37} -7.74597 q^{38} +5.00000 q^{40} -2.23607i q^{41} +2.00000 q^{43} -13.4164i q^{44} +17.3205i q^{46} +4.47214i q^{47} -5.00000 q^{49} -11.6190 q^{53} +10.0000 q^{55} +7.74597 q^{56} -8.66025i q^{58} -8.94427i q^{59} -7.00000 q^{61} +13.0000 q^{64} +3.46410i q^{67} +11.6190 q^{68} +17.3205i q^{70} +4.47214i q^{71} -15.5885i q^{73} -3.87298 q^{74} +10.3923i q^{76} +15.4919 q^{77} +8.00000 q^{79} +2.23607i q^{80} -5.00000 q^{82} +4.47214i q^{83} +8.66025i q^{85} -4.47214i q^{86} -10.0000 q^{88} +4.47214i q^{89} +23.2379 q^{92} +10.0000 q^{94} -7.74597 q^{95} +6.92820i q^{97} +11.1803i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{4} - 20 q^{10} - 4 q^{16} + 40 q^{22} + 20 q^{40} + 8 q^{43} - 20 q^{49} + 40 q^{55} - 28 q^{61} + 52 q^{64} + 32 q^{79} - 20 q^{82} - 40 q^{88} + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.23607i − 1.58114i −0.612372 0.790569i \(-0.709785\pi\)
0.612372 0.790569i \(-0.290215\pi\)
\(3\) 0 0
\(4\) −3.00000 −1.50000
\(5\) − 2.23607i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(6\) 0 0
\(7\) − 3.46410i − 1.30931i −0.755929 0.654654i \(-0.772814\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 2.23607i 0.790569i
\(9\) 0 0
\(10\) −5.00000 −1.58114
\(11\) 4.47214i 1.34840i 0.738549 + 0.674200i \(0.235511\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −7.74597 −2.07020
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.87298 −0.939336 −0.469668 0.882843i \(-0.655626\pi\)
−0.469668 + 0.882843i \(0.655626\pi\)
\(18\) 0 0
\(19\) − 3.46410i − 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 6.70820i 1.50000i
\(21\) 0 0
\(22\) 10.0000 2.13201
\(23\) −7.74597 −1.61515 −0.807573 0.589768i \(-0.799219\pi\)
−0.807573 + 0.589768i \(0.799219\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 10.3923i 1.96396i
\(29\) 3.87298 0.719195 0.359597 0.933108i \(-0.382914\pi\)
0.359597 + 0.933108i \(0.382914\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 6.70820i 1.18585i
\(33\) 0 0
\(34\) 8.66025i 1.48522i
\(35\) −7.74597 −1.30931
\(36\) 0 0
\(37\) − 1.73205i − 0.284747i −0.989813 0.142374i \(-0.954527\pi\)
0.989813 0.142374i \(-0.0454735\pi\)
\(38\) −7.74597 −1.25656
\(39\) 0 0
\(40\) 5.00000 0.790569
\(41\) − 2.23607i − 0.349215i −0.984638 0.174608i \(-0.944134\pi\)
0.984638 0.174608i \(-0.0558657\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) − 13.4164i − 2.02260i
\(45\) 0 0
\(46\) 17.3205i 2.55377i
\(47\) 4.47214i 0.652328i 0.945313 + 0.326164i \(0.105756\pi\)
−0.945313 + 0.326164i \(0.894244\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.6190 −1.59599 −0.797993 0.602667i \(-0.794105\pi\)
−0.797993 + 0.602667i \(0.794105\pi\)
\(54\) 0 0
\(55\) 10.0000 1.34840
\(56\) 7.74597 1.03510
\(57\) 0 0
\(58\) − 8.66025i − 1.13715i
\(59\) − 8.94427i − 1.16445i −0.813029 0.582223i \(-0.802183\pi\)
0.813029 0.582223i \(-0.197817\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 13.0000 1.62500
\(65\) 0 0
\(66\) 0 0
\(67\) 3.46410i 0.423207i 0.977356 + 0.211604i \(0.0678686\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 11.6190 1.40900
\(69\) 0 0
\(70\) 17.3205i 2.07020i
\(71\) 4.47214i 0.530745i 0.964146 + 0.265372i \(0.0854949\pi\)
−0.964146 + 0.265372i \(0.914505\pi\)
\(72\) 0 0
\(73\) − 15.5885i − 1.82449i −0.409644 0.912245i \(-0.634347\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) −3.87298 −0.450225
\(75\) 0 0
\(76\) 10.3923i 1.19208i
\(77\) 15.4919 1.76547
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 2.23607i 0.250000i
\(81\) 0 0
\(82\) −5.00000 −0.552158
\(83\) 4.47214i 0.490881i 0.969412 + 0.245440i \(0.0789325\pi\)
−0.969412 + 0.245440i \(0.921067\pi\)
\(84\) 0 0
\(85\) 8.66025i 0.939336i
\(86\) − 4.47214i − 0.482243i
\(87\) 0 0
\(88\) −10.0000 −1.06600
\(89\) 4.47214i 0.474045i 0.971504 + 0.237023i \(0.0761716\pi\)
−0.971504 + 0.237023i \(0.923828\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 23.2379 2.42272
\(93\) 0 0
\(94\) 10.0000 1.03142
\(95\) −7.74597 −0.794719
\(96\) 0 0
\(97\) 6.92820i 0.703452i 0.936103 + 0.351726i \(0.114405\pi\)
−0.936103 + 0.351726i \(0.885595\pi\)
\(98\) 11.1803i 1.12938i
\(99\) 0 0
\(100\) 0 0
\(101\) 3.87298 0.385376 0.192688 0.981260i \(-0.438279\pi\)
0.192688 + 0.981260i \(0.438279\pi\)
\(102\) 0 0
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 25.9808i 2.52347i
\(107\) −7.74597 −0.748831 −0.374415 0.927261i \(-0.622157\pi\)
−0.374415 + 0.927261i \(0.622157\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) − 22.3607i − 2.13201i
\(111\) 0 0
\(112\) 3.46410i 0.327327i
\(113\) 19.3649 1.82170 0.910849 0.412740i \(-0.135428\pi\)
0.910849 + 0.412740i \(0.135428\pi\)
\(114\) 0 0
\(115\) 17.3205i 1.61515i
\(116\) −11.6190 −1.07879
\(117\) 0 0
\(118\) −20.0000 −1.84115
\(119\) 13.4164i 1.22988i
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 15.6525i 1.41711i
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.1803i − 1.00000i
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) − 15.6525i − 1.38350i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 7.74597 0.669150
\(135\) 0 0
\(136\) − 8.66025i − 0.742611i
\(137\) − 15.6525i − 1.33728i −0.743586 0.668641i \(-0.766876\pi\)
0.743586 0.668641i \(-0.233124\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 23.2379 1.96396
\(141\) 0 0
\(142\) 10.0000 0.839181
\(143\) 0 0
\(144\) 0 0
\(145\) − 8.66025i − 0.719195i
\(146\) −34.8569 −2.88477
\(147\) 0 0
\(148\) 5.19615i 0.427121i
\(149\) 11.1803i 0.915929i 0.888970 + 0.457965i \(0.151421\pi\)
−0.888970 + 0.457965i \(0.848579\pi\)
\(150\) 0 0
\(151\) 10.3923i 0.845714i 0.906196 + 0.422857i \(0.138973\pi\)
−0.906196 + 0.422857i \(0.861027\pi\)
\(152\) 7.74597 0.628281
\(153\) 0 0
\(154\) − 34.6410i − 2.79145i
\(155\) 0 0
\(156\) 0 0
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) − 17.8885i − 1.42314i
\(159\) 0 0
\(160\) 15.0000 1.18585
\(161\) 26.8328i 2.11472i
\(162\) 0 0
\(163\) − 13.8564i − 1.08532i −0.839953 0.542659i \(-0.817418\pi\)
0.839953 0.542659i \(-0.182582\pi\)
\(164\) 6.70820i 0.523823i
\(165\) 0 0
\(166\) 10.0000 0.776151
\(167\) − 8.94427i − 0.692129i −0.938211 0.346064i \(-0.887518\pi\)
0.938211 0.346064i \(-0.112482\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 19.3649 1.48522
\(171\) 0 0
\(172\) −6.00000 −0.457496
\(173\) −15.4919 −1.17783 −0.588915 0.808195i \(-0.700445\pi\)
−0.588915 + 0.808195i \(0.700445\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 4.47214i − 0.337100i
\(177\) 0 0
\(178\) 10.0000 0.749532
\(179\) −7.74597 −0.578961 −0.289480 0.957184i \(-0.593482\pi\)
−0.289480 + 0.957184i \(0.593482\pi\)
\(180\) 0 0
\(181\) −19.0000 −1.41226 −0.706129 0.708083i \(-0.749560\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) − 17.3205i − 1.27688i
\(185\) −3.87298 −0.284747
\(186\) 0 0
\(187\) − 17.3205i − 1.26660i
\(188\) − 13.4164i − 0.978492i
\(189\) 0 0
\(190\) 17.3205i 1.25656i
\(191\) −15.4919 −1.12096 −0.560478 0.828169i \(-0.689383\pi\)
−0.560478 + 0.828169i \(0.689383\pi\)
\(192\) 0 0
\(193\) − 1.73205i − 0.124676i −0.998055 0.0623379i \(-0.980144\pi\)
0.998055 0.0623379i \(-0.0198556\pi\)
\(194\) 15.4919 1.11226
\(195\) 0 0
\(196\) 15.0000 1.07143
\(197\) 4.47214i 0.318626i 0.987228 + 0.159313i \(0.0509280\pi\)
−0.987228 + 0.159313i \(0.949072\pi\)
\(198\) 0 0
\(199\) −22.0000 −1.55954 −0.779769 0.626067i \(-0.784664\pi\)
−0.779769 + 0.626067i \(0.784664\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 8.66025i − 0.609333i
\(203\) − 13.4164i − 0.941647i
\(204\) 0 0
\(205\) −5.00000 −0.349215
\(206\) − 4.47214i − 0.311588i
\(207\) 0 0
\(208\) 0 0
\(209\) 15.4919 1.07160
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 34.8569 2.39398
\(213\) 0 0
\(214\) 17.3205i 1.18401i
\(215\) − 4.47214i − 0.304997i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −30.0000 −2.02260
\(221\) 0 0
\(222\) 0 0
\(223\) − 27.7128i − 1.85579i −0.372845 0.927894i \(-0.621618\pi\)
0.372845 0.927894i \(-0.378382\pi\)
\(224\) 23.2379 1.55265
\(225\) 0 0
\(226\) − 43.3013i − 2.88036i
\(227\) − 22.3607i − 1.48413i −0.670328 0.742065i \(-0.733846\pi\)
0.670328 0.742065i \(-0.266154\pi\)
\(228\) 0 0
\(229\) − 20.7846i − 1.37349i −0.726900 0.686743i \(-0.759040\pi\)
0.726900 0.686743i \(-0.240960\pi\)
\(230\) 38.7298 2.55377
\(231\) 0 0
\(232\) 8.66025i 0.568574i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 10.0000 0.652328
\(236\) 26.8328i 1.74667i
\(237\) 0 0
\(238\) 30.0000 1.94461
\(239\) 4.47214i 0.289278i 0.989484 + 0.144639i \(0.0462022\pi\)
−0.989484 + 0.144639i \(0.953798\pi\)
\(240\) 0 0
\(241\) − 19.0526i − 1.22728i −0.789585 0.613642i \(-0.789704\pi\)
0.789585 0.613642i \(-0.210296\pi\)
\(242\) 20.1246i 1.29366i
\(243\) 0 0
\(244\) 21.0000 1.34439
\(245\) 11.1803i 0.714286i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −25.0000 −1.58114
\(251\) −15.4919 −0.977842 −0.488921 0.872328i \(-0.662609\pi\)
−0.488921 + 0.872328i \(0.662609\pi\)
\(252\) 0 0
\(253\) − 34.6410i − 2.17786i
\(254\) 8.94427i 0.561214i
\(255\) 0 0
\(256\) −9.00000 −0.562500
\(257\) 3.87298 0.241590 0.120795 0.992677i \(-0.461456\pi\)
0.120795 + 0.992677i \(0.461456\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.74597 −0.477637 −0.238818 0.971064i \(-0.576760\pi\)
−0.238818 + 0.971064i \(0.576760\pi\)
\(264\) 0 0
\(265\) 25.9808i 1.59599i
\(266\) 26.8328i 1.64523i
\(267\) 0 0
\(268\) − 10.3923i − 0.634811i
\(269\) −15.4919 −0.944560 −0.472280 0.881449i \(-0.656569\pi\)
−0.472280 + 0.881449i \(0.656569\pi\)
\(270\) 0 0
\(271\) − 6.92820i − 0.420858i −0.977609 0.210429i \(-0.932514\pi\)
0.977609 0.210429i \(-0.0674861\pi\)
\(272\) 3.87298 0.234834
\(273\) 0 0
\(274\) −35.0000 −2.11443
\(275\) 0 0
\(276\) 0 0
\(277\) 11.0000 0.660926 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(278\) − 17.8885i − 1.07288i
\(279\) 0 0
\(280\) − 17.3205i − 1.03510i
\(281\) − 15.6525i − 0.933748i −0.884324 0.466874i \(-0.845380\pi\)
0.884324 0.466874i \(-0.154620\pi\)
\(282\) 0 0
\(283\) −10.0000 −0.594438 −0.297219 0.954809i \(-0.596059\pi\)
−0.297219 + 0.954809i \(0.596059\pi\)
\(284\) − 13.4164i − 0.796117i
\(285\) 0 0
\(286\) 0 0
\(287\) −7.74597 −0.457230
\(288\) 0 0
\(289\) −2.00000 −0.117647
\(290\) −19.3649 −1.13715
\(291\) 0 0
\(292\) 46.7654i 2.73674i
\(293\) − 2.23607i − 0.130632i −0.997865 0.0653162i \(-0.979194\pi\)
0.997865 0.0653162i \(-0.0208056\pi\)
\(294\) 0 0
\(295\) −20.0000 −1.16445
\(296\) 3.87298 0.225113
\(297\) 0 0
\(298\) 25.0000 1.44821
\(299\) 0 0
\(300\) 0 0
\(301\) − 6.92820i − 0.399335i
\(302\) 23.2379 1.33719
\(303\) 0 0
\(304\) 3.46410i 0.198680i
\(305\) 15.6525i 0.896258i
\(306\) 0 0
\(307\) − 10.3923i − 0.593120i −0.955014 0.296560i \(-0.904160\pi\)
0.955014 0.296560i \(-0.0958395\pi\)
\(308\) −46.4758 −2.64820
\(309\) 0 0
\(310\) 0 0
\(311\) −23.2379 −1.31770 −0.658850 0.752274i \(-0.728957\pi\)
−0.658850 + 0.752274i \(0.728957\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) − 24.5967i − 1.38807i
\(315\) 0 0
\(316\) −24.0000 −1.35011
\(317\) − 29.0689i − 1.63267i −0.577578 0.816336i \(-0.696002\pi\)
0.577578 0.816336i \(-0.303998\pi\)
\(318\) 0 0
\(319\) 17.3205i 0.969762i
\(320\) − 29.0689i − 1.62500i
\(321\) 0 0
\(322\) 60.0000 3.34367
\(323\) 13.4164i 0.746509i
\(324\) 0 0
\(325\) 0 0
\(326\) −30.9839 −1.71604
\(327\) 0 0
\(328\) 5.00000 0.276079
\(329\) 15.4919 0.854098
\(330\) 0 0
\(331\) 27.7128i 1.52323i 0.648027 + 0.761617i \(0.275594\pi\)
−0.648027 + 0.761617i \(0.724406\pi\)
\(332\) − 13.4164i − 0.736321i
\(333\) 0 0
\(334\) −20.0000 −1.09435
\(335\) 7.74597 0.423207
\(336\) 0 0
\(337\) 11.0000 0.599208 0.299604 0.954064i \(-0.403145\pi\)
0.299604 + 0.954064i \(0.403145\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) − 25.9808i − 1.40900i
\(341\) 0 0
\(342\) 0 0
\(343\) − 6.92820i − 0.374088i
\(344\) 4.47214i 0.241121i
\(345\) 0 0
\(346\) 34.6410i 1.86231i
\(347\) 7.74597 0.415825 0.207913 0.978147i \(-0.433333\pi\)
0.207913 + 0.978147i \(0.433333\pi\)
\(348\) 0 0
\(349\) 13.8564i 0.741716i 0.928689 + 0.370858i \(0.120936\pi\)
−0.928689 + 0.370858i \(0.879064\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −30.0000 −1.59901
\(353\) − 2.23607i − 0.119014i −0.998228 0.0595069i \(-0.981047\pi\)
0.998228 0.0595069i \(-0.0189528\pi\)
\(354\) 0 0
\(355\) 10.0000 0.530745
\(356\) − 13.4164i − 0.711068i
\(357\) 0 0
\(358\) 17.3205i 0.915417i
\(359\) 31.3050i 1.65221i 0.563515 + 0.826106i \(0.309449\pi\)
−0.563515 + 0.826106i \(0.690551\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 42.4853i 2.23298i
\(363\) 0 0
\(364\) 0 0
\(365\) −34.8569 −1.82449
\(366\) 0 0
\(367\) 14.0000 0.730794 0.365397 0.930852i \(-0.380933\pi\)
0.365397 + 0.930852i \(0.380933\pi\)
\(368\) 7.74597 0.403786
\(369\) 0 0
\(370\) 8.66025i 0.450225i
\(371\) 40.2492i 2.08964i
\(372\) 0 0
\(373\) −37.0000 −1.91579 −0.957894 0.287123i \(-0.907301\pi\)
−0.957894 + 0.287123i \(0.907301\pi\)
\(374\) −38.7298 −2.00267
\(375\) 0 0
\(376\) −10.0000 −0.515711
\(377\) 0 0
\(378\) 0 0
\(379\) 13.8564i 0.711756i 0.934532 + 0.355878i \(0.115818\pi\)
−0.934532 + 0.355878i \(0.884182\pi\)
\(380\) 23.2379 1.19208
\(381\) 0 0
\(382\) 34.6410i 1.77239i
\(383\) 17.8885i 0.914062i 0.889451 + 0.457031i \(0.151087\pi\)
−0.889451 + 0.457031i \(0.848913\pi\)
\(384\) 0 0
\(385\) − 34.6410i − 1.76547i
\(386\) −3.87298 −0.197130
\(387\) 0 0
\(388\) − 20.7846i − 1.05518i
\(389\) −11.6190 −0.589104 −0.294552 0.955635i \(-0.595170\pi\)
−0.294552 + 0.955635i \(0.595170\pi\)
\(390\) 0 0
\(391\) 30.0000 1.51717
\(392\) − 11.1803i − 0.564692i
\(393\) 0 0
\(394\) 10.0000 0.503793
\(395\) − 17.8885i − 0.900070i
\(396\) 0 0
\(397\) − 13.8564i − 0.695433i −0.937600 0.347717i \(-0.886957\pi\)
0.937600 0.347717i \(-0.113043\pi\)
\(398\) 49.1935i 2.46585i
\(399\) 0 0
\(400\) 0 0
\(401\) − 29.0689i − 1.45163i −0.687890 0.725815i \(-0.741463\pi\)
0.687890 0.725815i \(-0.258537\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −11.6190 −0.578064
\(405\) 0 0
\(406\) −30.0000 −1.48888
\(407\) 7.74597 0.383953
\(408\) 0 0
\(409\) − 8.66025i − 0.428222i −0.976809 0.214111i \(-0.931315\pi\)
0.976809 0.214111i \(-0.0686854\pi\)
\(410\) 11.1803i 0.552158i
\(411\) 0 0
\(412\) −6.00000 −0.295599
\(413\) −30.9839 −1.52462
\(414\) 0 0
\(415\) 10.0000 0.490881
\(416\) 0 0
\(417\) 0 0
\(418\) − 34.6410i − 1.69435i
\(419\) 15.4919 0.756830 0.378415 0.925636i \(-0.376469\pi\)
0.378415 + 0.925636i \(0.376469\pi\)
\(420\) 0 0
\(421\) − 15.5885i − 0.759735i −0.925041 0.379867i \(-0.875970\pi\)
0.925041 0.379867i \(-0.124030\pi\)
\(422\) − 17.8885i − 0.870801i
\(423\) 0 0
\(424\) − 25.9808i − 1.26174i
\(425\) 0 0
\(426\) 0 0
\(427\) 24.2487i 1.17348i
\(428\) 23.2379 1.12325
\(429\) 0 0
\(430\) −10.0000 −0.482243
\(431\) 4.47214i 0.215415i 0.994183 + 0.107708i \(0.0343510\pi\)
−0.994183 + 0.107708i \(0.965649\pi\)
\(432\) 0 0
\(433\) 35.0000 1.68199 0.840996 0.541041i \(-0.181970\pi\)
0.840996 + 0.541041i \(0.181970\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.8328i 1.28359i
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 22.3607i 1.06600i
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) −61.9677 −2.93426
\(447\) 0 0
\(448\) − 45.0333i − 2.12762i
\(449\) 4.47214i 0.211053i 0.994416 + 0.105527i \(0.0336528\pi\)
−0.994416 + 0.105527i \(0.966347\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) −58.0948 −2.73255
\(453\) 0 0
\(454\) −50.0000 −2.34662
\(455\) 0 0
\(456\) 0 0
\(457\) − 12.1244i − 0.567153i −0.958950 0.283577i \(-0.908479\pi\)
0.958950 0.283577i \(-0.0915211\pi\)
\(458\) −46.4758 −2.17167
\(459\) 0 0
\(460\) − 51.9615i − 2.42272i
\(461\) − 2.23607i − 0.104144i −0.998643 0.0520720i \(-0.983417\pi\)
0.998643 0.0520720i \(-0.0165825\pi\)
\(462\) 0 0
\(463\) − 10.3923i − 0.482971i −0.970404 0.241486i \(-0.922365\pi\)
0.970404 0.241486i \(-0.0776347\pi\)
\(464\) −3.87298 −0.179799
\(465\) 0 0
\(466\) 0 0
\(467\) 23.2379 1.07532 0.537661 0.843161i \(-0.319308\pi\)
0.537661 + 0.843161i \(0.319308\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) − 22.3607i − 1.03142i
\(471\) 0 0
\(472\) 20.0000 0.920575
\(473\) 8.94427i 0.411258i
\(474\) 0 0
\(475\) 0 0
\(476\) − 40.2492i − 1.84482i
\(477\) 0 0
\(478\) 10.0000 0.457389
\(479\) 17.8885i 0.817348i 0.912680 + 0.408674i \(0.134009\pi\)
−0.912680 + 0.408674i \(0.865991\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −42.6028 −1.94051
\(483\) 0 0
\(484\) 27.0000 1.22727
\(485\) 15.4919 0.703452
\(486\) 0 0
\(487\) 38.1051i 1.72671i 0.504599 + 0.863354i \(0.331640\pi\)
−0.504599 + 0.863354i \(0.668360\pi\)
\(488\) − 15.6525i − 0.708554i
\(489\) 0 0
\(490\) 25.0000 1.12938
\(491\) 38.7298 1.74785 0.873926 0.486058i \(-0.161566\pi\)
0.873926 + 0.486058i \(0.161566\pi\)
\(492\) 0 0
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.4919 0.694908
\(498\) 0 0
\(499\) − 20.7846i − 0.930447i −0.885193 0.465223i \(-0.845974\pi\)
0.885193 0.465223i \(-0.154026\pi\)
\(500\) 33.5410i 1.50000i
\(501\) 0 0
\(502\) 34.6410i 1.54610i
\(503\) 7.74597 0.345376 0.172688 0.984977i \(-0.444755\pi\)
0.172688 + 0.984977i \(0.444755\pi\)
\(504\) 0 0
\(505\) − 8.66025i − 0.385376i
\(506\) −77.4597 −3.44350
\(507\) 0 0
\(508\) 12.0000 0.532414
\(509\) − 29.0689i − 1.28846i −0.764834 0.644228i \(-0.777179\pi\)
0.764834 0.644228i \(-0.222821\pi\)
\(510\) 0 0
\(511\) −54.0000 −2.38882
\(512\) − 11.1803i − 0.494106i
\(513\) 0 0
\(514\) − 8.66025i − 0.381987i
\(515\) − 4.47214i − 0.197066i
\(516\) 0 0
\(517\) −20.0000 −0.879599
\(518\) 13.4164i 0.589483i
\(519\) 0 0
\(520\) 0 0
\(521\) 11.6190 0.509035 0.254518 0.967068i \(-0.418083\pi\)
0.254518 + 0.967068i \(0.418083\pi\)
\(522\) 0 0
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 17.3205i 0.755210i
\(527\) 0 0
\(528\) 0 0
\(529\) 37.0000 1.60870
\(530\) 58.0948 2.52347
\(531\) 0 0
\(532\) 36.0000 1.56080
\(533\) 0 0
\(534\) 0 0
\(535\) 17.3205i 0.748831i
\(536\) −7.74597 −0.334575
\(537\) 0 0
\(538\) 34.6410i 1.49348i
\(539\) − 22.3607i − 0.963143i
\(540\) 0 0
\(541\) 25.9808i 1.11700i 0.829504 + 0.558500i \(0.188623\pi\)
−0.829504 + 0.558500i \(0.811377\pi\)
\(542\) −15.4919 −0.665436
\(543\) 0 0
\(544\) − 25.9808i − 1.11392i
\(545\) 0 0
\(546\) 0 0
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) 46.9574i 2.00592i
\(549\) 0 0
\(550\) 0 0
\(551\) − 13.4164i − 0.571558i
\(552\) 0 0
\(553\) − 27.7128i − 1.17847i
\(554\) − 24.5967i − 1.04502i
\(555\) 0 0
\(556\) −24.0000 −1.01783
\(557\) − 29.0689i − 1.23169i −0.787868 0.615844i \(-0.788815\pi\)
0.787868 0.615844i \(-0.211185\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 7.74597 0.327327
\(561\) 0 0
\(562\) −35.0000 −1.47639
\(563\) 30.9839 1.30581 0.652907 0.757438i \(-0.273549\pi\)
0.652907 + 0.757438i \(0.273549\pi\)
\(564\) 0 0
\(565\) − 43.3013i − 1.82170i
\(566\) 22.3607i 0.939889i
\(567\) 0 0
\(568\) −10.0000 −0.419591
\(569\) 15.4919 0.649456 0.324728 0.945808i \(-0.394727\pi\)
0.324728 + 0.945808i \(0.394727\pi\)
\(570\) 0 0
\(571\) −34.0000 −1.42286 −0.711428 0.702759i \(-0.751951\pi\)
−0.711428 + 0.702759i \(0.751951\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 17.3205i 0.722944i
\(575\) 0 0
\(576\) 0 0
\(577\) − 5.19615i − 0.216319i −0.994134 0.108159i \(-0.965504\pi\)
0.994134 0.108159i \(-0.0344957\pi\)
\(578\) 4.47214i 0.186016i
\(579\) 0 0
\(580\) 25.9808i 1.07879i
\(581\) 15.4919 0.642714
\(582\) 0 0
\(583\) − 51.9615i − 2.15203i
\(584\) 34.8569 1.44239
\(585\) 0 0
\(586\) −5.00000 −0.206548
\(587\) − 35.7771i − 1.47668i −0.674430 0.738339i \(-0.735610\pi\)
0.674430 0.738339i \(-0.264390\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 44.7214i 1.84115i
\(591\) 0 0
\(592\) 1.73205i 0.0711868i
\(593\) − 2.23607i − 0.0918243i −0.998945 0.0459122i \(-0.985381\pi\)
0.998945 0.0459122i \(-0.0146194\pi\)
\(594\) 0 0
\(595\) 30.0000 1.22988
\(596\) − 33.5410i − 1.37389i
\(597\) 0 0
\(598\) 0 0
\(599\) 46.4758 1.89895 0.949475 0.313843i \(-0.101617\pi\)
0.949475 + 0.313843i \(0.101617\pi\)
\(600\) 0 0
\(601\) 29.0000 1.18293 0.591467 0.806329i \(-0.298549\pi\)
0.591467 + 0.806329i \(0.298549\pi\)
\(602\) −15.4919 −0.631404
\(603\) 0 0
\(604\) − 31.1769i − 1.26857i
\(605\) 20.1246i 0.818182i
\(606\) 0 0
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 23.2379 0.942421
\(609\) 0 0
\(610\) 35.0000 1.41711
\(611\) 0 0
\(612\) 0 0
\(613\) − 1.73205i − 0.0699569i −0.999388 0.0349784i \(-0.988864\pi\)
0.999388 0.0349784i \(-0.0111363\pi\)
\(614\) −23.2379 −0.937805
\(615\) 0 0
\(616\) 34.6410i 1.39573i
\(617\) − 29.0689i − 1.17027i −0.810936 0.585135i \(-0.801042\pi\)
0.810936 0.585135i \(-0.198958\pi\)
\(618\) 0 0
\(619\) 20.7846i 0.835404i 0.908584 + 0.417702i \(0.137164\pi\)
−0.908584 + 0.417702i \(0.862836\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 51.9615i 2.08347i
\(623\) 15.4919 0.620671
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 49.1935i 1.96617i
\(627\) 0 0
\(628\) −33.0000 −1.31684
\(629\) 6.70820i 0.267474i
\(630\) 0 0
\(631\) 6.92820i 0.275807i 0.990446 + 0.137904i \(0.0440364\pi\)
−0.990446 + 0.137904i \(0.955964\pi\)
\(632\) 17.8885i 0.711568i
\(633\) 0 0
\(634\) −65.0000 −2.58148
\(635\) 8.94427i 0.354943i
\(636\) 0 0
\(637\) 0 0
\(638\) 38.7298 1.53333
\(639\) 0 0
\(640\) −35.0000 −1.38350
\(641\) 19.3649 0.764868 0.382434 0.923983i \(-0.375086\pi\)
0.382434 + 0.923983i \(0.375086\pi\)
\(642\) 0 0
\(643\) 27.7128i 1.09289i 0.837496 + 0.546443i \(0.184019\pi\)
−0.837496 + 0.546443i \(0.815981\pi\)
\(644\) − 80.4984i − 3.17208i
\(645\) 0 0
\(646\) 30.0000 1.18033
\(647\) −30.9839 −1.21810 −0.609051 0.793131i \(-0.708449\pi\)
−0.609051 + 0.793131i \(0.708449\pi\)
\(648\) 0 0
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 0 0
\(652\) 41.5692i 1.62798i
\(653\) 15.4919 0.606246 0.303123 0.952951i \(-0.401971\pi\)
0.303123 + 0.952951i \(0.401971\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.23607i 0.0873038i
\(657\) 0 0
\(658\) − 34.6410i − 1.35045i
\(659\) 30.9839 1.20696 0.603480 0.797378i \(-0.293780\pi\)
0.603480 + 0.797378i \(0.293780\pi\)
\(660\) 0 0
\(661\) 19.0526i 0.741059i 0.928821 + 0.370529i \(0.120824\pi\)
−0.928821 + 0.370529i \(0.879176\pi\)
\(662\) 61.9677 2.40844
\(663\) 0 0
\(664\) −10.0000 −0.388075
\(665\) 26.8328i 1.04053i
\(666\) 0 0
\(667\) −30.0000 −1.16160
\(668\) 26.8328i 1.03819i
\(669\) 0 0
\(670\) − 17.3205i − 0.669150i
\(671\) − 31.3050i − 1.20851i
\(672\) 0 0
\(673\) −43.0000 −1.65753 −0.828764 0.559598i \(-0.810955\pi\)
−0.828764 + 0.559598i \(0.810955\pi\)
\(674\) − 24.5967i − 0.947431i
\(675\) 0 0
\(676\) 0 0
\(677\) 46.4758 1.78621 0.893105 0.449848i \(-0.148522\pi\)
0.893105 + 0.449848i \(0.148522\pi\)
\(678\) 0 0
\(679\) 24.0000 0.921035
\(680\) −19.3649 −0.742611
\(681\) 0 0
\(682\) 0 0
\(683\) − 35.7771i − 1.36897i −0.729026 0.684486i \(-0.760027\pi\)
0.729026 0.684486i \(-0.239973\pi\)
\(684\) 0 0
\(685\) −35.0000 −1.33728
\(686\) −15.4919 −0.591485
\(687\) 0 0
\(688\) −2.00000 −0.0762493
\(689\) 0 0
\(690\) 0 0
\(691\) 24.2487i 0.922464i 0.887279 + 0.461232i \(0.152592\pi\)
−0.887279 + 0.461232i \(0.847408\pi\)
\(692\) 46.4758 1.76674
\(693\) 0 0
\(694\) − 17.3205i − 0.657477i
\(695\) − 17.8885i − 0.678551i
\(696\) 0 0
\(697\) 8.66025i 0.328031i
\(698\) 30.9839 1.17276
\(699\) 0 0
\(700\) 0 0
\(701\) −46.4758 −1.75537 −0.877683 0.479241i \(-0.840912\pi\)
−0.877683 + 0.479241i \(0.840912\pi\)
\(702\) 0 0
\(703\) −6.00000 −0.226294
\(704\) 58.1378i 2.19115i
\(705\) 0 0
\(706\) −5.00000 −0.188177
\(707\) − 13.4164i − 0.504576i
\(708\) 0 0
\(709\) 12.1244i 0.455340i 0.973738 + 0.227670i \(0.0731107\pi\)
−0.973738 + 0.227670i \(0.926889\pi\)
\(710\) − 22.3607i − 0.839181i
\(711\) 0 0
\(712\) −10.0000 −0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 23.2379 0.868441
\(717\) 0 0
\(718\) 70.0000 2.61238
\(719\) 30.9839 1.15550 0.577752 0.816213i \(-0.303930\pi\)
0.577752 + 0.816213i \(0.303930\pi\)
\(720\) 0 0
\(721\) − 6.92820i − 0.258020i
\(722\) − 15.6525i − 0.582525i
\(723\) 0 0
\(724\) 57.0000 2.11839
\(725\) 0 0
\(726\) 0 0
\(727\) −46.0000 −1.70605 −0.853023 0.521874i \(-0.825233\pi\)
−0.853023 + 0.521874i \(0.825233\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 77.9423i 2.88477i
\(731\) −7.74597 −0.286495
\(732\) 0 0
\(733\) 36.3731i 1.34347i 0.740792 + 0.671735i \(0.234451\pi\)
−0.740792 + 0.671735i \(0.765549\pi\)
\(734\) − 31.3050i − 1.15549i
\(735\) 0 0
\(736\) − 51.9615i − 1.91533i
\(737\) −15.4919 −0.570653
\(738\) 0 0
\(739\) 34.6410i 1.27429i 0.770744 + 0.637145i \(0.219885\pi\)
−0.770744 + 0.637145i \(0.780115\pi\)
\(740\) 11.6190 0.427121
\(741\) 0 0
\(742\) 90.0000 3.30400
\(743\) − 8.94427i − 0.328134i −0.986449 0.164067i \(-0.947539\pi\)
0.986449 0.164067i \(-0.0524612\pi\)
\(744\) 0 0
\(745\) 25.0000 0.915929
\(746\) 82.7345i 3.02913i
\(747\) 0 0
\(748\) 51.9615i 1.89990i
\(749\) 26.8328i 0.980450i
\(750\) 0 0
\(751\) 38.0000 1.38664 0.693320 0.720630i \(-0.256147\pi\)
0.693320 + 0.720630i \(0.256147\pi\)
\(752\) − 4.47214i − 0.163082i
\(753\) 0 0
\(754\) 0 0
\(755\) 23.2379 0.845714
\(756\) 0 0
\(757\) −46.0000 −1.67190 −0.835949 0.548807i \(-0.815082\pi\)
−0.835949 + 0.548807i \(0.815082\pi\)
\(758\) 30.9839 1.12538
\(759\) 0 0
\(760\) − 17.3205i − 0.628281i
\(761\) 31.3050i 1.13480i 0.823441 + 0.567402i \(0.192051\pi\)
−0.823441 + 0.567402i \(0.807949\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 46.4758 1.68144
\(765\) 0 0
\(766\) 40.0000 1.44526
\(767\) 0 0
\(768\) 0 0
\(769\) − 48.4974i − 1.74886i −0.485150 0.874431i \(-0.661235\pi\)
0.485150 0.874431i \(-0.338765\pi\)
\(770\) −77.4597 −2.79145
\(771\) 0 0
\(772\) 5.19615i 0.187014i
\(773\) 4.47214i 0.160852i 0.996761 + 0.0804258i \(0.0256280\pi\)
−0.996761 + 0.0804258i \(0.974372\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −15.4919 −0.556128
\(777\) 0 0
\(778\) 25.9808i 0.931455i
\(779\) −7.74597 −0.277528
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) − 67.0820i − 2.39885i
\(783\) 0 0
\(784\) 5.00000 0.178571
\(785\) − 24.5967i − 0.877896i
\(786\) 0 0
\(787\) 27.7128i 0.987855i 0.869503 + 0.493928i \(0.164439\pi\)
−0.869503 + 0.493928i \(0.835561\pi\)
\(788\) − 13.4164i − 0.477940i
\(789\) 0 0
\(790\) −40.0000 −1.42314
\(791\) − 67.0820i − 2.38516i
\(792\) 0 0
\(793\) 0 0
\(794\) −30.9839 −1.09958
\(795\) 0 0
\(796\) 66.0000 2.33931
\(797\) 30.9839 1.09750 0.548752 0.835985i \(-0.315103\pi\)
0.548752 + 0.835985i \(0.315103\pi\)
\(798\) 0 0
\(799\) − 17.3205i − 0.612756i
\(800\) 0 0
\(801\) 0 0
\(802\) −65.0000 −2.29523
\(803\) 69.7137 2.46014
\(804\) 0 0
\(805\) 60.0000 2.11472
\(806\) 0 0
\(807\) 0 0
\(808\) 8.66025i 0.304667i
\(809\) −42.6028 −1.49784 −0.748918 0.662663i \(-0.769426\pi\)
−0.748918 + 0.662663i \(0.769426\pi\)
\(810\) 0 0
\(811\) 41.5692i 1.45969i 0.683611 + 0.729846i \(0.260408\pi\)
−0.683611 + 0.729846i \(0.739592\pi\)
\(812\) 40.2492i 1.41247i
\(813\) 0 0
\(814\) − 17.3205i − 0.607083i
\(815\) −30.9839 −1.08532
\(816\) 0 0
\(817\) − 6.92820i − 0.242387i
\(818\) −19.3649 −0.677078
\(819\) 0 0
\(820\) 15.0000 0.523823
\(821\) 4.47214i 0.156079i 0.996950 + 0.0780393i \(0.0248660\pi\)
−0.996950 + 0.0780393i \(0.975134\pi\)
\(822\) 0 0
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 4.47214i 0.155794i
\(825\) 0 0
\(826\) 69.2820i 2.41063i
\(827\) 17.8885i 0.622046i 0.950402 + 0.311023i \(0.100672\pi\)
−0.950402 + 0.311023i \(0.899328\pi\)
\(828\) 0 0
\(829\) −13.0000 −0.451509 −0.225754 0.974184i \(-0.572485\pi\)
−0.225754 + 0.974184i \(0.572485\pi\)
\(830\) − 22.3607i − 0.776151i
\(831\) 0 0
\(832\) 0 0
\(833\) 19.3649 0.670955
\(834\) 0 0
\(835\) −20.0000 −0.692129
\(836\) −46.4758 −1.60740
\(837\) 0 0
\(838\) − 34.6410i − 1.19665i
\(839\) 17.8885i 0.617581i 0.951130 + 0.308791i \(0.0999242\pi\)
−0.951130 + 0.308791i \(0.900076\pi\)
\(840\) 0 0
\(841\) −14.0000 −0.482759
\(842\) −34.8569 −1.20125
\(843\) 0 0
\(844\) −24.0000 −0.826114
\(845\) 0 0
\(846\) 0 0
\(847\) 31.1769i 1.07125i
\(848\) 11.6190 0.398996
\(849\) 0 0
\(850\) 0 0
\(851\) 13.4164i 0.459909i
\(852\) 0 0
\(853\) 5.19615i 0.177913i 0.996036 + 0.0889564i \(0.0283532\pi\)
−0.996036 + 0.0889564i \(0.971647\pi\)
\(854\) 54.2218 1.85543
\(855\) 0 0
\(856\) − 17.3205i − 0.592003i
\(857\) 34.8569 1.19069 0.595344 0.803471i \(-0.297016\pi\)
0.595344 + 0.803471i \(0.297016\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 13.4164i 0.457496i
\(861\) 0 0
\(862\) 10.0000 0.340601
\(863\) 31.3050i 1.06563i 0.846231 + 0.532816i \(0.178866\pi\)
−0.846231 + 0.532816i \(0.821134\pi\)
\(864\) 0 0
\(865\) 34.6410i 1.17783i
\(866\) − 78.2624i − 2.65946i
\(867\) 0 0
\(868\) 0 0
\(869\) 35.7771i 1.21365i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 60.0000 2.02953
\(875\) −38.7298 −1.30931
\(876\) 0 0
\(877\) − 29.4449i − 0.994282i −0.867670 0.497141i \(-0.834383\pi\)
0.867670 0.497141i \(-0.165617\pi\)
\(878\) − 4.47214i − 0.150927i
\(879\) 0 0
\(880\) −10.0000 −0.337100
\(881\) 27.1109 0.913389 0.456694 0.889624i \(-0.349033\pi\)
0.456694 + 0.889624i \(0.349033\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.4919 0.520168 0.260084 0.965586i \(-0.416250\pi\)
0.260084 + 0.965586i \(0.416250\pi\)
\(888\) 0 0
\(889\) 13.8564i 0.464729i
\(890\) − 22.3607i − 0.749532i
\(891\) 0 0
\(892\) 83.1384i 2.78368i
\(893\) 15.4919 0.518418
\(894\) 0 0
\(895\) 17.3205i 0.578961i
\(896\) −54.2218 −1.81142
\(897\) 0 0
\(898\) 10.0000 0.333704
\(899\) 0 0
\(900\) 0 0
\(901\) 45.0000 1.49917
\(902\) − 22.3607i − 0.744529i
\(903\) 0 0
\(904\) 43.3013i 1.44018i
\(905\) 42.4853i 1.41226i
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 67.0820i 2.22620i
\(909\) 0 0
\(910\) 0 0
\(911\) −46.4758 −1.53981 −0.769906 0.638157i \(-0.779697\pi\)
−0.769906 + 0.638157i \(0.779697\pi\)
\(912\) 0 0
\(913\) −20.0000 −0.661903
\(914\) −27.1109 −0.896748
\(915\) 0 0
\(916\) 62.3538i 2.06023i
\(917\) 0 0
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) −38.7298 −1.27688
\(921\) 0 0
\(922\) −5.00000 −0.164666
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −23.2379 −0.763645
\(927\) 0 0
\(928\) 25.9808i 0.852860i
\(929\) − 55.9017i − 1.83408i −0.398801 0.917038i \(-0.630573\pi\)
0.398801 0.917038i \(-0.369427\pi\)
\(930\) 0 0
\(931\) 17.3205i 0.567657i
\(932\) 0 0
\(933\) 0 0
\(934\) − 51.9615i − 1.70023i
\(935\) −38.7298 −1.26660
\(936\) 0 0
\(937\) −1.00000 −0.0326686 −0.0163343 0.999867i \(-0.505200\pi\)
−0.0163343 + 0.999867i \(0.505200\pi\)
\(938\) − 26.8328i − 0.876122i
\(939\) 0 0
\(940\) −30.0000 −0.978492
\(941\) 4.47214i 0.145787i 0.997340 + 0.0728937i \(0.0232234\pi\)
−0.997340 + 0.0728937i \(0.976777\pi\)
\(942\) 0 0
\(943\) 17.3205i 0.564033i
\(944\) 8.94427i 0.291111i
\(945\) 0 0
\(946\) 20.0000 0.650256
\(947\) 17.8885i 0.581300i 0.956830 + 0.290650i \(0.0938715\pi\)
−0.956830 + 0.290650i \(0.906129\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −30.0000 −0.972306
\(953\) −15.4919 −0.501833 −0.250916 0.968009i \(-0.580732\pi\)
−0.250916 + 0.968009i \(0.580732\pi\)
\(954\) 0 0
\(955\) 34.6410i 1.12096i
\(956\) − 13.4164i − 0.433918i
\(957\) 0 0
\(958\) 40.0000 1.29234
\(959\) −54.2218 −1.75091
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 57.1577i 1.84092i
\(965\) −3.87298 −0.124676
\(966\) 0 0
\(967\) − 10.3923i − 0.334194i −0.985940 0.167097i \(-0.946561\pi\)
0.985940 0.167097i \(-0.0534393\pi\)
\(968\) − 20.1246i − 0.646830i
\(969\) 0 0
\(970\) − 34.6410i − 1.11226i
\(971\) 30.9839 0.994320 0.497160 0.867659i \(-0.334376\pi\)
0.497160 + 0.867659i \(0.334376\pi\)
\(972\) 0 0
\(973\) − 27.7128i − 0.888432i
\(974\) 85.2056 2.73016
\(975\) 0 0
\(976\) 7.00000 0.224065
\(977\) 11.1803i 0.357691i 0.983877 + 0.178845i \(0.0572362\pi\)
−0.983877 + 0.178845i \(0.942764\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) − 33.5410i − 1.07143i
\(981\) 0 0
\(982\) − 86.6025i − 2.76360i
\(983\) − 8.94427i − 0.285278i −0.989775 0.142639i \(-0.954441\pi\)
0.989775 0.142639i \(-0.0455588\pi\)
\(984\) 0 0
\(985\) 10.0000 0.318626
\(986\) 33.5410i 1.06816i
\(987\) 0 0
\(988\) 0 0
\(989\) −15.4919 −0.492615
\(990\) 0 0
\(991\) 14.0000 0.444725 0.222362 0.974964i \(-0.428623\pi\)
0.222362 + 0.974964i \(0.428623\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) − 34.6410i − 1.09875i
\(995\) 49.1935i 1.55954i
\(996\) 0 0
\(997\) 29.0000 0.918439 0.459220 0.888323i \(-0.348129\pi\)
0.459220 + 0.888323i \(0.348129\pi\)
\(998\) −46.4758 −1.47117
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.b.g.1351.1 4
3.2 odd 2 inner 1521.2.b.g.1351.3 4
13.3 even 3 117.2.q.d.82.2 yes 4
13.4 even 6 117.2.q.d.10.2 yes 4
13.5 odd 4 1521.2.a.u.1.2 4
13.8 odd 4 1521.2.a.u.1.3 4
13.12 even 2 inner 1521.2.b.g.1351.4 4
39.5 even 4 1521.2.a.u.1.4 4
39.8 even 4 1521.2.a.u.1.1 4
39.17 odd 6 117.2.q.d.10.1 4
39.29 odd 6 117.2.q.d.82.1 yes 4
39.38 odd 2 inner 1521.2.b.g.1351.2 4
52.3 odd 6 1872.2.by.l.433.1 4
52.43 odd 6 1872.2.by.l.1297.2 4
156.95 even 6 1872.2.by.l.1297.1 4
156.107 even 6 1872.2.by.l.433.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.q.d.10.1 4 39.17 odd 6
117.2.q.d.10.2 yes 4 13.4 even 6
117.2.q.d.82.1 yes 4 39.29 odd 6
117.2.q.d.82.2 yes 4 13.3 even 3
1521.2.a.u.1.1 4 39.8 even 4
1521.2.a.u.1.2 4 13.5 odd 4
1521.2.a.u.1.3 4 13.8 odd 4
1521.2.a.u.1.4 4 39.5 even 4
1521.2.b.g.1351.1 4 1.1 even 1 trivial
1521.2.b.g.1351.2 4 39.38 odd 2 inner
1521.2.b.g.1351.3 4 3.2 odd 2 inner
1521.2.b.g.1351.4 4 13.12 even 2 inner
1872.2.by.l.433.1 4 52.3 odd 6
1872.2.by.l.433.2 4 156.107 even 6
1872.2.by.l.1297.1 4 156.95 even 6
1872.2.by.l.1297.2 4 52.43 odd 6